
Knowledge-Based Systems 41 (2013) 77–88
Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
Interrelation analysis of celestial spectra data using constrained frequent
pattern trees

Jifu Zhang a,⇑, Xujun Zhao a, Sulan Zhang a, Shu Yin b, Xiao Qin b, Senior Member, IEEE
a School of Computer Science and Technology, Department of Computer, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, PR China
b Department of Science and Software Engineering, Auburn University, Auburn, AL 36849-5347, USA

a r t i c l e i n f o
Article history:
Received 24 March 2012
Received in revised form 25 November 2012
Accepted 28 December 2012
Available online 10 January 2013

Keywords:
Celestial spectra data
Interrelation analysis
Performance evaluation
I/O performance
Association rule
Constrained frequent pattern trees
0950-7051/$ - see front matter � 2013 Elsevier B.V. A
http://dx.doi.org/10.1016/j.knosys.2012.12.013

⇑ Corresponding author.
E-mail address: jifuzh@sina.com (J. Zhang).
a b s t r a c t

Association rule mining, in which generating frequent patterns is a key step, is an effective way of identi-
fying inherent and unknown interrelationships between characteristics of celestial spectra data and its
physicochemical properties. In this study, we first make use of the first-order predicate logic to represent
knowledge derived from celestial spectra data. Next, we propose a concept of constrained frequent pattern
trees (CFP) along with an algorithm used to construct CFPs, aiming to improve the efficiency and pertinence
of association rule mining. Finally, we quantitatively evaluate the CPU and I/O performance of our novel
interrelation analysis method using a variety of real-world data sets. Our experimental results show that
it is practical to study the laws of celestial bodies using our new interrelation analysis method to discover
correlations between celestial spectra data characteristics and the physicochemical properties.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction Jones et al. [8] successfully studied the MK (Morgan–Keenan) clas-
In year 2008, a large sky area multi-object fiber spectroscopic
telescope (LAMOST) was built by the National Observatory of China
[1]. Compared with other telescopes in the world, LAMOST is able
to acquire celestial spectra data with the highest rate. LAMOST –
enabling large-scale optical spectroscopic observations – is a
breakthrough in combining large aperture with wide field of view
in optical telescope. The amount of spectra data acquired by
LAMOST is as large as approximately 4 TB [2]. It is challenging to
analyze the mass amount of data collected by LAMOST; therefore,
there is a pressing need to develop novel data analysis tools to be
integrated into data processing systems located in observatory
headquarters.

Existing approaches to data analysis and recognition of celestial
spectra data include cross correlation analysis and principal
component analysis (PCA), artificial neural networks, wavelet
transformation, Bayesian statistics, and the like. Cheeseman et al.
investigated an automatic classification scheme using Bayesian sta-
tistics [3]. Their classification method allows researchers to dis-
cover some unnoticed spectrum types and spectral lines in the
unique classification results. Gulati et al. adopted the two layers-
BP (Back Propagation) neural network to classify star spectrum
quadratic forms [4]. Making use of neural networks, Weaver and
Torres-Dodgen [5], Singh et al. [6], Vieira and Ponz [7], and Bailer-
ll rights reserved.
sification and recognition system for stars. The aforementioned
strategies are suitable for medium–low resolution (i.e., 0.1–
1.5 nm) ultraviolet and spectra in the optical band. The classifica-
tion precision of the above methods can reach the second type of
the star spectrum. Although these schemes differ in network struc-
tures and the selection of neurons, learning time reduction is a com-
mon issue addressed in these studies. However, the existing
solutions are inadequate for star recognition problems in the con-
text of special spectrum types.

When it comes to recognition of clusters and galaxy systems,
astronomers widely rely on the well-known Hubble classification
of galaxies. For example, since redshifts are observed in almost
all the spectra of extragalactic celestial bodies, Connolly et al. [9],
Gaspar et al. [10], and Zaritsky et al. [11] respectively adopted
the principal component analysis to implement automatic recogni-
tion tools for the galaxies spectrum in which redshift values have
been discovered. Folkes et al. [12] applied the three principal com-
ponents to classify the spectra of the 2dF redshift survey into five
broad-spectrum categories. Qin et al. studied two efficient stellar
spectra classification methods using automatic pattern recogni-
tions [2,13]. Li [14], Zhao [15] and Liu et al. [16] investigated auto-
mated recognitions of active galactic nuclei, quasars, starburst
galaxies, and normal galaxies by employing machine learning algo-
rithms.Zhang et al. introduced a new term – concept lattice, which
is a core component in Zhang’s novel approach to recognizing
celestial spectra outliers [17]. In addition, Zhang and Cai designed
and implemented a celestial spectra outlier mining system for

http://dx.doi.org/10.1016/j.knosys.2012.12.013
mailto:jifuzh@sina.com
http://dx.doi.org/10.1016/j.knosys.2012.12.013
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

78 J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88
LAMOST [18]. Because of the limited cognition of the universe in the
astronomical field, one of the main goals of the LAMOST survey pro-
ject is to discover new special celestial bodies. There is a pressing
need to develop new data mining systems to extract special un-
known celestial bodies and to discover the laws of celestial bodies
from the huge amount of celestial spectra data collected by LAMOST.

In the data mining field, association rules can be discovered
having domain knowledge specified as a minimum support thresh-
old [31]. The accuracy of a process in setting up this minimum sup-
port threshold directly affects the number and the quality of
discovered association rules. It is not uncommon that the number
of association rules may miss a few interesting rules and the rules’
quality may need further analysis. Therefore, using these rules to
make any decision may lead to risky actions [31]. Concise repre-
sentations of frequent item sets generated using minimum support
thresholds – sacrifice readability and direct interpretability by a
data analyst of concise patterns extracted [32]. Efficient algorithms
for mining frequent itemsets are crucial for mining association
rules as well as for many other data mining tasks [33]. Therefore,
it is inconvenient and sometimes difficult for users to extract use-
ful association rules in which the users are interested.

Mining association rules among sets of items play an important
role in a wide range of data mining systems (see [19] for details on
association rules). Association rules effectively describe interrela-
tions among the attributes of data sets that satisfy the minimum
support thresholds and the minimum confidence thresholds spec-
ified by users. Therefore, it is feasible and valuable to make use of
association rules to describe existing and unknown correlations
between the characteristics of celestial spectra data and its physi-
cochemical properties. In doing so, researchers are able to discover
new laws of celestial bodies from the celestial spectra data.

In this study, we make the following contributions:

� We are among the first to propose a concept of constrained fre-
quent pattern trees to substantially improve the efficiency and
quality of interrelation analysis of celestial spectra data.
� We develop a new algorithm to construct constrained frequent

pattern trees or FP trees. In this algorithm, the celestial spectra
knowledge is represented by first-order predicate logic. The
constrained FP trees can be used by interrelation analysis meth-
ods to provide an effective way of searching the unknown laws
of celestial bodies.
� We evaluate the performance of the algorithm used to construct

constrained FP trees. We pay particular attention on the I/O per-
formance of the data analysis system.
� We develop a celestial spectra data analysis system to validate

the idea of constrained FP trees in the context of interrelation
analysis of spectra data sets. We demonstratively show that
our system can efficiently discover interrelations among the
celestial spectra data characteristics and identify correlations
among the physicochemical properties.

The rest of the paper is organized as follows. Basic concepts on
association rules are described in Section 2. Section 3 presents the
process of celestial spectra data and the acquisition of celestial
spectra knowledge. Section 4 presents a novel interrelation analy-
sis method for celestial spectra data. To evaluate performance of
our proposed data analysis approach, in Section 5 we analyse
experimental results. We pay particular attention on the I/O per-
formance of the data analysis module. Finally, Section 6 concludes
the paper with future research directions.

2. Association rules

Let DB be a database of transactions, I = {I1, I2, . . . , Im} be a set of
m transaction item sets in DB. Each transaction T in DB is repre-
sented as a binary vector, with t[j] = 1 if T bought the item Ij in I,
and t[j] = 0 otherwise.

Definition 1. We refer pattern P as a subset of I. Thus, we have
P = I1 1I21, . . . ,1Ik where 1 is the union operator of patterns or
items, Ii 2 I (i = 1, 2, . . . , k), and the length of pattern P is the
number of items in P. For example, the length of the above pattern
P is k, because there are k items in P.

A transaction t satisfies pattern P if for all item Ij in pattern P,
t[j] = 1.

Definition 2. Let jDBj be the total number of transactions in
database DB. Pattern P has a support 0 6 r 6 1 with respect to
database DB if and only if at least r � jDBj number of transactions
in DB satisfy pattern P.

Let jt ? Pj be the number of transactions that satisfies pattern P.
We define support r as Eq. (1), where r(P/DB) is a fraction of trans-
actions in DB that satisfies the given pattern. Thus, we have:

rðP=DBÞ ¼ jt ! Pj=jDBj: ð1Þ

We say two patterns U and V are disjoint patterns if and only if
their intersection is an empty set, i.e., {U1, U2, . . . , Uk} \ {V1, V2, . . . ,
Vm} = ;, where U = U11U21 � � � 1Uk, V = V11V21 � � � 1Vm.

Definition 3. Let U and V be two disjoint patterns, and U) V be an
association rule in DB, we define the confidence of the association
rule as below:

wðU) V=DBÞ ¼ rðU1V=DBÞ=rðU=DBÞ; ð2Þ

where r(U1V/DB) and r(U/DB) can be derived from the two sup-
port factors defined in Eq. (1).
Definition 4. Let rmin be the threshold of the minimum support
factor, then the k-frequent pattern set Lk in database DB is defined
as:

Lk ¼ fA11A2 � � �1AkjAi 2 I;rðA11A2 � � �1Ak=DBÞP rming ð3Þ

To extract association rules from DB, one has to specify the min-
imum support threshold rmin and the minimum confidence
threshold wmin. The goal of mining association rules is to search
all the association rules whose support factor is greater than rmin

and confidence factor is greater than wmin. Thus, we need to search
any association rule (e.g., A) B) that satisfies the following two
conditions:

rðA1B=DBÞP rmin and wðA) B=DBÞP wmin: ð4Þ

The value of w(A) B/DB) in the above condition can be derived
from two support factors computed by r(A1B/DB) and r(A/DB),
and mining association rules (e.g., A) B) lies in the generation of
the frequent-pattern sets formally defined in Eq. (3). The efficiency
of mining association rules heavily depends on ways of generating
frequent-pattern sets. In the past decade, much attention has been
paid to approaches to improving performance of generating fre-
quent-pattern sets (see, for example, [19–22]).

Frequent-pattern generating algorithms can be categorized into
two groups-Apriori [19] and Frequent-Pattern tree (FP-tree) [20–
22]. The main drawback of the Apriori algorithms is twofold. First,
generating enormous number of candidate items increases the
amount of data traversing in databases during the process of gen-
erating frequent patterns. Second, increasing the number of candi-
date items inevitably enlarges I/O processing time spent traversing
the databases. Such a drawback makes it difficult for the Apriori
algorithm to deal with massive amount of high-dimensional
data. Unlike the Apriori algorithms, the Frequent-Pattern tree

J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88 79
algorithms or FP-tree proposed by Han et al. have no need to
generate candidate items [20]. A salient feature of the FP-tree
algorithms is to compress and organize frequent sets into a tree
called frequent-pattern tree, from which frequent patterns can be
efficiently extracted. There are two major advantages of applying
FP-tree to generate frequent-pattern sets. First, the FP-tree
algorithms only have to construct and recursively traverse FP trees
as well as conditional FP trees, meaning that no candidate item set
should be generated and maintained. Second, the FP-tree algo-
rithms only traverse a transaction database twice. Thus, in the first
traversing over the database, frequent l-item sets are automatically
generated; in the second traversing a frequent-pattern tree is
constructed. Traversing databases only twice helps reducing the
time spent on accessing database. A disadvantage of the FP-tree
algorithms is that the algorithms require a large main memory
capacity to construct and store frequent-pattern trees.

Definition 5 (FP-tree [20]). A frequent-pattern tree (or FP-tree in
short) is a tree structure defined below.
1. It consists of one root labeled as ‘‘null’’, a set of item-prefix sub-
trees as the children of the root, and a frequent-item-header
table.

2. Each node in the item-prefix sub-tree consists of three fields:
item-name, count, and node-link, where item-name registers
which item this node represents, count registers the number
of transactions represented by the portion of the path reaching
this node, and node-link links to the next node in the FP-tree
carrying the same item-name, or null if there is none.

3. Each entry in the frequent-item-header table consists of two
fields, (1) item-name and (2) head of node-link (a pointer point-
ing to the first node in the FP-tree carrying the item-name).
Fig. 1. Star spectra curves drawn using the classification standard of spectrum type.
Lemma 1. Let DB be a transaction database and rmin be the mini-
mum support threshold. The frequent-pattern sets extracted from the
FP tree necessarily are the frequent pattern sets of transaction in DB.
(See [20] for the proof of Lemma 1.)

3. Preprocess of celestial spectra data and celestial spectra
knowledge

3.1. Normalized and discrete preprocess

Celestial spectra is an ordered arrangement on the electromag-
netic radiation of celestial bodies arranged in wavelengths, con-
taining important physical information of celestial bodies. Such
physical information includes chemical composition, surface tem-
perature, diameter, quality, luminosity and the like.

Through analyzing the information of celestial spectra, astrono-
mers and scientists of celestial bodies not only can study distribu-
tion characteristics of the universe, but also can investigate
intriguing scientific problems such as the forming of celestial
bodies and evolvement with the time. Therefore, the celestial-
spectra data process and analysis play an important role in astron-
omy, especially when it comes to the physics of celestial bodies.

Spectra data are series of continuous data made up of (1) differ-
ent flux to which each wavelength is corresponding and (2) phys-
icochemical properties of this spectrum. Because the wide value
range of the flux (e.g., the flux varies anywhere from 10�19 to
10�3) affects the efficiency and precision of computing, the contin-
uous spectra are required to be normalized to eliminate the discrep-
ancy in orders of magnitude. Furthermore, the flux values have to be
discrete values, and the reason is twofold. First, the raw flux values
are inadequate to describe the characteristics of spectrum straight-
forwardly. Second, unprocessed flux values cannot meet the needs
of data-mining systems. Fig. 1 shows star spectra curves drawn
using the classification standard of spectrum type.

The polynomial approximation scheme is a common approach
to extracting continuous spectra. In addition to the polynomial
approximation scheme, other ways of extracting spectra data in-
clude morphological filters, wavelet transform, median filters,
etc. Morphological filters are nonlinear filters that can transform
geometry features of signals. However, morphological filters are
normally complicated when it comes to the implementation of
the filters. The time complexity of wavelet transform is high;
therefore, it is not efficient to process mass amount of spectra data.
Median filters (see [23] for details on the median filters) are a typ-
ical nonlinear digital signal process technique widely used in the
normalization process of spectra data. Therefore, in our system de-
scribed in this paper, spectra data are normalized using the median
filter. In the median filter, one has to configure a window, within
which all specimens are first traversed. Then, the center point va-
lue in the window is replaced with the median value of the original
values in the window. In doing so, high quality spectra images can
be created.

Let X = {x1, x2, x3, . . . , xn} be a set of celestial spectra data from
which association rules are extracted. Let v be the radius of med-
ian-filter windows, yi be the median of the values in the flux win-
dow in which flux xi is residing. Thus, yi can be expressed as
follows, where (xi�v, . . . , xi, . . . , xi+v) is the flux window containing
flux xi:

yi ¼ Medianðxi�v ; . . . ; xi; . . . ; xiþvÞ:

The discretization of celestial spectra data includes discretiza-
tions of flux and physicochemical properties. In the discretization
process of star spectrum flux, we consider wave intensities (i.e.,
the flux intensities) and peak widths of wavelengths. We rely on
two characteristic variables, I and W, to process celestial spectra
data. Variable I represents peak intensity and W represents peak
width of a certain wavelength respectively. Thus, each wavelength
in the star spectra data can be converted into the characteristic
data denoted by variable I and W.

Let us denote wavelengths contained in a certain set of star
spectrum images as A = [A1, A2, . . . , An], where Ai is the number of
wavelengths extracted from the ith spectrum, and n represents
the total number of wavelengths. Ai in A can be modeled as Ai =
hIi,Wii, where Ii and Wi are the characteristic data of Ai,
i = 1, 2, 3, . . . , n.

Recent studies show that wave intensities are divided into five
groups: strong, median-strong, weak, median-weak, and null. Peak
widths are categorized into three camps: narrow, wide, and super
wide. During the course of discretization, two-dimensional charac-
teristic vectors are converted and stored as one-dimensional data.
Combining five peak-intensity levels and three width levels, we

Table 1
Discretization parameters of star spectra data.

Attribute Parameters
Ranges (discretization values)

Peak width <5 (narrow), 5–10 (wide), >10 (super wide)
Peak intensity <0.5 (weak), 0.5–1 (general), 1–5 (stronger),

>5 (very strong)
Temperature 2000–2500 (1), 2500–3000 (2), 3000–3500 (3), 3500–4000

(4), 4000–4500 (5) . . .

Luminosity �1 to 0 (1), 0–1.1 (2), 1.1–2.6 (3), 2.6–3.6 (4), 3.6–4.1(5)
Chemical

abundance
�5 to �3 (1), �3 to �0.5 (2), �0.5 to �0.1 (3), �0.1 to 0.3
(4), 0.3–0.7 (5)

Micro-
turbulence

<1(1), P1(2)

80 J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88
have the following thirteen cases: strong-narrow, strong-wide,
strong-super wide, median-strong-narrow, median-strong-wide,
median-strong-super wide, median-weak-narrow, median-weak -
wide, median-weak-super wide, weak-narrow, weak-wide, weak-
super wide, and null. We use thirteen single characters (i.e.,
1, 2, . . . , 9, A, B, C, and 0) to denote the corresponding flux values.

The discretization of physicochemical properties mainly in-
cludes temperature, luminosity, chemical abundance, and micro-
turbulence. Let S denote a set of all possible physicochemical
properties. Thus, S = {Sj}, j = 1, 2, 3, . . . , t, where Sj specifies the
physicochemical property of the jth star spectrum. Each physico-
chemical property can be represented as an array of conditions
as well as single characters summarized in Table 1 below. Please
note that attributes in the left column of Table 1 are defined by
the conditions given in the right column of Table 1.

3.2. First-order predicate logic and celestial spectra knowledge

The generation of frequent pattern sets is not only an important
step toward mining association rules, but also a critical process of
improving mining efficiency. This argument is especially true when
it comes to the massive amount of high dimensional celestial spec-
tra data. By the virtue of experience accumulated with long time
studies, astronomers have deep understanding of spectrum charac-
teristics that are important to the analysis and recognition of spec-
tra data. More specifically, it is fundamental to enhance the mining
efficiency and the pertinence of mining results when the celestial
spectra knowledge is incorporated into the generating process of
FP trees. Taking the celestial spectra knowledge into account, one
can substantially reduce the scale of FP trees, because only intrigu-
ing frequent patterns are included in the FP trees.

In what follows, we describe the fact that tradeoffs between
data mining accuracy and performance can be made by adding dif-
ferent types of constraints:

� It takes a great deal of time and main memory space to con-
struct FP-Trees. The performance of a module that constructs
FP-trees can sharply decrease when applications scale up,
because big FP-Trees include a large number of frequent pat-
terns and most of these patterns have no applicable value from
users’ perspective.
� Importantly, in many real-world applications, users not only

have good understandings of data sets, but also have certain
data-mining preferences. Hence, it is feasible to take the under-
standings and preferences as a priori information or background
knowledge, which can be merged into the FP-Tree constructing
process. Background knowledge offered by users can help in
effectively improving the performance of data mining applica-
tions by virtue of satisfying data-mining requirements raised
by users.
� A few interesting frequent patterns could be missed, if back-
ground knowledge is not complete for described data sets. It
is worth noting that the overhead is going up when we increase
different types of constraints to offer background knowledge.
Thus, the high accuracy of data mining processes can be
achieved at the cost of performance due to high overhead intro-
duced by background knowledge.

First-order predicate logic is a formal language system, which
applies the logic method to study the law of reasoning, and it is
adequate for representing the states of objects, attributes, and
factual knowledge of concepts. In addition, the first-order predi-
cate logic can be used to express certain consequence relations
and rules among objects. A set of celestial spectra data contains
characteristics and physicochemical properties of spectrum. After
the pretreatment process of normalized and discretization, each
wavelength flux value and its physicochemical properties are con-
verted into special discretization values. Generally speaking, the
knowledge of celestial spectra is represented as constrained rela-
tionships among objects and attributes, attributes and attributes
of celestial spectra datasets. Therefore, it is practical to make
use of the first-order predicate logic to express the celestial spec-
tra knowledge.

Let us consider a celestial spectra database DB = {I1, I2, . . . , Im},
which is a set of m spectra datasets. The ith spectra dataset Ii in
DB is a group of subsets in I, i.e., Ii # I, where I = {A1, A2, . . . , An, S1,
S2, . . . , St}. Ai is the discretization characteristic attributes at the ith
wavelength, and Sj is the discretization attributes of the jth physi-
cochemical property.

We can express celestial spectra knowledge by making use of
the first-order predicate logic as the following two steps. First,
we define the predicates of celestial spectra knowledge, meaning
that each predicate must be well specified. Second, these predi-
cates are combined with logic operation symbols to form a predi-
cate formula representing a piece of complete celestial spectra
knowledge.

The predicates of celestial spectra knowledge can be defined
using the following three predicates:

� Interesting (f(r)),
� Support (f(r),rmin) and,
� Interested (f(r)).

where r is an individual variable in the relation table name of
DB; f is a function name specifying the mapping from a relation ta-
ble to attributes; and f(r) is an attribute set of the relation table r,
which is the item subsets of the discretization celestial spectra. The
above three types of predicates are detailed as follows:

1. Interesting (f (r)) is a concluding predicate indicating the fact
that users are interested in spectra patterns that include item
sets f(r). If f(r) is composed of the discretization characteristic
attributes at the spectrum wavelength, then users are con-
cerned with patterns in which the antecedent parts in associa-
tion rules contain f(r). In the case that f(r) outlines the
discretization attributes of physicochemical properties, users
are concerned with patterns in which the consequent parts in
association rules contain f(r).

2. The predicate Support (f(r),rmin) indicates that the support
degree of spectrum item subsets f(r) is greater than the given
minimum support threshold rmin.

3. Suppose that spectrum item subsets f(r) is the frequent pattern
subsets of the historical mining, then the predicate Interested
(f(r)) indicates that f(r) is an interesting pattern subsets in the
next mining phase.

J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88 81
The FP-tree algorithms only have to construct and recursively
traverse FP trees as well as conditional FP trees, meaning that no
candidate item set should be generated and maintained. The FP-
tree algorithms simply traverse a transaction database twice. Thus,
in the first traversing over the database, frequent l-item sets are
automatically generated; in the second traversing, a frequent-
pattern tree is constructed. Traversing databases twice helps in
reducing data base accessing time. A disadvantage of the FP-tree
algorithms lies in their requirement of large main memory capac-
ity to construct and store frequent-pattern trees.

Historical mining is meant a mining result generated by travers-
ing database twice to calculate both CFP tree and frequent pat-
terns. The next mining phase – the second phase that traverses
database – is in charge of generating CFP tree from 1-frequent
patterns.

Definition 6. Let r be a variable in the relation table name of a
celestial spectra database, f be a function specifying a mapping
from the relation table to attributes, and rmin be the minimum
support threshold (0 6 rmin 6 1). Celestial spectra knowledge G
can be defined as the well formed formula that contains the
following predicate formulas through the combination with logic
operation symbols.
(1) Interesting (f(r))
(2) support (f(r),rmin) ? Interesting (f(r))
(3) Interested (f(r)) ? Interesting (f(r))

The above three predicate formulas are explained as follows:

1. The first predicate formula represents the celestial spectra item
sets that the users are interested in. If f(r) describes the charac-
teristics sets of the spectrum wave, then users are interested in
spectrum patterns that the antecedent parts in association rules
contain f(r). When f(r) describes the physicochemical property
sets, then users are interested in the spectrum patterns that
the consequent parts in association rules contain f(r).

2. The second predicate formula signifies that in a historical min-
ing, if the support degree of celestial spectra item sets f(r) is
greater than rmin, then in the new mining f(r) is also the inter-
esting spectrum item sets in which users are interested. Note
that f(r) may be either the spectrum characteristic attributes
sets of the discretization flux or the discretization attributes
sets of physicochemical properties.

3. The third predicate formula shows that if he spectrum item
subsets f(r) is the frequent pattern subsets of the historical min-
ing, then the predicate Interested (f(r)) implies that f(r) is an
interesting pattern subsets in the next mining.

In accordance to the resolution-deduction principle (see [24] for
details), a predicate formula is often converted to its equivalent
clause set in the sense of an unsatisfiable condition. Since an atom-
ic predicate formula depicts one pattern of association rules (see
Definition 6), those clause sets converted from predicate formula –
describing background knowledge – can effectively model a group
of interesting patterns. In the process of constructing FP trees, it is
easier to deal with clause sets than predicate formula. Also, it is
straightforward to merged clause sets into the process of con-
structing FP trees. Since the background knowledge is generalized
from the understandings and preferences for data sets, predicate
formula describing background knowledge is generally believed
to be logically true. Therefore, the unsatisfiable condition is
satisfied.

Therefore, celestial spectra knowledge G can be simplified as a
conjunctive normal form denoted by a clause set S.
Theorem 1. Let S be a clause set representing celestial spectra
knowledge G. For any clause in S (i.e., s 2 S), s is a disjunctive form of
finite atomic predicates, which is expressed as a combination of
predicates like Interesting (f(r)), support (f(r), rmin), and Interested
(f(r)). Given f1(r1), f2(r1), f3(r1), and rmin, Interesting (f1(r1)) ^ sup-
port (f2(r1),rmin) ^ Interested (f3(r1)) implies that f1(r1) \
f2(r1) \ f3(r1) is a celestial spectra pattern in which users are
interested. Thus, we have

Interesting ðf 1ðr1ÞÞ ^ supportðf 2ðr1Þ;rminÞ ^ Interestedðf 3ðr1ÞÞ
) Interesting ðf 1ðr1Þ \ f 2ðr1Þ \ f 3ðr1ÞÞ
Proof. Recall that celestial spectra knowledge G is a well formed
formula composed of predicates like Interesting (f(r)), support
(f(r), rmin), and Interested (f(r)) through the combination with
the logic operation symbols (see Definition 6). Therefore, the char-
acters in the clause are expressed with the limited number of pred-
icates of Interesting (f(r)), support (f(r),rmin) and Interested (f(r)).
We can prove that any one of the clauses is some limited charac-
ters of disjunctive normal form (see details in [24]).

From Definitions 1 and 6, we have Interesting (f1(r1)) ^ support
(f2(r1),rmin) ^ Interested (f3(r1))) Interesting (f1(r1)) ^ Interest-
ing (f2(r1)) ^ Interesting (f3(r1))) Interesting (f1(r1) \ f2(r1) \
f3(r1)). Thus, f1(r1) \ f2(r1) \ f3(r1) is a celestial spectra pattern
in which users are interested. h
Theorem 2. Let S be a clause set denoting celestial spectra back-
ground knowledge G, and s be any clause in S (i.e., s 2 S), then s is a
celestial spectra pattern in which users are interested.
Proof. A clause is some limited characters of disjunctive normal
form [24]. Therefore, any clause denoting celestial spectra knowl-
edge G is made up of some limited characters of disjunctive normal
forms containing predicates like Interesting (f(r)), support (f(r),
rmin), and Interested (f(r)). From Theorem 1, we prove that s is a
celestial spectra pattern in which users are interested. h
4. Interrelation analysis of celestial spectra data

4.1. Constrained frequent-pattern tree construction

Extracting association rules is a critical issue in a wide variety of
data mining applications. Association rule extraction not only dis-
covers interrelations among different data attributes, but also
searches dependent relations of multiple attributes according to
any given support threshold and confidence threshold. The extrac-
tion of association rules describes association relations among the
attributes of data in DB.

When it comes to a large amount of data in DB, improving effi-
ciency is a challenging problem in the extraction of association rules
from DB. Mining association rules mainly involves two steps. The
first step is generating all important frequent pattern sets; the sec-
ond step is extracting association rules from the frequent pattern
sets. The second step, an uncomplicated process, can be easily and
inexpensively implemented. Therefore, the mining efficiency of
association rules lies mainly on the performance of the first step –
frequent pattern mining. The FP-tree algorithms [20] proposed by
Han et al. are typical approaches to generating frequent patterns.

In recent years, many researchers have extensively investigated
association rule mining methods using FP trees. For example, com-
bining the FP-tree algorithms with the theory of maximum clique,
Chen et al. studied a method of generating frequent 2-item sets
with adjacency matrix [22]. Pei et al. proposed the CLOSET

82 J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88
algorithms, in which FP trees were used to denote pattern support
sets [25]. Aiming at the problem of unavailable minimum support
threshold given by users, Wang et al. proposed a frequent closed
pattern mining TFP algorithm in 2005 [26]. Zaki et al. investigated
a closed pattern mining CHARM algorithm using transaction-mark-
ing sets of vertical format to declare pattern support sets[27]. Pei
et al. studied a method of mining frequent closed partial order
from strings [21] by introducing the corresponding pruning tech-
nology. However, Pei’s method had a certain limitation, because
it was only adequate for mining string databases. Gudes et al.
developed an algorithm of discovering frequent graph patterns
using disjoint paths [28]. Gudes’s method was implemented based
on the Apriori algorithms, thereby unavoidably scanning databases
many times. Song et al. designed a transaction-mapping algorithm
to discover frequent item sets [29]. Lucchese et al. proposed an
algorithm of partition visiting data space along with the corre-
sponding pruning method [30]. Lucchese’s approaches do not need
to save all pattern sets into the main memory, thereby reducing the
storage demand. Unfortunately, the efficiency of Lucchese’s algo-
rithm was low when the size of datasets was huge.

Using users’ long accumulated experience, interest, and the deep
understanding of specific domains of data as apriori information
(a.k.a., background knowledge) to guide the building of FP trees and
to generate frequent patterns, one can improve the pertinence of asso-
ciation rules’ mining, reduce the complexity of FP tree, and effectively
solve the data storage bottleneck of the FP-tree algorithms.

Let G be celestial spectra knowledge, we can define a constrained
frequent pattern tree with respect to knowledge G as follows:

Definition 7. Given background knowledge G, a FP tree, and a
frequent pattern P described using the path from the root node of the
tree to a leaf node, if P can satisfy G represented as G(P) = True, then
FP-Tree is a constrained frequent pattern tree or CFP tree for short.

Let us consider celestial spectra database D, the minimum sup-
port threshold rmin, and celestial spectra knowledge G. Because
any constrained frequent pattern P is satisfied with G(P) = True,
only a FP tree built from any piece of celestial spectral data T in
D satisfying G can contain interesting constrained frequent pat-
terns of users’ preferences. Hence, the CFP tree of celestial spectra
data can be built through traversing database D twice according to
the following algorithm.

CFP-Construct: An algorithm to build a CFP tree:

1. Scan through celestial spectra database D for the first time,
gathering frequent length-1 patterns of sets and their supports,
sort frequent length-1 pattern in descending order of the sup-
ports and generate frequent item table L;

2. create the root node of the celestial spectra data and mark with
‘‘null’’;

3. for each transaction T in D, if there is no interesting pattern in T
(note: an interesting pattern is the one about which users are
concerned), then skip to the next transaction. Otherwise, turn
to step 4;

4. sort frequent items of T in order of L and generate a new list of
frequent items named T0, then update the CFP tree according to
the followings three steps:
(4.1) search for a path that is the longest prefix matching with

T0 in the CFP tree;
(4.2) the count of the node that are in the matching path is

increased by 1;
(4.3) search for the mismatching suffix in T0, and determine the

node to which the last frequent item in the longest
matching prefix is corresponding as the root node, then
create child nodes successively in the CFP tree and set
the count value to 1.
We show in Theorem 3 below that given a constraint frequent
pattern tree or CFP tree, each frequent pattern P extracted from
the CFP tree necessarily satisfies constrained frequent patterns,

Theorem 3. Let D be a celestial spectra database, rmin be the
minimum support threshold, G be celestial spectra knowledge, and P
be a constrained frequent pattern. If a created FP tree is a CFP tree,
then any frequent pattern P extracted from the CFP tree necessarily
satisfies constrained frequent patterns, i.e., G(P) = true.
Proof. We can prove the correctness of Theorem 3 by two steps.
First, we need to prove that a pattern P extracted from the CFP
tree is a frequent pattern. Second, we have to show that pattern
P satisfies the constrained condition in celestial spectra knowl-
edge G.

According to the above CFP-Construct algorithm, each path of
the CFP tree necessarily satisfies the constrained condition (i.e., G).
Thus, frequent pattern P extracted from the CFP tree necessarily
satisfies G. Recall that a CFP tree conforms to the building process
of FP trees; a CFP tree is a sub-tree of FP tree. Based on Lemma 1,
we can show that frequent pattern P extracted from the CFP tree
necessarily satisfies the frequent patterns. h

Next, we prove in Theorem 4 that if P satisfies constrained fre-
quent patterns in e G (i.e., G(P) = true), then P is a frequent pattern
in a CFP tree built by the CFP-Construct algorithm.

Theorem 4. Let D be a celestial spectra database, rmin be the
minimum support threshold, and G be celestial spectra knowledge. Let
CFP be a constrained PF tree, P be a frequent pattern. If P satisfies
constrained frequent patterns (i.e., G(P) = true), then P is necessarily a
frequent pattern of the CFP tree.
Proof. Let us consider a frequent pattern P(s1, s2; . . . , si, . . . , sn) in
which users are interested. We have s # G; for any transaction
W, we have P # W. Based on the CFP-Construct algorithm con-
structing CFP trees, we can prove the following facts:

(1) CFP-Construct scans through transaction database once, and
gather frequent length-1 pattern sets and their supports.
Suppose the support of s sups P rmin, sort frequent length-
1 pattern in the descending order of the supports, and gen-
erate frequent item table L;

(2) CFP-Construct creates the root node of the CFP tree and mark
with ‘‘null’’. For the transaction W in database D, CFP-Con-
struct selects frequent items (s1, s2, . . . , si, . . . , sn) in W,
where s is a pattern that users are interested in. The
sequence is sorted in the order of L;

(3) CFP-Construct judges s1: if there exists child node N in
tree T, where N.item-name equals to p.item-name, then
the counter of N is increased by 1; otherwise CFP-Con-
struct creates a new node N whose counter is set to 1,
then the node is linked to its parent node T and the other
nodes with the same item-name through the structure of
linker. Note that step (3) is repeatedly applied to
s2, . . . , si, . . . , sn.

The aforementioned three facts show that all the transactions
containing P are transformed to the paths of the CFP tree;
therefore, P must be a frequent pattern in the CFP tree. This
concludes the proof of Theorem 4. h

Now we are in a position to prove that a CFP tree is a subset of a
FP tree.

J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88 83
Theorem 5. A CFP tree is a subset of a FP tree.

Proof. Let D be a celestial spectra database, rmin be the minimum
support threshold, and G be celestial spectra knowledge. Applying
knowledge G, one can divide database D into two disjoint sets D1

and D2 (i.e., D = D1 [D2), where records in set D1 satisfy the back-
ground knowledge G, and records in set D2 do not satisfy the back-
ground knowledge G. Thus, for any record T, if T 2 D1, then
G(T) = True. Otherwise T 2 D2, then G(T) = False. Based on Defini-
tions 5 and 7, a FP tree is built from records in D, and a CFP tree
is built from records in D1. As such, a CFP tree is subset of its FP tree
if and only if D2 = £, D = D1, and FP tree = CFP tree. h

Theorem 6 below shows the monotonicity constrained fre-
quent-pattern trees.

Theorem 6. Let D be a celestial spectra database, G1 and G2 be
celestial spectra knowledge, G1 # G2. If T1 and T2 are two CFP trees
constructed respectively from G1 and G2, then T1 � T2. (the monoto-
nicity of constrained FP trees)
Proof. Suppose transactions k1, k2, . . . , kn in D contain knowledge
G1, and transactions s1, s2, . . . , sm contain knowledge G2. Because
G1 # G2, we have s1, s2, . . . , sm # k1, k2, . . . , kn and m 6 n. Let us
suppose s1, s2, . . . , sm = k1, k2, . . . , km, then transactions km+1, . . . , kn

only contain knowledge G1, excluding G2. According to the con-
struction process of CFP tree (see the CFP-Construct algorithm),
we show that T2 is firstly built and the path of T2 is made up of
transactions s1, s2, . . . , sm, whose width is not greater than m.
Then, T1 is built and the path of T1 is comprised of transactions
k1, k2, . . . , km and km+1, . . . , kn,which are denoted by T 01 and T 001.
Because s1,s2, . . . ,sm = k1, k2, . . . , km, we prove that T 01 ¼ T2. When
m equals to n, we have kmþ1; . . . ; kn ¼£; T 001 ¼£ and T1 = T2; when
m is smaller than n, km+1, . . . , kn – £ and T 001 – q£. Thus, T1

contains some paths that are not included in T2, meaning T1 � T2,
Therefore, we prove that T1 � T2. h

Corollaries 1 and 2 can be obtained using the above theorem.

Corollary 1. Let D be a celestial spectra database, G1 and G2 be
celestial spectra knowledge. Suppose T1 and T2 are two CFP trees
constructed respectively from G1 and G2. If the two CFP trees are
identical (i.e., T1 = T2), then G1 and G2 are the same, i.e., G1 = G2.

Corollary 1 states that if two constrained frequent-pattern tree
are the same, then the knowledge sets used to construct these two
trees must be identical.

Corollary 2. Let D be a celestial spectra database, G1 be celestial
spectra knowledge. Suppose TCFP is a CFP tree constructed using
knowledge G1 and TFP is a FP tree in database D. If knowledge G1 is an
empty set (i.e., G1 = £), then constrained frequent-pattern tree TCFP

equals to frequent pattern tree TFP (i.e., TCFP = TFP).
Corollary 2 shows that a CFP tree is degraded to a FP tree if

celestial spectra knowledge is null.
Applying background knowledge G, database D can be parti-

tioned into two disjoint sets D1 and D2, where transactions in
set D1 satisfy the background knowledge G, and transactions in
set D2 do not satisfy the background knowledge G. The theorem
below shows that a constrained frequent- pattern tree built from
a celestial spectra database D is the same as a frequent-pattern tree
constructed from the sub-database D1 of D.

Theorem 7. Let us consider a constrained frequent-pattern tree
denoted as CFP-tree. Let D be a celestial spectra database, rmin be the
minimum support threshold, and G be celestial spectra knowledge.
Applying knowledge G, one can divide database D into two disjoint
sets, D1 and D2 (i.e., D = D1 [D2), where transactions in set D1 satisfy
the background knowledge G (i.e., "T 2 D1: G(T) = True), and trans-
actions in set D2 do not satisfy the background knowledge G (i.e.,
"T 2 D2: G(T) = False). If FP-Tree1 is a frequent-pattern tree con-
structed from sub-database D1 using the traditional method, then CFP-
tree and FP-Tree1 is the same tree.
Proof. Suppose FP-Tree2 is a frequent-pattern tree built from sub-
database D2 by applying the traditional FP-tree construction
method. Since "T 2 D1: G(T) = True, we have G(P) = True for any fre-
quent pattern P described in the path from the root node to the leaf
node of FP-tree1. Moreover, because "T 2 D2: G(T) = False, we have
G(P) = False for any frequent pattern P described in the path from
the root node to the leaf node of FP-Tree2, as D = D1 [D2, FP-tree1

can represent all the constrained frequent patterns of FP-tree.
Thus, we prove that CFP-Tree is the same tree as FP-Tree1. h
4.2. Frequent pattern extraction

Traversing a CFP tree of celestial spectra data, one can extract
constrained frequent patterns of the celestial spectra data. To effi-
ciently traverse a CFP tree, we create an item-head table in which
each item has a node link pointing to its location in the CFP tree.
The extraction process starts by generating frequent length-1 pat-
terns, which can be constructed using condition pattern bases.
Note that a condition pattern base is a sub-database composed of
the prefix path sets appearing in both the CFP tree and the suffix
pattern. Next, a condition CFP tree is built. Association rule mining
process is performed recursively on the CFP tree. Finally, the pat-
tern growth is realized through the combination of frequent pat-
tern generated by the suffix and the condition CFP tree [20].

Suppose wmin is the minimum confidence threshold, and L is
the constrained frequent pattern sets extracted from a CFP tree.
For any frequent pattern P in the pattern set L (i.e., P 2 L), we have
P = P1 \ P2, where P1 is the nonempty sub-pattern of the celestial
spectra data characteristics, whereas P2 is the nonempty sub-
pattern of physicochemical properties, and r = r(P/DB). If confi-
dence w is larger than or equal to the minimum confidence
threshold (i.e., w = r(P1 \ P2/DB)/r(P1/DB) P wmin), then associa-
tion rule ‘‘P1) P2 (r,w)’’ is created, where r and w are the important
degree and confidence degree describing the association rule.

5. Algorithm and I/O performance

5.1. The interrelation analysis algorithm

After analyzing the process of constructing constrained fre-
quent pattern trees, we present in Fig. 2 the pseudocode for the
CFP-Construct algorithm used to build CFP trees of celestial spectra
data.

The goal of CFP-Construct algorithm is to create the root node
denoted as T of a constrained frequent pattern tree for celestial
spectra data. Initially, the root node T is marked as ‘‘null’’. Before
processing transactions in database D, the algorithm (1) obtains
celestial spectra frequent item set F and (2) calculate the support
of each frequent item. This step (see Step 1 in Fig. 2) is performed
by scanning the entire celestial spectra database D. Then, the algo-
rithm generates a new list L by sorting frequent items in F, and is
sorted in the decreasing order of their supports (see Step 2 in
Fig. 2). Next, the CFP-Construct algorithm converts the celestial
spectra knowledge G into the celestial spectra pattern set S (see
Step 3 in Fig. 2), which is sorted in the decreasing order of the sup-
port of frequent length-1 pattern (see Steps 4 and 5 in Fig. 2).

Fig. 2. Algorithm CFP-construct: construct constrained frequent pattern trees for
celestial spectra data.

84 J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88
Now, the algorithm starts processing each transaction Trans in
the celestial spectra database with the following operations:

� the celestial spectra frequent items in Trans are chosen and
sorted using the order of L;
� the ordered frequent item lists are created for Trans as [pjP],

where p is the first item in the list, and P the remainder of the
list;
� invoke function insert_tree ([pjP],T) to insert the list [pjP] into

the constrained frequent pattern tree T.

Inserting a list of patterns in a constrained frequent pattern tree
is a critical process in the CFP-Construct algorithm. This insertion
operation (see Step 11 in Fig. 2) is implemented by function in-
sert_tree ([pjP],T) outlined in Fig. 3.

If there is a child node N in T, and if N.item-name is the same as
p.item-name, then the count value of N is increased by 1 (see Steps
1 and 2 in Fig. 3). Otherwise, the insert_tree function creates a new
node N, whose count value is set to1 (see Step 5 in Fig. 3), and the
parent node of the new node is set to T (see Step 7 in Fig. 3). In
addition to creating a new node, the node_link and item_name
Fig. 3. Function Insert_tree (P,T) inserts pattern P into constrained frequent pattern
tree T. The Insert_tree function is invoked by Step 11 in the CFP-construct algorithm
described in Fig. 2.
items of the new node are set to N and P, respectively (see Steps
6 and 8 in Fig. 3). If P is not an empty set, then insert_tree (P,N) will
be recursively called (see Steps 11 in Fig. 3).

The extraction of celestial spectra data frequent patterns is
implemented by calling the function FP_growth (details on the
FP_grwoth function can be found in [20]).

5.2. I/O performance

The efficiency of the data-mining tool can be measured in terms
of the mining efficiency of association rules, which is significantly
affected by the performance of generating frequent patterns. Recall
that frequent-pattern generating algorithms fall into two camps:
Apriori [19] and Frequent-Pattern tree (i.e., FP-tree) [20–22]. The
Apriori algorithms, relying on recursive statistics, generate fre-
quent item sets by pruning. One limitation of the Apriori algo-
rithms lies in the large number of generated candidate items,
which forces a data mining tool to traverse a database excessive
number of times in order to produce frequent patterns. Thus, I/O
overhead of traversing the database is very high for the Apriori
algorithms, making it time consuming to deal with massive
amount of high-dimensional data sets.

The main benefits of FP-tree algorithms are:

� There is no need to generate candidate item sets, because fre-
quent patterns are obtained by accessing a FP tree, which can
be quickly constructed.
� Any database should only be traversed twice. In the first-round

traversing, length-1 frequent item sets are yielded. In the sec-
ond traversing, a FP tree is constructed. In doing so, I/O access-
ing time on the database is substantially reduced.

The downside of the FP-tree algorithms is that large main mem-
ory capacity is required for FP trees. Recent studies focus on either
constructing FP trees [20] or reducing computation time of existing
FP-tree construction algorithms [21,22,25–30]. However, less
attention has been paid to analyzing and improving I/O perfor-
mance of FP-tree construction algorithms.

The interrelation analysis of massive amount of celestial spectra
data sets leads to an excessive number of I/O operations issued to
access spectra databases in the building process of FP trees from
huge amounts of high-dimensional data. Therefore, boosting the
I/O performance of FP-tree construction algorithms is a challenging
issue. The I/O performance analysis of the construction process for
frequent pattern trees is the first step toward improving the overall
performance of FP-tree construction algorithms.

To measure the I/O performance of our FP-tree construction
algorithm discussed in Section 5, we introduce a metric called I/
O factor denoted as c, which is computed as a ratio between I/O
processing time and the total executing time of the FP-tree con-
struction algorithm. Thus, I/O factor c is defined as:

c ¼ TIO

TCFP�Build
¼ TIO

TIO þ TCPU
; ð5Þ

whereas TIO is the I/O time spent in access the celestial spectra data-
base, TCFP�Construct is the execution time of the FP-tree construction
algorithm. Note that TCFP�Construct is the sum of the CPU time (i.e.,
TCPU) and I/O time (i.e., TIO) of the FP-tree construction algorithm.
6. Performance evaluation

6.1. Experimental setup

We implement a data-mining tool for the interrelation analysis
of celestial spectra data sets. The CFP-Construct algorithm

J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88 85
described in Sections 4 and 5 is incorporated in our interrelation
analysis module for celestial spectra data.

The experiments are performed on a PC with Intel Pentium IV
3.0 GHz processor and 512 MB main memory, and the operating
system is Windows XP professional. We have fully implemented
our interrelation analysis module on top of Oracle 9i – a represen-
tative commercial DBMS. Our celestial-spectra data-mining tool
and the interrelation analysis module, in which the CFP-Construct
algorithm is implemented, are developed with Visual C++ 6.0.

The data sets used in our experiments is the latest and largest
celestial-spectra data sets provided by the National Observatory
of China. To evaluate data size on system performance, we synthet-
ically partition the largest data set into six data subsets. The sizes
of these six data subsets are 50 MB, 100 MB, 200 MB, 300 MB,
400 MB, and 500 MB, respectively. For each spectra data set, the
discretized values of 44 (forty-four) characteristic lines of the spec-
tra data, are selected as attribute values of the celestial spectra
data (see Table 1 for the parameters used in the discretization pro-
cess of the star spectra data). In other words, each spectra data re-
cord has 44 attributes, each of which contains 13 values.

I/O processing time measured in our experiments is defined as
the sum of (1) the time spent loading data from the database and
(2) the time spent accessing constrained frequent pattern trees.
In the CFP-Construct algorithm, the first step and the fourth step
(see Fig. 2) comprise I/O operations of loading data; the seventh
step comprises I/O operations of accessing constrained frequent
pattern trees (i.e., to insert new nodes and update nodes of FP
trees).

In the CFP-Construct algorithm, CPU time is mainly spent on
processing the Insert_tree(pjP,T) function. The first step of algo-
rithms is to sort frequent item sets in descending order of support;
Steps 2, 3, 5, and 6 aim to compute support Si of the background
knowledge. We apply the MFC standard function long__cdecl time
(long ⁄) in Visual C++ 6.0 to accumulate I/O and CPU processing
time spent in the algorithm. The total execution time of the inter-
relation analysis module is derived as the sum of CPU time and I/O
time.

6.2. I/O performance analysis

We vary the size of the celestial spectra data from 100 MB to
500 MB with an increment of 100 MB. A small data size of 50 MB
is also tested. Fig. 4 shows the I/O factor c (see Eq. (5)) of the inter-
relation analysis module when the input data size increases from
50 to 500 MB. Table 2 below details I/O time, CPU time, and the
number of created nodes for six datasets with different data sizes.
We execute the same interrelation analysis module multiple times
with the six different datasets. The default minimum support
Fig. 4. I/O factor with the different data size measured in terms of MB.
threshold is set to 3%. Four constrained conditions evaluated in
our experiments include: cross patterns, single constrained pat-
terns, union patterns and null constrained patterns.

Given the same celestial spectra data set, we study the impact
of constraint degree on the I/O processing time of the interrelation
analysis module. Fig. 4 illustrates that when constrained condition
becomes weaker, I/O factor slightly increases. The main reason for
such an I/O time increase is that building constrained FP trees con-
tains two parts: (1) loading data from the database and (2) access-
ing constrained FP trees. During the course of building constrained
FP trees, the database is accessed by the first step of the CFP-Con-
struct algorithm and frequent length-1 pattern is generated. Since
this operation is independent of the constrained conditions, I/O
time spent loading data from database is independent of the con-
strained conditions.

With the constraint degree weakened, an increasing number of
records can satisfy the weak constraints. Thus, more nodes of a FP
tree will be created, making the size of the constrained FP tree in-
crease. Therefore, weakening the constraint degree leads to an in-
creased I/O time spent accessing constrained frequent pattern
trees.

Keeping the constrained condition unchanged, we observe from
Table 2 that when the size of the input celestial spectra dataset in-
creases, the I/O time becomes significantly longer. We contribute
this I/O performance trend to the fact that increasing data size
leads to an increased time scanning the celestial spectra database;
therefore, I/O time is proportional to the size of processed datasets.
With the increasing data size, a growing number of records can sat-
isfy constraints specified by users, meaning that an increased num-
ber of nodes will be created to enlarge the size of the frequent
pattern trees. Given a fixed record set, a weak constrained degree
leads to an increased CPU processing time spent on (1) sorting
attributes of each record that meet the specified constraints condi-
tion and (2) inserting these attributes into the constrained frequent
pattern tree.

Note that the CPU time of the interrelation analysis module is
greatly affected by the number of nodes in a frequent pattern tree.
In other words, a large number of nodes in a frequent pattern tree
can give rise to a huge number of comparison/insertion operations,
which increases CPU processing time.

Under the same constraints, the CPU time of building a con-
strained frequent pattern tree largely depends on the node count
of frequent patterns. When the input record set becomes large,
the number of nodes of frequent patterns is greatly increased,
thereby increasing the number of operations for inserting nodes
into the constrained frequent pattern tree. Thus, the CPU time of
processing the large record set is increased sharply.

Table 3 shows the impact of minimum support threshold rmin

on I/O performance of the interrelation analysis module. For com-
parison purpose, we also show the CPU time in Table 3. In this set
of experiments, we fix the record set to the number of 209,999
pieces and the data size to 300 MB while setting the minimum sup-
port threshold rmin to 8%, 5%, 3%, 1%, and 0.5%, respectively. Again,
five constraint conditions studied are cross pattern, single con-
strained pattern, union pattern, and null constraint pattern.

Fig. 5 shows the impact of the minimum support threshold on
I/O factor c. When the constraint condition is fixed, varying the
minimum support threshold does not affect time spent loading
data items from the celestial spectra database (see Steps 1 and 3
in the CFP-Construct algorithm), because accessing the database
in Steps 1 and 3 of the algorithm is independent of the minimum
support threshold.

Fig. 5 illustrates that regardless of constraint conditions, a large
minimum support threshold gives rise to a high I/O factor c. For
example, when the constraint is set to 421011, the I/O factor
for the minimum support threshold of 8% is 11% higher than that

Table 2
Impact of data size on I/O performance (minimum support threshold rmin = 3%).

Record set Constrained conditions

421,011 ^ 465,011 421,011 465,011 421,011 _ 465,011 Null

(50 M) 34,117 pieces of records I/O(s) 197 204 214 216 255
CPU(s) 157 193 224 250 373
The number of nodes 91,440 143,770 192,599 244,577 437,424

(100 M) 72,999 pieces of records I/O(s) 444 448 523 578 590
CPU(s) 359 444 560 597 789
The number of nodes 197,500 303,579 407,179 512,982 904,415

(200 M) 139,999 pieces of records I/O(s) 852 880 940 961 1165
CPU(s) 650 784 811 1078 1711
The number of nodes 349,754 536,349 730,622 916,940 1,622,165

(300 M) 209,999 pieces of records I/O(s) 1346 1371 1460 1518 1662
CPU(s) 1004 1155 1292 1735 2708
The number of nodes 500,134 770,811 1,058,029 1,328,424 2,371,635

(400 M) 272,999 pieces of records I/O(s) 1746 1784 1831 1903 2104
CPU(s) 1318 1484 1941 2372 3541
The number of nodes 630,661 975,400 1,341,779 1,686,265 3,020,189

(500 M) 334,668 pieces of records I/O(s) 2007 2091 2262 2528 2557
CPU(s) 1549 2030 2536 3400 4604
The number of nodes 755,599 1,168,750 1,621,000 2,033,912 3,652,095

Table 3
Impact of support threshold on I/O performance (recorder Set = 209,999 pieces, data size = 300 M).

Support threshold rmin Constrained conditions minimum

421,011 ^ 465,011 421,011 465,011 421,011 _ 465,011 Null

8% I/O(s) 1164 1224 1302 1416 1576
CPU(s) 868 832 956 1263 2166
The number of nodes 397,997 618,954 822,889 1,043,564 1,900,831

5% I/O(s) 1203 1251 1324 1436 1582
CPU(s) 932 979 1265 1640 2580
The number of nodes 457,078 708,083 966,477 1,217,200 2,193,503

3% I/O(s) 1346 1371 1460 1518 1662
CPU(s) 1004 1155 1292 1735 2708
The number of nodes 500,134 770,811 1,058,029 1,328,424 2,371,635

1% I/O(s) 1370 1435 1586 1684 1743
CPU(s) 1135 1220 1456 1767 3462
The number of nodes 523,604 809,502 1,113,491 1,399,107 2,481,794

0.5% I/O(s) 1480 1445 1611 1689 1769
CPU(s) 1253 1282 1650 1826 3667
The number of nodes 525,478 812,093 1,119,813 1,406,146 2,493,244

Fig. 5. I/O factor with the different minimum support (%).

86 J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88
for the minimum support threshold of 0.5%. High minimum
support threshold noticeably affect I/O factor, and the reason is
twofold. First, minimum support thresholds have impacts on both
CPU and I/O time of the interrelation analysis. Second, compared to
I/O time, CPU time is more sensitive to the minimum support
threshold. For example, let us consider the case where the con-
straint is set to 421001. Table 3 shows that when we increase
the minimum support threshold from 0.5% to 8%, CPU time de-
creases from 1282 s to 832 s (i.e., reduced by 35.1%) whereas I/O
time is reduced only from 1445 s to 1224 s (i.e., only reduced by
15.3%). The evidence shows that a large number of nodes in a fre-
quent pattern tree results in a long CPU processing time due to the
fact that function insert_tree(pjP,T) needs to be recursively invoked
when a new node is created. Therefore, compared with the mini-
mum support threshold of 0.5%, minimum support threshold of
8% has a high I/O factor.

Table 3 shows that a small minimum support threshold leads to
a large number of nodes created in frequent pattern trees (i.e.,
large-scale FP trees). Therefore, time spent accessing the large
constrained frequent pattern trees is increased. For example, if
the constraint is set to 465011, then the numbers of nodes created
in the frequent pattern tree are 618954 and 812,093 when the
minimum support threshold is 8% and 0.5%, respectively. Thus,
we conclude that under the same constraint condition, I/O process-
ing time in the interrelation analysis increases with the decreasing
of the minimum support threshold.

Table 5
User interface to display association rules generated by the celestial-spectra data
mining tool.

Association rule Support
(%)

Confidence
(%)

3970_weak wide, 4010_strong-
wide) temperature_3, chemistry_2, others_1

1.900 73.07

4010_strong-wide, 4050_strong-
wide) temperature_3, others_1

2.100 100.0

4010_strong-wide, 4050_strong-
wide) temperature_3,
microturbulence_1others_1

2.100 100.0

4010_strong-wide, 5190_weak-
narrow) temperature_3, others_1

1.400 70.00

4010_strong-wide, 5190_weak-
narrow) temperature_1, microturbulence_1,
others_1

1.400 70.00

4870_weak-median, 5510_weak-
narrow) temperature_1, others_1

2.100 100.0

4870_weak-median, 5510_weak-
narrow) temperature_1, chemistry_2, others_1

2.100 100.0

4870_weak-median, 5510_weak-
narrow) temperature_1, microturbulence_1,
others_1

2.100 100.0

3910_weak wide, 3950_median-weak-wide,
4390_weak-median) temperature_5,
microturbulence_2, others_2

2.000 83.33

3870_strong-wide, 4090_median-weak-wide,
4850_median-weak-wide, 5250_strong-
wide) temperature_D, chemistry_ 2,
microturbulence_ 2, luminosity_2

1.800 78.26

.

J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88 87
When the minimum support threshold is fixed, constraint con-
ditions have a great impact on the number of nodes created in fre-
quent pattern trees. For example, let us consider a case where the
minimum support threshold is set to 3%. Table 3 shows that the
number of nodes in the created frequent pattern tree is 500,134
and 2,371,635 for a strong constraint (i.e., 421001 ^ 465011) and
a weak constraint (i.e., NULL).

In the process of building constrained frequent pattern trees, a
significant portion of the time is spent on I/O processing, which
is greatly affected by the constraint conditions, the minimum sup-
port threshold, and the size of celestial spectra dataset. The exper-
imental results indicate that improving the I/O performance of the
CFP-Construct algorithm is a critical step towards boosting the per-
formance of the interrelation analysis module for a huge amount of
celestial spectra data. With the increasing size of the celestial spec-
tra data, the I/O processing time in building constrained frequent
pattern trees almost linearly grows. Please note that in our exper-
iments, we only considered I/O time spent on accessing the data-
base in a single machine. In a client/server computing platform
where multiple clients concurrently access the database, the I/O
performance is expected to reduce sharply. We can improve the
I/O performance for the interrelation analysis of celestial spectra
data using two effective approaches.

� Parallel disks allow multiple disks to load celestial data simulta-
neously by the virtue of parallel I/O.
� Solid-state disks can be used to reduce I/O accessing times for

constrained frequent pattern trees.

6.3. A celestial-spectra data mining tool

Using the SDSS star spectra data provided by the National
Observatory of China, we select 200 pieces of wavelength and five
physicochemical properties as attributes to represent star spectra
data. All the experimental datasets are preprocessed and discret-
ized in accordance to the method described in Section 3.1. The pre-
processing module and the interrelation analysis module are
integrated into our celestial-spectra data mining tool. Tables 4
and 5 show the user interface of the data-mining tool.

Table 4 shows the user interface used to display mining re-
sults in terms of constrained frequent patterns. In this set of
experiments, the background knowledge are the characteristics
of spectrum patterns containing wide peak-intensity flux at the
3870 wavelength, wide peak-weaker flux at the 3950 wave-
length, wide peak-intensity flux at the 4010 wavelength or nar-
row peak-intensity flux at the 5510 wavelength, and the
minimum support threshold rmin = 1%. A corresponding table of
discretized celestial spectra data is selected, and a constrained
frequent pattern tree is created using the CFP-Construct algo-
rithm. The frequent patterns satisfying the constraint conditions
Table 4
Constrained frequent patterns generated by the celestial-spectra data mining tool.

Constrained frequent pattern (item sets) Support
(%)

3870_1, 3950_1, 4010_1, 4090_3, 4450_1, 4850_3, 6550_3 1.250
3870_1, 3950_1, 4010_1, 4330_3, 4450_1, 4850_3, 4990_3 1.200
3870_1, 3950_1, 4010_1, 4330_3, 4450_1, 4850_3, 6550_3 1.550
3870_1, 3950_1, 4090_3, 4330_3, 4450_1, 4990_5, 5850_1 2.400
3870_1, 3950_1, 4090_3, 4330_3, 4690_1, 4850_3, 5850_1 1.400
3870_1, 3950_1, 4090_3, 4330_3, 4850_1, 4990_3, 5850_1 2.150
3870_1, 3950_1, 4090_3, 4330_3, 4850_1, 5850_5, 6550_B 2.200
3870_1, 3950_1, 4330_3, 4450_1, 4850_3, 5850_1, 6550_3 1.050
3870_1, 4010_1, 4090_3, 4330_3, 4450_1, 4850_3, 6550_3 1.450
3870_1, 3950_1, 4010_1, 4330_3, 4450_1, 4850_3, 4990_5, 5850_1 1.000
.
are extracted by traversing the constrained frequent pattern tree.
In Table 4, the last frequent pattern (i.e., 3870_1, 3950_1,
4010_1, 4330_3, 4450_1, 4850_3, 4990_5 and 5850_1 (1.000%))
indicates that the discretization values at the spectrum wave-
length of 3870, 3950, 4010, 4450, and 5850 equal to 1; the dis-
cretization values at the spectrum wavelength of 4330 and 4850
equal to 3; the discretization value at the spectrum wavelength
of 4990 is 5; and the support of this frequent pattern in the dis-
cretization table s8000ls is 1%.

Table 5 shows the results of the interrelation analysis of celes-
tial spectra data. In this experiment, the minimum support thresh-
old rmin is set to 1% and the minimum confidence threshold wmin is
set to 70%. Interesting conclusions can be drawn from the associa-
tion rules.

For example, the last association rule in Table 5 is
3870_strong wide, 4090_weaker wide, 4850_weaker wide,
5250_strong wide) temperature_D, chemical_2, microturbu-
lence_2, luminosity_2 (1.800%, 78.26%). This association rule
can be explained as follows. (1) There exists very strong and
very wide peaks at the wavelength of 3870; (2) there exists
weaker and very wide peaks at the wavelength of 4090; (3)
the peak at the wavelength of 4850 is weaker and very wide;
(4) if the peak at the wavelength of 5250 is very strong and very
wide, then the temperature range of this spectrum is from 7500
to 8300, the chemical abundance range is from �3 to �0.5, the
microturbulence value is 2, and the luminosity range is from 0
to 1.1. The support of the association rule (i.e., the important de-
gree of this rule) is 1.8%, and the confidence (i.e., the confidence
degree of this rule) is 78.26%. Comparing the rules generated by
our celestial-spectra data-mining tool with the relations among
the wave characteristics and physicochemical properties ac-
quired by the experience of spectra data, one can conclude that
it is basically similar to the characteristics of type A. Thus, it is
practical and valuable to make use of our interrelation analysis
module to extract correlations among the characteristics and
physicochemical properties of the celestial spectra data.

88 J. Zhang et al. / Knowledge-Based Systems 41 (2013) 77–88
7. Conclusion

LAMOST can acquire huge amount of celestial spectra data with
the highest rate. To support the interrelation analysis of celestial
spectra data, we not only study constrained frequent pattern trees,
but also develop an algorithm called CFP-Construct to build con-
strained frequent pattern trees efficiently using the first-order
predicate logic to represent background knowledge. We imple-
ment a data-mining tool in which the CFP-Construct algorithm
was incorporated in an interrelation analysis module for celestial
spectra data. We evaluated the performance of the data-mining
tool, focusing on the I/O performance of the interrelation analysis
module. The experimental results on the SDSS star spectra data
show that it is practical to rely on the interrelation analysis method
to discover correlations among the celestial spectra data character-
istics and the physicochemical properties. One can leverage our
data-mining tool as an effective new approach to exploring the un-
known laws of celestial bodies.

The interrelation analysis method presented in this paper not
only can be applied to process celestial spectra data, but also can
be extended to deal with interrelation analysis in other application
domains. Thus, a particular interesting topic that we plan to pursue
in the future is to investigate how to apply our analysis approach to
other domains. We will show in the future study that if users
provide good understandings of their applications as well as
data-mining preferences in terms of the predicate formula for
domain data, our scheme can be employed to perform correlation
analysis of data in a wide variety of application domains.

Acknowledgments

This work is partially supported by the National Natural Science
Foundation of PR China (Grant No. 61073145), the Natural Science
Foundation of Shanxi Province, PR China (Grant No. 2010011021-
2) and the Returning Students and Scholars Research Project of
Shanxi Province, PR China (Grant No. 2009-77). Xiao Qin’s work
was made possible thanks to NSF awards CCF-0845257 (CAREER),
CNS-0757778 (CSR), CCF-0742187 (CPA), CNS-0831502 (Cyber-
Trust), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-
0830831 (SFS), and an Intel gift (Number 2005-04-070) as well
as an Auburn University startup grant.

References

[1] Richard Stone, China’s LAMOST observatory prepares for the ultimate test,
Science 320 (5872) (2008) 34–35.

[2] Qin Dongmei, Studies on Automated Spectral Recognition of Celestial Object,
[Ph.D. Dissertation],Institute of Automation, Chinese academy of science, May,
2003.

[3] P. Cheeseman, J. Sutz, Bayesian classification (Autoclass): theory and results,
in: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.),
Advances in Knowledge Discovery and Data Mining, The AAAI Press, Menlo
Park, 1995.

[4] R.K. Gulati, R. Gupta, N.K. Rao, A comparison of synthetic and observed spectra
for G-K dwarfs using artificial neural networks, Astronomy and Astrophysics
322 (1997) 933–937.

[5] B. Weaver, Torres-Dodgen, Accurate two-dimensional classification of stellar
spectra with artificial neural networks, Astrophysical Journal 487 (1997) 847–
857.

[6] H.P. Singh, R.K. Gulati, R. Gupta, Stellar spectral classification using principal
component analysis and artificial neural networks, Monthly Notes of the Royal
Astronomical Society 295 (2) (1998) 312–318.
[7] E.F. Vieira, J.D. Ponz, Automated classification of IUE low-dispersion spectra. I.
Normal stars, Astronomy and Astrophysics Supplement 111 (393) (1995).

[8] C. Bailer-Jones, M. Irwin, G. Gilmore, et al., Physical parameterization of stellar
spectra – the neural network approach, Monthly Notices of the Royal
Astronomical Society(MNRAS) 292 (1997) 157–166.

[9] A.J. Connolly, A.S. Szalay, M.A. Bershady, et al., Spectral classification of
galaxies: an orthogonal approach, Astronomical Journal 110 (3) (1995) 1071–
1082.

[10] Gaspar Galaz, Valerie de Lapparent, The ESO-sculptor survey: spectral
classification of galaxies with z 6 0.5, Astronomy and Astrophysics 332 (4)
(1998) 459–478.

[11] D. Zaritsky, A.I. Zabludoff, A.W. Jeffrey, Spectral classification of galaxies along
the hubble sequence, Astronomical Journal 110 (4) (1995) 1602–1614.

[12] S. Folkes et al., The 2dF galaxy redshift survey: spectral types and luminosity
functions, Monthly Notices of the Royal Astronomical Society (MNRAS) 308
(1999) 459–476.

[13] D.-M. Qin, Z.-Y. Hu, Y.-H. Zhao, A PCA based efficient stellar spectra
classification method, Spectroscopy and Spectral Analysis 23 (1) (2003) 182–
186.

[14] Xiangru Li, Study on Several learning algorithms and its Application in Galaxy
Classification [Ph.D. Dissertation], Institute of Automation, Chinese Academy
of Science, June 2006.

[15] M.-F. Zhao, Automated spectral recognition and classification of galaxies
[Ph.D. Dissertation], Institute of Automation Chinese Academy of Science,
June 2006.

[16] R. Liu, F.-Q. Duan, et al., Spectral classification of galaxy based on wavelet
feature, Acta Electronica Sinica 33 (11) (2005) 2059–2062.

[17] J.-F. Zhang, Y.-Y. Jiang, L.-H. Hu, et al., A concept lattice based recognition
method of celestial spectra outliers, Acta Automatica Sinica 34 (9) (2008)
1060–1066.

[18] J.-F. Zhang, J.-H. Cai, A study on the outlier mining system for LAMOST spectra,
Spectroscopy and Spectral Analysis 27 (3) (2007) 606–609.

[19] R. Agrawal, T. Imielinski, A. Swami, Mining association rule between sets of
items in large databases, in: Proceedings of 1st International Conference on
Management of Data, 1993, pp. 207–216.

[20] J.-W. Han, J. Pei, Y.-W. Yin, R.-Y. Mao, Mining frequent patterns without
candidate generation: a frequent-pattern tree approach, Journal of Data
Mining and Knowledge Discovery 8 (1) (2004) 53–87.

[21] J. Pei, H.-X. Wang, J. Liu, et al., Discovering frequent closed partial orders from
strings, IEEE Transactions on Knowledge and Data Engineering 18 (11) (2006)
1467–1481.

[22] Chen, C.-J. Tang, H.-C. Tao, et al., An improved algorithm based on maximum
clique and FP-tree for mining association rules, Journal of Software 15 (8)
(2004) 1198–1207.

[23] T.S. Huang, Two-Dimensional Digital Signal Processing, Science Press, Chinese
Beijing, 1985.

[24] Y.-Q. Wang, Principles and Methods of Artificial Intelligence, Xi’an Jiao Tong
University Press, 2003.

[25] J. Pei, J. Han, R. Mao, CLOSET: an efficient algorithm for mining frequent closed
item sets, in: Proceedings of ACM-SIGMOD Workshop Data Mining and
Knowledge Discovery (DMKD’00), Dallas, TX, May 2000.

[26] J.-Y. Wang, J.-W. Han, TFP: an efficient algorithm for mining top-K frequent
closed item sets, IEEE Transactions on Knowledge and Data Engineering 17 (5)
(2005) 652–664.

[27] Mohammed J. Zaki, Efficient algorithms for mining closed item sets and their
lattice structure, IEEE Transactions on Knowledge and Data Engineering 17 (4)
(2005) 462–478.

[28] E. Gudes, S.E. Shimony, N. Vanetik, Discovering frequent graph patterns using
disjoint paths, IEEE Transactions on Knowledge and Data Engineering 18 (11)
(2006) 1441–1456.

[29] Mingjun Song, Sanguthevar Rajasekaran, A transaction mapping algorithm for
frequent item sets mining, IEEE Transactions on Knowledge and Data
Engineering 18 (4) (2006) 472–481.

[30] C. Lucchese, S. Orlando, R. Perego, Fast and memory efficient mining of
frequent closed item sets, IEEE Transactions on Knowledge and Data
Engineering 18 (1) (2006) 21–36.

[31] A.T.H. Sim, M. Indrawan, S. Zutshi, Logic-based pattern discovery, IEEE
Transactions on Knowledge and Data Engineering 22 (6) (2010) 798–811.

[32] S. Ruggieri, Frequent regular itemset mining, in: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
July 25–28, 2010, Washington, DC, USA, pp. 263–272.

[33] Wei Song, Bingru Yang, Zhangyan Xu, Index-BitTableFI: an improved
algorithm for mining frequent itemsets, Knowledge-Based Systems 21 (6)
(2008) 507–513.

	Interrelation analysis of celestial spectra data using constrained frequent pattern trees
	1 Introduction
	2 Association rules
	3 Preprocess of celestial spectra data and celestial spectra knowledge
	3.1 Normalized and discrete preprocess
	3.2 First-order predicate logic and celestial spectra knowledge

	4 Interrelation analysis of celestial spectra data
	4.1 Constrained frequent-pattern tree construction
	4.2 Frequent pattern extraction

	5 Algorithm and I/O performance
	5.1 The interrelation analysis algorithm
	5.2 I/O performance

	6 Performance evaluation
	6.1 Experimental setup
	6.2 I/O performance analysis
	6.3 A celestial-spectra data mining tool

	7 Conclusion
	Acknowledgments
	References

