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20.1  Introduction

Conventional controllers, such as PID controller, are broadly used for linear processes. In real life, most 
processes are nonlinear. Nonlinear control is considered as one of the most difficult challenges in mod-
ern control theory. While linear control system theory has been well developed, it is the nonlinear 
control problems that cause most headaches. Traditionally, a nonlinear process has to be linearized first 
before an automatic controller can be effectively applied [WB01]. This is typically achieved by adding 
a reverse nonlinear function to compensate for the nonlinear behavior so the overall process input–
output relationship becomes somewhat linear.

The issue becomes more complicated if a nonlinear characteristic of the system changes with time 
and there is a need for an adaptive change of the nonlinear behavior. These adaptive systems are best 
handled with methods of computational intelligence such as neural networks and fuzzy systems [W02].

In this chapter, neuro-fuzzy system [WJK99], as the combination of fuzzy system and neural networks, 
will be introduced, and compared with classic fuzzy systems, based on a simple case (Figure 20.1).

The studying case can be described as the nonlinear control surface, shown in Figure 20.1. All points 
(441 points in Figure 20.1a and 36 points in Figure 20.1b) in the surface are calculated by the equation

	
z exp x y= − −( ) − −( )( ) −1 1 0 07 5 0 07 5 0 92 2. . . .

	
(20.1)

20.2  Fuzzy System

The most commonly used architectures for fuzzy system development are Mamdani fuzzy system 
[M74,MW01] and TSK (Takagi, Sugeno, and Kang) fuzzy system [TS85,SK88,WB99], as shown in Figure 
20.2. Both of them consist of three blocks: fuzzification, fuzzy rules, and defuzzification/normalization. 
Each of the blocks could be designed differently.
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20-2	 Intelligent Systems

20.2.1  Fuzzification

Fuzzification is supposed to convert the analog inputs into sets of fuzzy variables. For each analog 
input, several fuzzy variables are generated with values between 0 and 1. The number of fuzzy vari-
ables depends on the number of member functions in fuzzification process. Various types of member 
functions can be used for conversion, such as triangular and trapezoidal. One may consider using the 
combination of them and different types of membership functions result in different accuracies. Figure 
20.3 shows the surfaces and related accuracies obtained by using Mamdani fuzzy system with different 
membership functions, for solving the problem in Figure 20.1.

One may notice that using triangular membership functions can get better surface than from using 
trapezoidal membership functions.

The more membership functions are used, the higher accuracy will be obtained. However, very dense 
functions may lead to frequent controller actions (known as “hunting”), and sometimes this may leads 
to system instability; on the other hand, more storage is required, because the size of fuzzy table is 
increased exponentially to the number of membership functions.

20.2.2  Fuzzy Rules

Fuzzy variables are processed by fuzzy logic rules, with MIN and MAX operators. The fuzzy logic can 
be interpreted as the extended Boolean logic. For binary “0” and “1,” the MIN and MAX operators 
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Figure 20.1  Required surface obtained from Equation 20.1: (a) 21 × 21 = 441 points and (b) 6 × 6 = 36 points.
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Figure 20.2  Block diagram of the two types of fuzzy systems: (a) Mamdani fuzzy system and (b) TSK fuzzy system.
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Neuro-Fuzzy System	 20-3

in the fuzzy logic perform the same calculations as the AND and 
OR operators in Boolean logic, respectively, see Table 20.1; for 
fuzzy variables, the MIN and MAX operators work as shown in 
Table 20.2.

20.2.3  Defuzzification

As a result of “MAX of MIN” operations in Mamdani fuzzy systems, 
a new set of fuzzy variables is generated, which later has to be 
converted to an analog output value by defuzzification blocks (Figure 20.1a). In TSK fuzzy systems, the 
defuzzification block was replaced with normalization and weighted average; MAX operations are not 
required, instead, a weighted average is applied directly to regions selected by MIN operators.

Figure 20.4 shows the result surfaces using TSK fuzzy architecture, with different membership 
functions.

20.3  Neuro-Fuzzy System

A lot of research is devoted to improve the ability of fuzzy systems [WJ96], such as evolutionary strategy 
and neural networks [CW94]. The combination of fuzzy logic and neural networks is called neuro-fuzzy 
system, which is supposed to result in a hybrid intelligent system by combining human-like reasoning 
style of neural networks.

20.3.1  Structure One

Figure 20.5 shows the neuro-fuzzy system which attempts to present a fuzzy system in a form of neural 
network [RH99].
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Figure 20.3  Control surface using Mamdani fuzzy systems and 5 membership functions per input: (a) trapezoidal 
membership function, error = 3.8723 and (b) triangular membership function, error = 2.4799.

Table 20.1  Binary Operation Using Boolean Logic and Fuzzy Logic

A B A AND B MIN(A,B) A OR B MAX(A,B)

0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 0 1 1
1 1 1 1 1 1

Table 20.2  Fuzzy Variables 
Operation Using Fuzzy Logic

A B MIN(A,B) MAX(A,B)

0.3 0.5 0.3 0.5
0.3 0.7 0.3 0.7
0.6 0.4 0.4 0.6
0.6 0.8 0.6 0.8
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20-4	 Intelligent Systems

The neuro-fuzzy system consists of four blocks: fuzzification, multiplication, summation, and 
division. Fuzzification block translates the input analog signals into fuzzy variables by membership 
functions. Then, instead of MIN operations in classic fuzzy systems, product operations (signals are 
multiplied) are performed among fuzzy variables. This neuro-fuzzy system with product encoding is 
more difficult to implement [OW96], but it can generate a slightly smoother control surface (see Figures 
20.6 and 20.7). The summation and division layers perform defuzzification translation. The weights on 
upper sum unit are designed as the expecting values (both Mamdani and TSK rules can be used); while 
the weights on the lower sum unit are all “1.”

Figures 20.6 and 20.7 show the surfaces obtained using the neuro-fuzzy system in Figure 20.5, which 
is smoother than the surfaces in Figures 20.3 and 20.4.

Note that, in this type of neuro-fuzzy systems, only architecture resembles neural networks because 
cells there perform different functions than neurons, such as signal multiplication or division.
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Figure 20.5  Neuro-fuzzy system.
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Figure 20.4  Control surface using TSK fuzzy systems and 5 membership functions per input: (a) trapezoidal 
membership function, error = 2.4423, and (b) triangular membership function, error = 1.5119.
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20.3.2  Structure Two

A single neuron can divide input space by line, plane, or hyper plane, depending on the problem dimen-
sionality. In order to select just one region in n-dimensional input space, more than (n+1) neurons are 
required. For example, to separate a rectangular pattern, four neurons are required, as is shown in 
Figure 20.8. If more input clusters should be selected, then the number of neurons in the hidden layer 
should be properly multiplied. If the number of neurons in the hidden layer is not limited, then all 
classification problems can be solved using the three-layer network.

With the concept shown on Figure 20.8, fuzzifiers and MIN operators used for region selection can 
be replaced by simple neural network architecture. In this example, the two analog inputs, each with 
five membership functions, can be organized as a two-dimensional input space was divided by six neu-
rons horizontally (from line a to line f ) and by six neurons vertically (from line g to line l), as shown in 
Figure 20.9. The corresponding neural network is shown in Figure 20.10. Neurons in the first layer are 
corresponding to the lines indexed from a to l. Each neuron is connected only to one input. For each 
neuron input, weight is equal to +1 and the threshold is equal to the value of the crossing point on the 
x or y axis. The type of activation functions of neurons in the first layer decides the type of membership 
functions of the fuzzy system, as shown in Figure 20.11.
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Figure 20.6  Control surface using neuro-fuzzy system in Figure 20.5, Mamdani rule for weight initialization 
of the upper sum unit and 5 membership functions per input: (a) trapezoidal membership function, error = 3.8723 
and (b) triangular membership function, error = 2.4468.
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Figure 20.7  Control surface using neuro-fuzzy system in Figure 20.5, TSK rule for weight initialization of the 
upper sum unit and 5 membership functions per input: (a) trapezoidal membership function, error = 2.4423 and 
(b) triangular membership function, error = 1.3883.
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20-6	 Intelligent Systems

Neurons in the second layers are corresponding to the sections indexed from 1 to 25. Each of them has 
two connections to lower boundary neurons with weights of +1 and two connections to upper boundary 
neurons with weights of −1. Thresholds for all these neurons in the second layer are set to 3.

Weights of the upper sum unit in the third layer have values corresponding to the specified val-
ues in selected areas. The specified values can be obtained from either the fuzzy table (by Mamdani 
rule), or the expected function values (by TSK rule). Weights of the lower sum unit are equal to “1.” 
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All neurons in Figure 20.8 have a unipolar activation function and if the system is properly designed, 
then for any input vector in certain areas only the neuron of this area produces +1 while all remain-
ing neurons have zero values. In the case of when the input vector is close to a boundary between 
two or more regions, then all participating neurons are producing fractional values and the system 
output is generated as a weighted sum. The fourth layer performs such a calculation: the upper sum 
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Figure 20.11  Construction of membership functions by neurons’ activation functions: (a) trapezoidal membership 
function and (b) triangular membership function.
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K10149_C020.indd   7 9/3/2010   4:05:47 PM



20-8	 Intelligent Systems

divided by the lower sum. Like the neuro-fuzzy system in Figure 20.5, the last two layers are used for 
defuzzification.

Using this concept of neuro-fuzzy system, the result surfaces with different combination of activation 
functions, can be obtained as shown in Figure 20.12.

It was shown above that a simple neural network of Figure 20.10 can replace a TSK neuro-fuzzy 
system in Figure 20.5. All parameters of this network are directly derived from requirements specified 
for a fuzzy system and there is no need for a training process.

20.4  Conclusion

The chapter introduced two types of neuro-fuzzy architectures, in order to improve the performance of 
classic fuzzy systems. Based on a given example, the classic fuzzy systems and the neuro-fuzzy systems, 
with different settings, are compared. From the comparison results, the following conclusions can be 
drawn:

•	 In the same type of fuzzy system, using triangular membership functions can get better results 
than those from using the same number of trapezoidal membership functions.

•	 With the same membership function, TSK (Takagi, Sugeno, and Kang) fuzzy systems perform 
more accurate calculation than Mamdani fuzzy system.

•	 The neuro-fuzzy system in Figure 20.5 makes a slightly improvement on the accuracy, with the 
cost of using signal multiplication units, which are difficult for hardware implementation.

•	 The neuro-fuzzy system in Figure 20.10 does the same job as the neuro-fuzzy system with TSK 
rule in Figure 20.5.
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