
International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

79

Adaptive Preshuffling in Hadoop Clusters

Jiong Xie
1,2

, FanJun Meng
3
, HaiLong Wang

3
, JinHong Cheng

1
,

Hongfang Pan
1
 and Xiao Qin

2

1
Inner Mongolia electric power information and communication center, China

2
Department of Computer Science and Software Engineering, Auburn University,

Auburn, AL 36849-5347
3
Computer & Information Engineering College, Inner Mongolia Normal

University, China
2
{Jzx0009, Xzq0001}@auburn.edu

Abstract

MapReduce has become an important distributed processing model for large-scale data-

intensive applications like data mining and web indexing. Hadoop–an open-source

implementation of MapReduce is widely used for short jobs requiring low response time. In

this paper, we proposed a new preshuffling strategy in Hadoop to reduce high network loads

imposed by shuffle-intensive applications. Designing new shuffling strategies is very

appealing for Hadoop clusters where network interconnects are performance bottleneck when

the clusters are shared among a large number of applications. The network interconnects are

likely to become scarce resource when many shuffle-intensive applications are sharing a

Hadoop cluster. We implemented the push model along with the preshuffling scheme in the

Hadoop system, where the 2-stage pipeline was incorporated with the preshuffling scheme.

We implemented the push model and a pipeline along with the preshuffling scheme in the

Hadoop system. Using two Hadoop benchmarks running on the 10-node cluster, we

conducted experiments to show that preshuffling-enabled Hadoop clusters are faster than

native Hadoop clusters. For example, the push model and the preshuffling scheme powered

by the 2-stage pipeline can shorten the execution times of the WordCount and Sort Hadoop

applications by an average of 10% and 14%, respectively.

Keywords: MapReduce; Hadoop; Shuffle; Schedule

1. Introduction

In the past decade, the MapReduce framework has been employed to develop a wide

variety of data-intensive applications in large-scale systems. In this paper, we focus on a new

reshuffling scheme to further improve Hadoop’s system performance.

1.1. Shuffle-Intensive Hadoop Applications

Our preliminary results [18] show that CPU and IO workload are underutilized while they

are working on a data-intensive application. In MaReduce model, HDFS (Hadoop Distributed

File System) is tuned to support large files, typically file sizes in HDFS range from gigabytes

to terabytes in size. AHadoop application has two important phases - map and reduce. The

execution model of Hadoop can be divided into two separate steps. In the first step, a map

task loads input data and generates some ¡key,value¿ pairs. In this step, multiple map tasks

can be executed in parallel on multiple nodes in a cluster. In step two, all the pairs for a

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

80

particular key are pulled to a single reduce task after the reduce task communicates and

checks all the map tasks in the cluster.

Reduce tasks depend on map tasks; map tasks are followed by reduce tasks. This particular

sequence prevents reduce tasks from sharing the computing resources of a cluster with map

tasks, because there is no parallelism between a pair of map and reduce tasks. During an

individually communication between a set of map tasks and a reduce task, an amount of

intermediate data (i.e., result generated by the map tasks) is transferred from the map tasks to

the reduce task through the network interconnect of a cluster. This communication between

the map and reduce tasks is also known as the shuffle phase of a Hadoop application.

In an early stage of this study, we observe that a Hadoop application’s execution time is

greatly affected by the amount of data transferred during the shuffle phase. Hadoop

applications generally fall into two camps, namely, non-shuffle-intensive and shuffle-

intensive applications. Non-shuffle-intensive applications transfer a small amount of data

during the shuffle phase. For instance, compared with I/O-intensive applications,

computation-intensive applications may generate a less amount of data in shuffle phases. On

the other hand, shuffle-intensive applications move a large amount of data in shuffle phases,

imposing high network and disk I/O loads. Typical shuffle-intensive applications include the

inverted-index tool used in search engines and the k-means tool applied in the machine

learning field. These two applications transfer more than 30% data through network during

shuffle phases.

1.2. Alleviate Network Load in the Shuffle Phase

In this paper, we propose a new shuffling strategy in Hadoop to reduce heavy network

loads caused by shuffle-intensive applications. The new shuffling strategy is important,

because network interconnects in a Hadoop cluster is likely to become a performance

bottleneck when the cluster is shared among a large number of applications running on virtual

machines. In particular, the network interconnects become scarce resource when many

shuffle-intensive applications are running on a Hadoop cluster in parallel.

We propose the following three potential ways of reducing network loads incurred by

shuffle-intensive applications on Hadoop clusters.

1.2.1. First, decreasing the amount of data transferred during the shuffle phase can effectively

reduce the network burden caused by the shuffle-intensive applications. To reduce the amount

of transferred data in the shuffle phase, combiner functions can be applied to local outputs by

map tasks prior to storing and transferring intermediate data. This strategy can minimize the

amount of data that needs to be transferred to the reducers and speeds up the execution time

of the job.

1.2.2. Second, there is no need for reduce tasks to wait for map tasks to generate an entire

intermediate data set before the data can be transferred to the reduce tasks. Rather, a small

portion of the intermediate data set can be immediately delivered to the reduce tasks as soon

as the portion becomes available.

1.2.3. Third, heavy network loads can be hidden by overlapping data communications with

the computations of map tasks. To improve the throughput of the communication channel

among nodes, intermediate results are transferred from map tasks to reduce tasks in a

pipelining manner. Our preliminary findings show that shuffle time is always much longer

than map tasks’ computation time; this phenomenon is especially true when network

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

81

interconnects in a Hadoop cluster are saturated. A pipeline in the shuffle phase can help in

improving throughput of Hadoop clusters.

1.2.4. Finally, map and reduce tasks allocated within a single computing node can be

coordinated in a way to have their executions overlapped. Overlapping these operations inside

a node can efficiently shorten the execution times of shuffle-intensive applications. A reduce

task checks all available data from map nodes in a Hadoop cluster. If reduce and map tasks

can be grouped with particular key-value pairs, network loads incurred in the shuffle phase

can be alleviated.

1.3. Benefits and Challenges of the Preshuffling Scheme

There are three benefits of our preshuffling scheme:

Data movement activities during shuffle phases is minimized.

Long data transfer times are hidden by a pipelining mechanism.

Grouping map and reduce pairs to reduce net-work load.

Before obtaining the above benefits from the preshuffling scheme, we face a few design

challenges. First, we have to design a mechanism al-lowing a small portion of intermediate

data to be periodically transferred from map to reduce tasks without waiting an entire

intermediate data set to be ready. Second, we must design a grouping policy that arranges

map and reduce tasks within a node to shorten the shuffle time period by overlapping the

computations of the map and reduce tasks.

1.4. Organization

The rest of the paper is organized as follows. Section II describes the basic idea of

Mapreduce and Hadoop. Section III describes the design of our preshuffling algorithm after

presenting the system architecture. Section IV presents the implementation details of the

preshuffling mechanism in the Hadoop system. In Section V, we evaluate the performance of

our preshuffling scheme. Section VI reviews related work and Section VII concludes the

paper with future research directions.

2. Background

2.1. MapReduce Overview

An increasing number of popular applications become data-intensive in nature. In the past

decades, the World Wide Web has been adopted as an ideal platform for developing data-

intensive applications, since the communication paradigm of the Web is sufficiently open and

powerful. Representative data-intensive Web applications include search engines, online

auctions, webmail, and online retail sales. Data-intensive applications like data mining and

web indexing need to access ever-expanding data sets ranging from a few gigabytes to several

terabytes or even petabytes. Google, for example, leverages the MapReduce model to process

approximately twenty petabytes of data per day in a parallel fashion [5]. MapReduce is an

attractive model for parallel data processing in high-performance cluster computing

environments. The scalability of MapReduce is proven to be high, because a job in the

MapReduce model is partitioned into numerous small tasks running on multiple machines in a

large-scale cluster.

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

82

The MapReduce programming model was pro-posed by Google to support data-intensive

applications running on parallel computers like commodity clusters. Two important

functional programming primitives in MapReduce are Map and Reduce. The Map function is

applied on application-specific input data to generate a list of intermediate pairs. Then, the

Reduce function is applied to the set of intermediate pairs with the same key. Typically, the

Reduce function produces zero or more output pairs by performing a merging operation. All

the output pairs are finally sorted based on their key values. Programmers only need to

implement the Map and Reduce functions, because a MapReduce program-ming framework

can facilitate some operations (e.g., grouping and sorting) on a set of < key; value > pairs.

The MapReduce framework can simplify the complexity of running distributed data

processing functions across multiple nodes in a cluster, because MapReduce allows a

programmer with no specific knowledge of distributed programming to create his/her

MapReduce functions running in parallel across multiple nodes in the cluster. MapReduce

automatically handles the gathering of results across the multiple nodes and return a single

result or set. More importantly, the MapReduce platform can offer fault tolerance that is

entirely transparent to programmers [5, 16].

2.2. Hadoop Distributed File System

Hadoop – a popular open-source implementation of the Google’s MapReduce model is

primarily developed by Yahoo [6]. Hadoop is used by Yahoo servers, where hundreds of

terabytes of data are generated on at least 10,000 cores [19] Face-book makes use of Hadoop

to process more than 15 terabytes of new data per day. In addition to Yahoo and Facebook, a

wide variety of websites like Amazon and Last.fm are employing Hadoop to manage massive

amount of data on a daily basis [15]. Apart from Web data-intensive applications, scientific

data-intensive applications (e.g., seismic simulation and natural language processing) take

maximum benefits from the Hadoop system.

Hadoop is a successful implementation of the MapReduce model. The Hadoop framework

consists of two main components: the MapReduce language and the Hadoop’s Distributed

File System. The Hadoop runtime system coupled with HDFS man-ages the details of

parallelism and concurrency to provide ease of parallel programming with rein-forced

reliability. In a Hadoop cluster, a master node controls a group of slave nodes on which the

Map and Reduce functions run in parallel. The master node assigns a task to a slave node that

has any empty task slot.

Typically, computing nodes and storage nodes in a Hadoop cluster are identical from the

hard-ware’s perspective. In other words, the Hadoop’s Map/Reduce framework and the

Hadoops HDFS are, in many cases, running on a set of homogeneous nodes including both

computing and storage nodes. Such a homogeneous configuration of Hadoop allows the

Map/Reduce framework to effectively schedule computing tasks on an array of storage nodes

where data files are residing, leading to a high aggregate bandwidth across the entire Hadoop

cluster.

An input file passed to Map functions resides on the Hadoop distributed file system on a

cluster. Hadoop’s HDFS splits the input file into even-sized fragments, which are distributed

to a pool of slaves for further MapReduce processing. HDFS closely resembles the Google

file system or GFS [15]. Unlike other distributed file systems, HDFS aims to provide high

throughput access to large application data sets. HDFS is highly reliable because each file

fragment stored on a data node is replicated for fault-tolerance purpose. HDFS uses three-way

replication to ensure that files residing in a Hadoop cluster are always intact in three separate

nodes in the cluster.

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

83

3. Design Issues

In this section, we first present the design goals of our preshuffling algorithm. Then, we

describe how to incorporate the preshuffling scheme into the Hadoop system. We also show a

way of reducing the shuffling times of a Hadoop application by overlapping map and reduce

operations inside a node.

3.1. Push Model of the Shuffle Phase

A typical reduce task consists of three phases, namely, the shuffle phase, the sort phase,

and the reduce phase. After map tasks generate intermediate (key, value) pairs, reduce tasks

fetch in the shuffle phase the (key, value) pairs. In the shuffle phase, each reduce task handles

a portion of the key range divided among all the reduce tasks. In the sort phase, records

sharing the same key are groups together; in the reduce phase, a user-defined reduce function

is executed to process each assigned key and its list of values.

To fetch intermediate data from map tasks in the shuffle phase, HTTP requests are issued

by a reduce task to five (this default value can be con-figured) number of TaskTrackers. The

locations of these TaskTrackers are managed by the JobTracker located in the Master node of

a Hadoop cluster. When a map or reduce TaskTracker finishes, the TaskTracker sends a

heartbeat to the JobTracker in the master node, which assigns a new task to the TaskTracker.

The master node is in charge of determining time when reduce tasks start running and data to

be processed. Map task and reduce tasks are stored in two different queues.

Reduce tasks pull intermediate data (i.e., (key, value) pairs) from each TaskTracker that is

storing the intermediate data. In this design, application developers can simply implement

separate map tasks and reduce tasks without dealing with the coordination between the map

and reduce tasks. In the shuffle phase the above pull model is not efficient, because reduce

tasks are unable to start their execution until the intermediate data are retrieved. To improve

the performance of the shuffle phase, we change the pull model into a push model. In the

push model, map tasks automatically push intermediate data in the shuffle phase to reduce

tasks. Map tasks start pushing (key, value) pairs to reduce tasks as soon as the pairs are

produced.

We refer to the above new push model in the shuffle phase as the preshuffling technique.

In what follows, we describe the design issues of our preshuffling scheme that applies the

push model in the shuffle phase.

3.2. A Pipeline in Preshuffling

When a new job submitted to a Hadoop cluster, the JobTracker assigns map and reduce

tasks to available TaskTrackers in the cluster. Unlike the pulling model, the pushing model of

preshuffling push intermediate data produced by map tasks to reduce tasks. The preshuffling

scheme allows the map tasks to determine a partition records to be transferred a reduce task.

Upon the arrival of the partition records, the reduce task sorts and stores these records into the

node hosting the reduce task. Once the reduce task is informed that all the map tasks have

been completed, the reduce task performs a user-defined function to process each assigned

key and its list of values. The map tasks continue generating intermediate records to be

delivered the reduce tasks.

Let us consider a simple case where a cluster has enough free slots allowing all the tasks of

a job to run after the job is submitted to the cluster. In this case, we establish communication

channels between a reduce task and all the map tasks pushing intermediate data to the reduce

task. Since each map task decides reduce tasks to which the intermediate data should be

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

84

pushed, the map task transfers the intermediate data to the corresponding reduce tasks

immediately after the data are produced by the map task.

In some cases, there might not be enough free slots available to schedule every task in a

new Hadoop job. If a reduce task cannot be executed due to limited number of free slots, map

tasks can store intermediate results in memory buffers or local disks. After a free slot is

assigned to the reduce task, the intermediate results buffered in the map tasks can be sent to

the reduce task.

Shuffle phase time in many cases is much longer than map phase time (i.e., tasks’

computation time); this problem is more pronounced true when network interconnects are

scarce resource in a Hadoop cluster. To improve the performance of the preshuffling scheme,

we build a pipeline in the shuffle phase to proactively transfer intermediate data from map

tasks to reduce tasks. The pipeline aims at increasing the throughput of preshuffling by

overlapping data communications with the computations of map tasks.

We design a mechanism to create two separate threads in a map task. The first thread

processes input data, generates intermediate records, and completes the sort phase. The

second thread manages the aforementioned pipeline that sends intermediate data from map

tasks to reduce tasks immediately when the intermediate outputs are produced. The two

threads can work in parallel in a pipelining manner. In other words, the first thread

implements the first stage of the pipeline; the second thread performs the second stage of the

pipeline. In this pipeline, the first stage is focusing on producing intermediate results to be

stored in the memory buffers, whereas the second stage periodically retrieves the intermediate

results from the buffers and transfers the results to the connected reduce tasks.

3.3. In-memory Buffer

The push model does not require reduce tasks to wait a long time period before map tasks

complete the entire map phase. Nevertheless, pushing intermediate data from map to reduce

tasks in the preshuffling phase is still a time-consuming process. The combiner process in a

map task is an aggregate function (a reduce-like function) that groups multiple distinct values

together as input to form a single value. If we plan to implement the preshuffling mechanism

to directly send intermediate outputs from map to reduce tasks, we will have to ignore the

combiner process in map tasks. In the native Hadoop system, the combiner can help map

tasks to illuminate relevant data, thereby reducing data transfer costs. Sending all the data

generated from map tasks to reduce tasks increases response time and downgrades the

performance of Hadoop applications. Without the pre-sorting and filtering process in the

combiner stage, reduce tasks should spend much time in sorting for merging values.

Instead of sending an entire buffered content to reduce tasks directly, we design a buffer

mechanism to temporary collect intermediate data. The buffer mechanism immediately sends

a small portion of the intermediate data to reduce tasks as soon as the portion is produced. A

configurable threshold is used to control the size of the portion. Thus, once the size of

buffered intermediate results reaches the threshold, the map task sorts the intermediate data

based on reduce keys. Next, the map task writes the buffer to its local disk. Then, the second

stage of the pipeline is invoked to check whether reduce tasks have enough free slots. If nodes

hosting reduce tasks are ready, a communication channel between the map and reduce tasks

are established. The combined data produced in the first stage of the pipeline can be passed to

reduce tasks in the second stage of the pipeline.

In cases where nodes hosting reduce tasks are not ready, the second stage of the pipeline

will have to wait until the reduce tasks are available to receive the pushed data. This pipeline

mechanism aims to improve the throughput of the shuffling stage, because the pipeline makes

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

85

it possible for map tasks to send intermediate data as soon as a portion of the data is produced

by map functions.

In the design of our preshuffling scheme, it is flexible to dynamically control the amount of

data pushed from map to reduce tasks by adjusting the buffer’s threshold. A high threshold

value means that each portion to be pushed from map tasks in the second stage of the pipeline

is large; a small threshold value indicates that each portion shipped to reduce tasks is large. If

network interconnects are not overly loaded, map tasks may become a performance

bottleneck. This bottleneck problem can be addressed by increasing the buffer’s threshold so

that each data portion pushed to reduce tasks is large. A large threshold is recommended for

Hadoop clusters with fast network interconnects; a small threshold is practical for Hadoop

clusters where networks are a performance bottleneck.

4. Implementation

In Hadoop, reduce tasks will not start their executions until entire intermediate output of all

map tasks have been produced, although some map tasks may generate some intermediate

results earlier than the other map tasks. In our preshuffling scheme, map tasks do not need to

be synchronized in the way to produce a group of intermediate data to be sent to reduce tasks

at the same time. Thus, a reduce task can immediately receive corresponding intermediate

data generated by map tasks. However, the reduce task is unable to apply the reduce function

on the intermediate data until all the date produced by every map task become available. Like

reduce tasks, a Hadoop job must wait for all map tasks to finish before producing a final

result.

As described in Section III, a map task consists of two phases: map and map-transfer. The

map phase processes an entire input file, sorts intermediate results, and then sends them to an

output buffer. The sort phase in the map task groups records sharing the same key together;

this group procedure otherwise should be performed in the reduce phase. In the map-transfer

phase, intermediate data is transferred from buffer in map tasks to reduce tasks.

A reduce task consists two main phases - shuffle and reduce. In the shuffle phase, the

reduce task not only receives its portion of intermediate output from each map task, but also

performs a merge sort on the intermediate output from map tasks. In reduce tasks, the shuffle

phase time accounts for a majority of the total reduce tasks’ execution time. For example,

70% of a reduce task’s time is spent in the shuffle phase. The shuffle phase is time consuming,

because a large amount of intermediate output from map tasks must be merged and sorted in

this phase. To improve the performance of the shuffle phase, we implement a preshuffling

scheme where intermediate data are immediately merged and sorted when the data are

produced by map tasks. After receiving required intermediate data from all map tasks, the

reduce task performs a final merge sort function based on intermediate output produced by

the preshuffling scheme. When the reduce task completes its final merge sort, the task reaches

the reduce phase.

In a Hadoop cluster, a master node monitors the progress of each task’s execution. When a

map task starts its execution, the master node assigns a progress score anywhere in the range

between 0 and 1. The value of a progress score is assigned based on how much of the input

data the map task has processed [4]. Similarly, we introduce a progress score, allowing the

preshuffling scheme to monitor the progress of reduce tasks. Progress scores of reduce tasks

are assigned based on how much intermediate data of each portion has been consumed by the

reduce tasks. The progress score is incorporated with the data structure of intermediate data.

Thus, when a partition of intermediate file is transferred to a reduce task, the progress score of

this partition is also received by the reduce task. The average progress score of all relevant

partitions in each intermediate data file can be considered as the progress of a reduce task.

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

86

Each node hosting reduce tasks individually runs the tasks. In heterogeneous Hadoop

clusters, nodes may run tasks at different speed. Once a reduce task has made sufficient

progress, the task reports its progress score written to a temporary file on HDFS. For example,

we can set several granularity; the user can set the default value as 20%, 40%, 60%, 80%, and

100%. When reduce progress reaches this value, the progress score will be automatically

written down to HDFS.

By aggressively pushing data from map tasks to reduce tasks, the push model can increase

the throughput of the Hadoop system by partially over-lapping communication and transfer

times among the map and reduce tasks. The preshuffling scheme, when used in combination

with the push model, can boost the performance of Hadoop clusters. The performance

improvement offered by preshuffling and the push model becomes more pronounced when

network interconnection is a performance bottleneck of the clusters.

5. Evaluation Performance

5.1. Experimental Environment

To evaluate the performance of the proposed preshuffling scheme incorporated in the push

model with a pipelining technique, we run Hadoop bench-marks on a 10-node cluster. Table I

summarizes the configuration of the cluster used as a testbed for the performance evaluation.

Each computing node in the cluster is equipped with two dual-core 2.4 GHz Intel processors,

2GB main memory, 146 SATA hard disk, and a Gigabit Ethernet network interface card.

Table 1. Test Bed

CPU Intel Xeon 2.4GHz

Memory 2GB Memory

Disk SEGATE 146GB

Operation System Ubuntu 10.4

Hadoop version 0.20.2

In our experiments, we vary the block size in HDFS to evaluate the impacts of block size

system performance. In this study, we focus on impact of preshuffling and the push model on

Hadoop and; therefore, we disable the data replica feature of HDFS. Nevertheless, using the

preshuffling mechanism in combination with the data replica mechanism can significantly

improve performance of Hadoop clusters.

We test the following two Hadoop benchmarks running on the cluster, in which the

preshuffling scheme is integrated with the push model to improve the performance of the

shuffle phase in Hadoop applications.

5.1.1. WordCount (WC): This Hadoop application counts the frequency of occurrence for

each word in a text file. Map tasks process different sections of input files and return

intermediate data that consists of several pairs word and frequency. Then, reduce tasks add up

the values for each identity word. The Word-Count is a memory-intensive application.

5.1.2. Sort: This Hadoop application puts elements of a list in a certain order. The most-used

orders are numerical order and lexicographical order. The output list of this application is in a

non-decreasing order.

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

87

5.2. In Cluster

We compare the overall performance between the native Hadoop and the preshuffling-

enabled Hadoop on a 10-node cluster. We measure the execution times of the two tested

Hadoop benchmarks running on the Hadoop cluster, where the default block size is 64 MB.

Figure 1 illustrates the progress trend of Word-Count processing 1GB data on the native

Hadoop. The progress trend shown in Figure ?? indicates how the map and reduce tasks are

coordinating. For example, Figure 1(a) shows that in the native Hadoop system, the reduce

task does not start its execution until the all the map tasks complete their executions at time

50. Figure 1(b) proves that in the preshuffling-enabled Hadoop, our push model makes it

possible for the reduce task in WordCount to begins its execution almost immediately after

the map task gets started.

Our solution shortens the execution time of WordCount by approximately 15.6%, because

the reduce task under the push model receives intermediate output produced by the map tasks

as soon as the output become available.

Figure 1. The progress trend of WordCount processing 1GB data on the
10-node Hadoop cluster.(a) The execution time of WordCount processing
1GB data on the native Hadoop system is 450 seconds. (b) The execution
time of WordCount processing 1GB on the preshuffling-enabled Hadoop

system is 380 seconds

Figures 1(a) and 1(b) show that it takes 50 seconds to finish the map task in the native

Hadoop and its takes about 60 seconds to complete the map in the preshuffling-enabled

Hadoop. The preshuffling-enabled Hadoop system has a longer map task than the native

Hadoop, because in our push model part of the shuffle phase is handled by the map task rather

than the reduce task in the native Hadoop. Forcing the map task to process the preshuffling

phase is an efficient way of reducing heavy load im-posed on reduce tasks. As a result, the

preshuffling-enabled Hadoop cluster can complete the execution of WordCount faster than

the native Hadoop cluster.

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

88

5.3. Large Blocks vs. Small Blocks

Figure 2. Impact of block size on the preshuffling-enabled cluster running
WordCount

Figure 3. Impact of block size on the preshuffling-enabled Hadoop
cluster running Sort

Now we evaluate the impact of block size on the performance of preshuffling-enabled

Hadoop clusters. The goal of this set of experiments is to quantify the sensitivity of our

preshuffling scheme on the block size using the two Hadoop benchmarks. We run the

WordCount and Sort benchmarks on both the native Hadoop and the preshuffling-enabled

Hadoop clusters when the block size is set to 16MB, 32MB, 64MB, 128MB, and 256MB,

respectively. Figures 2 and 3 shows the performance improvement of the preshuffling-

enabled Hadoop cluster over the native Hadoop cluster as a function of the block size. Figure

2 demonstrates that the improvement offered by preshuffling in case the of WordCount

increases when the block size goes up from 16 MB to 128 MB. However, increasing the block

size from 128 MB to 256 MB does not pro-vide a higher improvement percentage. Rather, the

improvement slightly drops from 12.5% to 12.2% when the block size is changed from 128

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

89

MB to 256 MB. The experimental results plotted in Figure 2 suggest that a large block size

allows the preshuffling scheme to offer good performance improvement. The improvement in

terms of percentage is saturated when the block size is larger than 128 MB.

Figure 3 shows the performance improvement of preshuffling on the 10-node cluster

running the Sort application. The results plotted in Figure 3 are consistent with those shown

in Figure 2. For the two Hadoop benchmarks, the performance improvement offered by

preshuffling is sensitive to block size when the block size is smaller than 128 MB.

6. Related work

Implementations of MapReduce. MapReduce framework is inspired by the map and reduce

functions commonly used in functional programming [5]. MapReduce is useful in a wide

range of applications including: distributed grep, distributed sort, web link-graph reversal,

term-vector per host, web access log stats, inverted index construction, document clustering,

machine learning [3, 17], and statistical machine translation. Moreover, the MapReduce

model has been adapted to several computing environments like multi-core and many-core

systems [2, 14], desktop grids, volunteer computing environments [12], and dynamic cloud

envi-ronments [13].

Shuffling. Duxbury, et al., built a theoretical model to analyze the impacts of MapReduce

on network interconnects. There are two new findings in their study. First, during the shuffle

phase, each reduce task communicates with all map tasks in a cluster to retrieve required

intermediate data. Network load is increased during the shuffle phase due to intermediate data

transfers. Second, at the end reduce phase, final results of the Hadoop job is written to HDFS.

Their study shows evidence that the shuffle phase can cause high network loads. Our

experimental results confirm that 70% of a reduce task’s time is spent in the shuffle phase. In

this paper, we propose a preshuffling scheme combined with a push model to release the

network burden imposed by the shuffle phase. Hoefler, et al., implement a MapReduce

runtime system using MPI (Message Passing Interface) [9]. Redistribution and reduce phases

are combined in their implementation, which can benefit applications with a limited number

of intermediate keys produced in the map phase [11].

Pipeline. Dryad [10] and DryadLINQ [20] offer a data-parallel computing framework that

is more general than MapReduce. This new framework enables efficient database joins and

automatic optimizations within and across MapReductions using techniques similar to query

execution planning. In the Dryad-based MapReduce implementation, out-puts produced by

multiple map tasks are combined at the node level to reduce the amount of data transferred

during the shuffle phase. Compared with this combining technique, partial hiding latencies of

reduce tasks is more important and effective for shuffle-intensive applications. Such a

latency-hiding technique may be extended to other MapReduce implementations.

Recently, researchers extended the MapReduce programming model to support database

management systems in order to process structured files [8, 1]. For example, Olston, et al.,

developed the Pig system [7], which is a high-level parallel data processing platform

integrated with Hadoop. The Pig infrastructure contains a compiler that produces sequences

of Hadoop programs. Pig Latin - a textual language - is the programming language used in

Pig. The Pig Latin language not only makes it easy for programmers to implement

embarrassingly parallel data analysis applications, but also offer performance optimization

opportunities.

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

90

7. Conclusion

A Hadoop application’s execution time is greatly affected by the shuffling phase, where an

amount of data is transferred from map tasks to reduce tasks. Moreover, improving

performance of the shuffling phase is very critical for shuffle-intensive applications, where a

large amount of intermediate data is delivered in shuffle phases. Making a high-efficient

shuffling scheme is an important issue, because shuffle-intensive applications impose heavy

network and disk I/O loads during the shuffle phase. In this paper, we proposed a new push

model, a new preshuffling module, and a pipelining mechanism to efficiently boost the

performance of Hadoop clusters running shuffle-intensive applications.

In the push model, map tasks automatically send intermediate data in the shuffle phase to

reduce tasks. Unlike map tasks in the traditional pull model, map tasks in the push model

proactively start sending intermediate data to reduce tasks as soon as the data are produced.

The push model allows reduce tasks to start their executions earlier rather than waiting until

an entire intermediate data set becomes available. The push model improves the efficiency of

the shuffle phase, because reduce tasks do not need to be strictly synchronized with their map

taskswaiting for the entire intermediate data set.

Our preshuffling scheme aims to release the load of reduce tasks by moving the pre-sorting

and filtering process from reduce tasks to map tasks. As a result, reduce tasks with the support

of the preshuffling scheme spend less time in sorting to merge values.

In the light of the push model and the preshuffling scheme, we built a 2-stage pipeline to

efficiently move intermediate data from map tasks to reduce tasks. In stage one, local buffers

in a node hosting map tasks temporarily store combined intermediate data. In stage two, a

small portion of the intermediate data stored in the buffers is sent to reduce tasks as soon as

the portion is produced. In the second stage of the pipeline, the availability of free slots in

nodes hosting reduce tasks are checked. If there are free slots, a communication channel

between the map and reduce tasks are established. In the 2-stage pipeline, the combined data

produced in the first stage of the pipeline can be passed to reduce tasks in the second stage of

the pipeline.

We implemented the push model along with the preshuffling scheme in the Hadoop system,

where the 2-stage pipeline was incorporated with the preshuffling scheme. Our experimental

results based on two Hadoop benchmarks shows that preshuffling-enabled Hadoop clusters

are significantly faster than native Hadoop clusters with the same hardware configurations.

For example, the push model and the preshuffling scheme powered by the 2-stage pipeline

can shorten the execution times of the two Hadoop applications (i.e., WordCount and Sort) by

an average of 10% and 14%, respectively.

Acknowledgments

This research was supported by the U.S. National Science Foundation under Grants CCF-

0845257 (CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR), CCF-0742187 (CPA),

CNS-0831502 (CyberTrust), CNS-0855251 (CRI), OCI-0753305 (CI-TEAM), DUE-

0837341(CCLI), and DUE-0830831 (SFS), as well as Auburn University under a startup

grant, and a gift (No. 2005-04-070) from the Intel Corporation. This research was also

supported by Scientific Research Project of Higher Education of Inner Mongolia Autonomous

Region, China (NJZY13052).

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

91

References

[1] Z. R. M. Azmi, “Performance comparison of priority rule scheduling algorithms using different inter arrival

time jobs in grid environment”, IJGDC, vol. 4, no. 3, (2011), pp. 61-70.

[2] B. He, W. Fang, Q. Luo, N. Govindaraju and T. Wang, “Mars: a MapReduce framework on graphics proces-

sors, ACM, (2008).

[3] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Y. Yu, G. R. Bradski, A. Y. Ng and K. Olukotun, “Map-reduce for

machine learning on multicore”, NIPS, (2006), pp. 281-288.

[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy and R. Sears, “Mapreduce online”,

Proceedings of the 7th USENIX conference on Networked systems design and implementation, NSDI’10,

Berkeley, CA, USA, USENIX Association, (2010), pp. 21-21.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters”, OSDI ’04, (2008), pp.

137-150.

[6] Apache Software Foundation, Hadoop, http://hadoop.apache.org/hadoop.

[7] Apache Software Foundation, The pig project, http://hadoop.apache.org/pig.

[8] E. Friedman, P. Pawlowski and Jo. Cieslewicz, “Sql/mapreduce: a practical approach to self-describing,

polymorphic, and parallelizable user-defined functions”, Proc. VLDB Endow., vol. 2, (2009) August, pp.

1402-1413.

[9] T. Hoefler, A. Lumsdaine and J. Don-garra, “Towards efficient mapreduce using mpi”.

[10] Proceedings of the 16th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual

Machine and Message Passing Interface, Berlin, Heidelberg, Springer-Verlag, (2009), pp. 240-249.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly, “Dryad: distributed data-parallel programs from

sequential building blocks”.

[12] SIGOPS Oper. Syst. Rev., vol. 41, (2007) March, pp. 59–72.

[13] A. B. Letaifa, “State of the art and re-search challenges of new services architecture tech-nologies:

Virtualization, soa and cloud computing”, IJGDC, vol. 3, no. 4, (2010), pp. 69–88.

[14] H. Lin, X. Ma, J. Archuleta, W. -c. Feng, M. Gardner and Z. Zhang, “Moon: Mapreduce on opportunistic

environments”, Pro-ceedings of the 19th ACM International Sympo-sium on High Performance Distributed

Computing, HPDC ’10, New York, NY, USA, ACM, (2010), pp. 95-106.

[15] F. Marozzo, D. Talia and P. Trun-fio, “A peer-to-peer framework for supporting mapre-duce applications in

dynamic cloud environments”, Nick Antonopoulos and Lee Gillam, editors, Cloud Computing, Computer

Communications and Networks, Springer London,vol. 0, (2010), pp. 113–125.

[16] C. Ranger, R. Raghuraman, A. Penmetsa, G. Brad-ski and C. Kozyrakis, “Evaluating mapreduce for multi-

core and multiprocessor systems”, High-Performance Computer Architecture, International Symposium on,

vol. 0, (2007), pp. 13-24.

[17] R. Pike, S. Dorward, R. Griesemer and S. Quinla, In-terpreting the data: Parallel analysis with Sawzall, vol.

13, IOS Press, (2005).

[18] S. Ghemawat, H. Gobioff and S. Leung, “The google file system”, SIGOPS Oper. Syst. Rev., vol. 37, no. 5,

(2003), pp. 29-43.

[19] Z. Ding and X. Wei, “Vjm: A novel grid re-source co-allocation model for parallel jobs”, IJGDC, vol. 2, no.

1, (2009), pp. 1-12.

[20] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares and X. Qin, “Improving mapreduce

performance through data placement in heterogeneous hadoop clusters”, Parallel Distributed Processing,

Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, (2010) April, pp. 1-9.

[21] Yahoo, Yahoo! launches worldis largest hadoop production application. http://tinyurl.com/2hgzv7.

[22] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda and J. Curre, “Drya dlinq: a system for

general-purpose distributed data-parallel computing using a highlevel language”, Proceedings of the 8th

USENIX conference on Operating systems design and implementation, OSDI’08, Berkeley, CA, USA,

USENIX Association, (2008), pp. 1-14.

International Journal of Grid and Distributed Computing

Vol. 6, No. 2, April, 2013

92

Authors

Jiong Xie received the BS and MS degrees in computer science from

BUAA (Beijing University of Aeronautics and Astronautics), China, in

2004 and 2008, and the PhD degree in computer science from Auburn

University in 20011. Currently, his research interests include scheduling

techniques and parallel algorithms for clusters, and also multi-core

processors and software techniques for I/O-intensive applications.

