
1

1

CS122 Algorithms and Data Structures

MW 11:00 am - 12:15 pm, MSEC 101
Instructor: Xiao Qin
Lecture 21: Sorting (3)

2

Quicksort Algorithm

Given an array of n elements (e.g., integers):
If array only contains one element, return
Else
– pick one element to use as pivot.
– Partition elements into two sub-arrays:

• Elements less than or equal to pivot
• Elements greater than pivot

– Quicksort two sub-arrays
– Return results

3

Example
We are given array of n integers to sort:

40 20 10 80 60 50 7 30 100

4

Pick Pivot Element
There are a number of ways to pick the pivot element.

In this example, we will use the first element in the
array:

40 20 10 80 60 50 7 30 100

5

Partitioning Array
Given a pivot, partition the elements of the

array such that the resulting array
consists of:

1. One sub-array that contains elements >=
pivot

2. Another sub-array that contains elements <
pivot

The sub-arrays are stored in the original data
array.

Partitioning loops through, swapping
elements below/above pivot.

6

Partition Result

7 20 10 30 40 50 60 80 100

[0] [1] [2] [3] [4] [5] [6] [7] [8]

<= data[pivot] > data[pivot]

2

7

Recursion: Quicksort Sub-
arrays

7 20 10 30 40 50 60 80 100

[0] [1] [2] [3] [4] [5] [6] [7] [8]

<= data[pivot] > data[pivot]

8

Quicksort Analysis

Assume that keys are random,
uniformly distributed.
What is best case running time?

– Recursion:
1. Partition splits array in two sub-arrays of size

n/2
2. Quicksort each sub-array

– Depth of recursion tree? O(log2n)
– Number of accesses in partition? O(n)

9

Quicksort Analysis

Assume that keys are random,
uniformly distributed.
Best case running time: O(n log2n)
Worst case running time?

10

Quicksort: Worst Case

Assume first element is chosen as pivot.
Assume we get array that is already in
order:

2 4 10 12 13 50 57 63 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

11

2 4 10 12 13 50 57 63 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

> data[pivot]<= data[pivot]

12

Quicksort Analysis

Assume that keys are random, uniformly
distributed.
Best case running time: O(n log2n)
Worst case running time?

– Recursion:
1. Partition splits array in two sub-arrays:

• one sub-array of size 0
• the other sub-array of size n-1

2. Quicksort each sub-array
– Depth of recursion tree? O(n)
– Number of accesses per partition? O(n)

3

13

Quicksort Analysis

Assume that keys are random, uniformly
distributed.
Best case running time: O(n log2n)
Worst case running time: O(n2)!!!
What can we do to avoid worst case?

14

Merge Sort

Problem: Given n elements, sort elements
into non-decreasing order
Apply divide-and-conquer to sorting problem
– If n=1 terminate (every one-element list is already

sorted)
– If n>1, partition elements into two sub-arrays; sort

each; combine into a single sorted array
How do we partition?

15

Partitioning

Let’s try to achieve balanced partitioning
A gets n/2 elements, B gets rest half
Sort A and B recursively
Combine sorted A and B using a
process called merge, which combines
two sorted lists into one
– How?

16

Partitioning (cont.)

mergesort(data)
if data have at least two elements then

mergesort(left half of data);
mergesort(right half of data);
merge(both halves into a sorted list);

endif

17

Evaluation

Recurrence equation:
Assume n is a power of 2

c1 if n=1
T(n) =

2T(n/2) + c2n if n>1, n=2k

