
IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Scheduling Security-Critical Real-Time
Applications on Clusters

Tao Xie, Student Member, IEEE, and Xiao Qin, Member, IEEE

Abstract— Security-critical real-time applications such as military aircraft flight control systems have mandatory security
requirements in addition to stringent timing constraints. Conventional real-time scheduling algorithms, however, either disregard
applications’ security needs and thus expose the applications to security threats, or run applications at inferior security levels without
optimizing security performance. In recognition that many applications running on clusters demand both real-time performance and
security, we investigate the problem of scheduling a set of independent real-time tasks with various security requirements. We build
a security overhead model that can be used to reasonably measure security overheads incurred by the security-critical tasks. Next,
we propose a security-aware real-time heuristic strategy for clusters (SAREC), which integrates security requirements into the
scheduling for real-time applications on clusters. Further, to evaluate the performance of SAREC, we incorporate the earliest
deadline first (EDF) scheduling policy into SAREC to implement a novel security-aware real-time scheduling algorithm (SAEDF).
Experimental results from both real-world traces and a real application show that SAEDF significantly improves security over three
existing scheduling algorithms (EDF, Least Laxity First, and First Come First Serve) by up to 266.7% while achieving high
schedulability.

Index Terms—Clusters, scheduling, real-time systems, security-critical applications, security overhead model.

—————————— ——————————

1 INTRODUCTION

LUSTERS have become the most cost-effective compu-
tational platforms for scientific applications [29][30].
As typical scientific simulation and computation re-

quire a large amount of compute power, it is common prac-
tice to apply cluster computing systems where nodes are
interconnected through high-speed networks to meet the
needs of complex scientific computing [4][28]. Meanwhile, a
growing number of real-time applications have been devel-
oped and deployed in clusters [4][19][31][32]. The correct-
ness of real-time applications depends not only on the logi-
cal computation being performed, but also on the time at
which the results are produced [16]. Real-time applications
can be classified into two camps: hard real-time and soft
real-time applications. Hard real-time applications require
a guarantee that all real-time tasks complete within speci-
fied deadlines. Soft real-time systems, on the other hand,
are less restrictive and do not require the completion of all
tasks within deadlines. Examples of hard real-time applica-
tions include aircraft control, radar for tracking missiles,
and medical electronics. On-line transaction processing
systems are examples of soft real-time applications.

Nowadays security is of critical importance for a wide
range of real-time applications on clusters
[4][5][6][11][27][36]. For example, in a real-time stock quote
update and trading system, incoming requests from busi-
ness partners and outgoing responses from an enterprise’s
back-end application have deadlines and security require-

ments, which have to be dealt with by a cluster located be-
tween the business partners and enterprise back-end appli-
cations [13]. Unfortunately, since clusters are built to exe-
cute a broad spectrum of unverified user-implemented ap-
plications from a vast number of different users, both ap-
plications and users can be sources of security threats to
clusters [47]. For example, the vulnerabilities of applica-
tions can be exploited by hackers to compromise the clus-
ters, and malicious users can access the clusters to launch
denial of service attacks. Even a legitimate user may tamper
with shared data or excessively consume computing cycles
to disrupt services available to other cluster users [47]. On
the other hand however, many existing cluster computing
environments have not employed any security mechanism
to counter the security threats [11]. Thus, it is mandatory to
deploy security services to protect security-critical applica-
tions running on clusters. Since snooping, alteration, and
spoofing are three common attacks in cluster environments,
we considered three security services (authentication ser-
vice, integrity service, and confidentiality service) to guard
against the common threats to clusters. Snooping, an unau-
thorized interception of information, can be countered by
confidentiality services. Alteration is an unauthorized
change of information. Integrity services can be used to
cope with threats of alteration. Spoofing, an impersonation
of one entity by another, can be countered by authentica-
tion services [7]. With the three security services in place,
users can flexibly select the security services to form an in-
tegrated security protection against a diversity of threats
and attacks in a cluster environment.

Scheduling algorithms play a key role in obtaining high
performance in cluster computing [41][49]. Unfortunately,
conventional real-time scheduling algorithms, which were
developed to mainly guarantee timing constraints while

C

————————————————
• T. Xie is with the Department of Computer Science,New Mexico Institute

of Mining and Technology, Socorro, NM 87801, U.S.A. E-mail: xietao@
nmt.edu.

• X. Qin is with the D Computer Science,New Mexico Institute of Mining
and Technology, Socorro, NM 87801, U.S.A. E-mail: xqin@nmt.edu.

Manuscript received 21 Feb. 2005; Revised 15 Sept. 2005; accepted 12 Jan.2006.

xxxx-xxxx/0x/$xx.00 © 2006 IEEE

2 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

possibly ignoring security requirements, are not adequate
for security-critical real-time applications on clusters. In
this study we focus on a way of scheduling security-critical
real-time applications in a cluster environment where the
aforementioned security services are employed. We pro-
pose a security-aware real-time heuristic strategy on clus-
ters (SAREC), which integrates security requirements into
real-time scheduling for applications running on clusters.
To illustrate the effectiveness of SAREC, we implement a
security-aware real-time scheduling algorithm (Security-
Aware EDF, or SAEDF for short) by incorporating the earli-
est deadline first (EDF) scheduling into SAREC. It is worth
noting that SAREC is a flexible security-aware strategy in
the sense that (1) the fundamental idea of SAREC can be
readily extended to handle other QoS parameters such as
power, fault-tolerance, etc; (2) SAREC can be easily com-
bined together with other existing real-time scheduling
policies like the least-laxity-first algorithm [24] (see Section
6.8), thereby making the existing scheduling algorithms
adaptable to accommodating security requirements.

 Fig. 1. Security-aware real-time scheduling framework.

Fig. 1 depicts the security-aware scheduling framework.
The scheduling core implements logic and timing mecha-
nisms for waiting, and relies on the SAREC strategy to de-
cide quality of security for newly arrived tasks. SAREC is
independent of scheduling policies, and it is implemented
as a module that can perform in concert with real-time
scheduling policies. In doing so, it is easy to integrate the
security-aware heuristic strategy into any real-time sched-
uling policy.

The main contributions of this paper are: (1) an analysis
of security and real-time performance needs of various ap-
plications running on clusters; (2) a security overhead
model needed for quantitatively measuring overheads in-
troduced by security services; (3) a security-aware heuristic
strategy that can be integrated into existing real-time
scheduling policies; (4) two new performance metrics used
to evaluate the security performance of our approach; and
(5) a simulated cluster where the SAEDF algorithm is im-
plemented and evaluated.

The rest of the paper is organized as follows. Section 2
outlines related work in this area. In Section 3, we present a
security-aware real-time scheduling architecture and a task
model with security requirements. Section 4 proposes a
security overhead model. In Section 5, we present a secu-
rity-aware scheduling algorithm and investigate its proper-
ties. Performance analysis of the SAEDF algorithm is dis-
cussed in Section 6. Section7 concludes the paper with
summary and future work.

2 RELATED WORK
A large amount of work has been done to develop schedul-
ing algorithms for clusters [39][41]. Zhang et al. compared
the advantages of various dynamic scheduling strategies
over traditional gang scheduling [49]. Subramani et al. in-
corporated a buddy scheme for contiguous node allocation
into a backfilling job scheduler for clusters [39]. Vallee et al.
proposed a global scheduler architecture that can dynami-
cally change scheduling policies while applications are
running on clusters [41]. Although these scheduling algo-
rithms can achieve high performance for non-real-time ap-
plications, they are not suitable for real-time applications
due to the lack of guarantee to finish real-time tasks to meet
their deadlines.

Real-time tasks

Security-Aware Real-Time Scheduling Algorithm

The problem of real-time scheduling was extensively
studied in the past both theoretically and experimentally.
Real-time scheduling algorithms generally fall into two
categories: static (off-line) [1] and dynamic (on-line)
[10][21]. Many scheduling algorithms assume that real-time
tasks are independent with one other [40], whereas others
can schedule tasks with precedence constraints [1]. Conven-
tional real-time scheduling algorithms like Rate Monotonic
(RM) algorithm [25], Earliest Deadline First (EDF) [38], and
Spring scheduling algorithm [33] were successfully applied
in real-time systems. Most existing real-time scheduling
algorithms perform poorly for applications with both time
and security constraints, because they generally ignore se-
curity requirements imposed by real-time applications.

Security-Aware
Heuristic Strategy

(SAREC)

Real-Time Schedul-
ing Policy

(EDF, LLF, etc.)

Cluster

…… …… N1 Nj Nm

Recently increasing attention has been directed toward
the issue of security in the context of clusters, because effi-
cient and flexible security has become a baseline require-
ment. Apvrille and Pourzandi developed a new security
policy language named distributed security policy, or DSP,
for clusters [5]. Wright et al. proposed a security architec-
ture for a network of computers bound together by an over-
lying framework that can be used to provide users a power-
ful virtual heterogeneous machine [42]. The language offers
a precise way to customize security of clusters. Yurcik et al.
developed tools for managing cluster security via process
monitoring [46]. Connelly and Chien proposed an approach
to protecting tightly-coupled, high-performance component
communications [11]. Azzedin and Maheswaran applied
the notion of “trust” into resource management of a large-
scale wide-area system [6]. However, the security tech-
niques mentioned above are not appropriate for real-time
applications due to the lack of ability to express and handle
timing constraints.

Some work was done to incorporate security into a vari-
ety of real-time applications. George and Haritsa proposed

XIE ET AL.: SCHEDULING SECURITY-CRITICAL REAL-TIME APPLICATIONS ON CLUSTERS

SAREC

concurrency control protocols to support applications with
real-time and security requirements [15]. Ahmed and
Vrbsky developed a secure optimistic concurrency control
protocol that can make trade-offs between security and
real-time requirements [3]. Son et al. proposed a way of
trading off quality of security to achieve required real-time
performance [35]. In [36], a new scheme was developed to
improve timeliness by allowing partial violations of secu-
rity. Our work is fundamentally different from the above
approaches because they are focused on concurrency con-
trol protocols whereas our goal is to develop security-aware
real-time scheduling algorithms.

Song et al. developed security-driven scheduling algo-
rithms for grids [37]. Very recently we proposed a family of
dynamic security-aware scheduling algorithms for single
machines [45] and Grids [43]. We conducted simulations to
show that the proposed algorithms can consistently im-
prove overall system performance in terms of quality of
security and system schedulability under a wide range of
workload conditions.

3 SECURITY AND REAL-TIME REQUIREMENTS
3.1 Security-Aware Scheduling Architecture
We focus in this study on an m-node cluster in which m
identical nodes are connected via a high-speed network,
e.g., Myrinet and Fast Ethernet, to process soft real-time
tasks submitted by r users. Let N = {N1, N2, …, Nm} denote a
set of identical computational nodes. The architecture of
security-aware real-time scheduling shown in Fig. 2 en-
compasses the SAREC strategy and a real-time scheduler.
The SAREC strategy is implemented in form of a security
level controller and an admission controller. In this study
we build the real-time scheduler using the EDF policy,
which can be substituted by other real-time scheduling
policies. The admission controller determines if an arriving
task in a schedule queue can be accepted or not, whereas the
security level controller aims at maximizing the security
levels of admitted tasks.

The schedule queue maintained by the admission con-
troller is deployed to accommodate incoming real-time
tasks. If the deadline and minimal security requirements of
an incoming task can be guaranteed, the admission control-
ler will place the task in an accepted queue for further proc-

essing. Otherwise, the task will be dropped into a rejected
queue. The real-time scheduler processes all the accepted
tasks by its scheduling policy before the tasks are transmit-
ted into a dispatch queue, where the security level controller
escalates the security level of the first task under two condi-
tions: (1) the security level promotion will not make the
first task miss its deadline; and (2) increasing security level
will not make any previously accepted task miss its dead-
line. After being handled by the security level controller,
the task is dispatched to one of the designated node Ni ∈ N
referred to as a processing node for execution. Each process-
ing node maintains a local queue.

3.2 Real-Time Tasks with Security Requirements
We consider a class of real-time applications, each of which
is composed of a collection of tasks performed to accom-
plish an overall mission. It is assumed in this study that
tasks with soft deadlines are independent of one another.
The security requirements of each task are represented by a
set of security level ranges specified by a user. Values of
security levels are normalized to the range from 0 to 1. For
example, a task specifies security level ranges [0.25, 0.75]
for the authentication service, [0.3, 0.7] for the integrity ser-
vice, and [0.2, 0.8] for the confidentiality service. The higher
the security levels, the more security-sensitive the task is.
The same security level value in different security services
has different meanings.

A task Ti submitted by a user is modeled as a set of ra-
tional parameters, e.g., Ti = (ai, ei, fi, di, li, Si), where ai, ei, and
fi are the arrival, execution, and finish times, di is the dead-
line, and li denotes the amount of data (measured in KB) to
be protected. ei can be estimated by code profiling and sta-
tistical prediction [9]. Suppose Ti requires q security ser-
vices represented by a vector of security level ranges, e.g., Si
= (1

iS , iS , …, iS). The vector characterizes the security re-
quirements of the task. j

iS is the security level range of the
jth security service required by T

2 q

i. The security level con-
troller determines the most appropriate point si in space Si,
e.g., si = (s , , …,), where 1

i i i ii
It is imperative for a security-aware scheduler to adopt a

way of measuring security benefits gained by each admit-
ted task. As such, the security benefit of task T

2s s j Ss ∈q ,j .1 qj ≤≤

i is quantita-
tively modeled as a security level function denoted by SL: Si
→ ℜ, where ℜ is the set of positive real numbers:

Accepted
Queue

Real-time
Scheduler

Rejected Queue

Admission
Controller

Schedule
Queue

Dispatch
Queue

Security Level
Controller

Local Queue

N1 User 1

User 2 N2

User r
Nm

 Fig. 2. Security-aware real-time scheduling architecture.

4 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

 , , . (1) ∑
=

=
q

j

j
i

j
ii swsSL

1
)(10 ≤≤ j

iw ∑
=

=
q

j

j
iw

1
1

 Note that i is the weight of the jth security service for
task T

jw

jj SsS ≤≤

jj xsS ≤
S≤ S S

µ

i. Users specify in their requests the weights to reflect
relative priorities of the required security services.

Xi denotes all possible schedules for task Ti, and xi ∈ Xi

be a scheduling decision of Ti. xi is a feasible schedule if (1)
deadline di can be guaranteed, i.e., fi ≤di, and (2) the security
requirements are met, i.e., iii Given a
real-time task T

).max()min(j

i, the security benefit of Ti, is expected to be
maximized by the security level controller (See Fig. 2) un-
der the timing constraint:

 (){ })(max)(iiXxi xsSLXSB
ii∈

=

 , (2)
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=∈

q

j
i

j
i

j
iXx

xsw
ii 1

)(max

where the security level of the jth service is ob-
tained under schedule x

)(i
j

i xs
i, and iii

i i and i are the minimum
and maximum security requirements of task T

)()min(
).max(j)min(j)max(j

i.
A security-aware scheduler aims at maximizing the sys-

tem’s quality of security, or security value, defined by the
sum of the security levels of admitted tasks (See Equation
1). Thus, the following security value function needs to be
maximized, subject to certain timing and security con-
straints:

 , (3)
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=∈

p

i
iiXx

xSByXSV
1

)(max)(

where p is the number of submitted tasks, yi is set to 1 is
task Ti is accepted, and is set to 0 otherwise. Substituting
Equation 2 into 3 yields the following security value objec-
tive function. Our proposed security-aware scheduling al-
gorithm strives to schedule tasks in a way to maximize
Equation 4:

 . (4)
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

= ∑ ∑
= =∈∈

p

i

q

j
i

j
i

j
iXxiXx

xswyXSV
ii1 1

)(maxmax)(

4 SECURITY OVERHEAD MODEL
It is critical and fundamental to quantitatively measure
overheads incurred by an array of security services, be-
cause security is achieved at the expense of performance.
However, attention paid to models used to measure secu-
rity overheads has been insufficient. Recently Irvine and
Levin proposed a security overhead framework, which can
be used for a variety of purposes [20]. Nevertheless, secu-
rity overhead models for security services in the context of
real-time computing remains an open issue. To enforce se-
curity in real-time applications while making security-
aware scheduling algorithms predictable and practical, we
propose in this section an effective model that is capable of
approximately, yet reasonably, measuring security over-
heads experienced by tasks with security requirements. In
light of the security overhead model, schedulers are en-
abled to incorporate security overheads into the process of
scheduling tasks. Particularly, the model can be employed
to compute the earliest start times and the minimal security
overhead (see Equation 12 and Equation 13).

 Without loss of generality, in this security overhead
model we consider three security services widely deployed
in clusters, namely, confidentiality, integrity, and authenti-
cation. We assume that the clusters are available, i.e., they
respond tasks submitted by users. Please note that security
mechanisms are not independent of one another. Rather, it
is common that multiple security mechanisms are needed
to form an integrated security solution, which can meet
complex security demands. For example, authentication
must be used in concert with message integrity. An array of
primitive security services can be provided as building
blocks for users to form integrated security solutions for
applications. To examine the performance impact of each
security service on our scheduling policies, we individually
tested the three security services. This experimental strat-
egy by no means implies that in reality security services
should be separated. The security overhead model (de-
scribed in section 4.4) consists of the following three items
(section 4.1~4.3).

4.1 Confidentiality Overhead
Encryption mechanisms support confidentiality by enci-
phering real-time applications (executable files) and data
such that information and resources are not made available
or disclosed to unauthorized persons or processes. Suppose
there are eight encryption algorithms (see Table 1) de-
ployed in a cluster. In accordance to the cryptographic al-
gorithms’ performance, each algorithm is assigned a secu-
rity level in the range from 0.08 to 1. For example, we as-
sign security level 1 to the strongest yet slowest encryption
algorithm IDEA (see Table 1). Security levels for the rest
algorithms can be computed by Equation 5, where i is the
performance of the ith (1 ≤ i ≤ 8) encryption algorithm.

c

 .81,5.13 ≤≤= isl c
i

c
i µ (5)

Security levels of the algorithms are proportional to the
algorithms’ performance. Since computation overhead
caused by encryption mainly depends on the cryptographic
algorithms used and the size of data to be protected, Fig. 3a
shows encryption time in seconds as a function of encryp-
tion algorithms and size of secured data measured on a 175
MHz Dec Alpha600 machine [26].

TABLE 1. CRYPTOGRAPHIC ALGORITHMS FOR CONFIDENTIALITY

Cryptographic Algorithms c
isl : SL Security Level

c
iµ :KB/ms

SEAL 0.08 168.75

RC4 0.14 96.43

Blowfish 0.36 37.5

Knufu/Khafre 0.40 33.75

RC5 0.46 29.35

Rijndael 0.64 21.09

DES 0.90 15

IDEA 1.00 13.5

Let be the confidentiality security level of task Te
is i, and

the computation overhead of a selected confidentiality ser-
vice can be calculated using Equation 6, where li is the
amount of data whose confidentiality must be guaranteed,
and is a function used to map a security level to its)(c

i
c sσ

XIE ET AL.: SCHEDULING SECURITY-CRITICAL REAL-TIME APPLICATIONS ON CLUSTERS

corresponding encryption method’s performance.
 81,)()(≤≤= islsc c

i
c

i
c
i

c
i σ . (6)

4.2 Integrity Overhead
Integrity services ensure that no one can modify or tamper
data and applications while they are executing on clusters
without being detected. Integrity can be accomplished by
using a variety of hash functions [8]. Seven commonly used
hash functions and their performance (evaluated on a 90
MHz Pentium machine) are shown in Table 2. Based on the
hash functions’ performance, each function is assigned a
security level in the range from 0.18 to 1.0. We assign secu-
rity level 1 to the strongest yet slowest hash function Tiger
(see Table 2), and security levels for the other hash func-
tions can be calculated by Equation 7, where g is the per-
formance of the ith (1 ≤ i ≤ 7) hash function.

iµ

 .71,36.4 ≤≤= isl g
i

g
i µ (7)

TABLE 2. HASH FUNCTIONS FOR INTEGRITY

Hash Functions g
is :Security Level)(g

i
g sµ :KB/ms

MD4 0.18 23.90

MD5 0.26 17.09

RIPEMD 0.36 12.00

RIPEMD-128 0.45 9.73

SHA-1 0.63 6.88

RIPEMD-160 0.77 5.69

Tiger 1.00 4.36

Let be the integrity security level of task Tg

is i, and the
overhead of the integrity service can be calculated using
Equation 8, where li is the amount of data whose integrity
must be achieved, and i is a function used to map a
security level to its corresponding hash function’s perform-
ance. The security overhead model for integrity is depicted
in Fig. 3b.

)(gg sσ

 71,)()(≤≤= islsc g
i

g
i

g
i

g
i σ . (8)

4.3 Authentication Overhead
It is of necessity that tasks are submitted from authenti-
cated users and, therefore, authentication services are de-
ployed to authenticate users who intend to access clusters
[12][14][17].
Table 3 illustrates three authentication techniques: weak

authentication using HMAC-MD5; acceptable authentica-
tion using HMAC-SHA-1, fair authentication using CBC-
MAC-AES. Each authentication technique is assigned a se-
curity level in accordance with the performance. We
assign security level 1 to the CBC-MAC-AES method. Secu-
rity levels for the other two methods can be obtained using
Equation 9, where is the performance of the ith (1 ≤ i ≤
3) authentication method.

a
is

a
iµ

 (9) .31,163/ ≤≤= isl a
i

a
i µ

TABLE 3. AUTHENTICATION METHODS

Authentication Meth-
ods

a
isl : Security

Level

a
iµ : Computation

Time (ms)
HMAC-MD5 0.55 90

HMAC-SHA-1 0.91 148

CBC-MAC-AES 1 163

Authentication overhead of task T)(a

i
a
i sc i is a function of

Ti’s security level is . The security overhead model for au-
thentication is shown in Fig. 3c.

a

4.4 Security Overhead Model
We can derive security overhead, which is the sum of the
overheads imposed by all involved security services. Sup-
pose task Ti requires q security services provided in sequen-
tial order. Let and be the security level and
overhead of the jth security service, the security overhead c

j
is)(j

i
j

i sc
i

experienced by Ti, can be computed using Equation 10. In
particular, the security overhead of Ti with security re-
quirements for the three services above is measured by
Equation 11.

 , where . (10) ∑
=

=
q

j

j
i

j
ii scc

1
)(j

i
j

i Ss ∈

 ∑
∈

=
},,{

)(
gcaj

j
i

j
ii scc ,where . (11) j

i
j

i Ss ∈

Noted that iic , ii , and iic in Equation 11 are
derived from Equation 6, Equation 8 and Table 3. In the
subsequent section, Equation 11 will be applied to calcu-
lated the earliest start times and minimal security overhead
(See Equation 12 and Equation 13).

)(cc s g sc a s)(g)(a

5 THE SAEDF ALGORITHM

 (a) (b) (c)
 Fig. 3. Security overhead model.

6 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

In Section 3 we proposed the SAREC strategy. Now we
evaluate the effectiveness of SAREC by proposing a novel
security-aware real-time scheduling algorithm, SAEDF (Se-
curity-Aware EDF), which incorporates the earliest dead-
line first (EDF) scheduling algorithm into the SAREC strat-
egy.

To support the presentation of the proposed algorithm,
it is necessary to introduce three properties. The schedule
of a task is feasible if the task is completed before its dead-
line. Hence, a task has a feasible schedule on a cluster if
there exists at least one node, where a valid schedule is
available for the task. More formally, this fact can be ex-
pressed by the following property.
Property 1. If task Ti has a feasible schedule on a cluster
with m nodes denoted by a set N = {N1, N2, …, Nm}, the fol-
lowing inequality must be satisfied:

 , under the

condition stated below
i

min
iiijj dceTNN ≤++∈∃)(es:

 ,where es
k

min
iikjikjk dceTddNT ≤++>∈∀)(es:, j(Ti) is

the earliest start time of task Ti on node N2, ei and diare the
execution time and deadline of Ti, and is the security
overhead experienced by T

min
ic

i when its minimal security re-
quirements are met. The condition enforced in Property 1
indicates that the execution of Ti on Nj results in no viola-
tion of any deadlines of tasks that have been admitted to
the cluster.

The earliest start time can be computed by Equa-
tion 12.

)(es ij T

 , (12) ∑ ∑
≤∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

ikjk ddNT gcal

l
k

l
kkjij scerT

, },,{
)()(es

where rj represents the remaining overall execution time of
a task currently running on the jth node, and

∑
∈

+
},,{

)(
gcal

l
k

l
kk sce is the overall execution time (security

overhead is factored in) of task Tk whose deadline is earlier
than that of Ti. Thus, the earliest start time of Ti is a sum of
the remaining overall execution time of the running task
and the overall execution times of the tasks with earlier
deadlines.

The minimal security overhead of Tmin
ic i can be calcu-

lated by the following equation.

 { }()∑
∈

=
},,{

min
gcaj

j
i

j
i

min
i Scc , (13)

where { }()j
ii denotes the overhead of the jth security

service when the corresponding minimal security require-
ment is satisfied.

j Sc min

Given an arrival task Ti and a node Nj (Nj ∈ N) of the
cluster, the task scheduling problem is to generate a feasible
task schedule, which satisfies the following two properties.
Property 2. Task Ti meets its deadline. Thus,

1.for each task Ti submitted to the schedule queue do
2. for each node Nj in the cluster do
3. Use Equation 12 to compute esj(Ti), the earliest start time of task Ti on node Nj;
4. Use Equation 13 to obtain the minimal security overhead of task Tmin

ic i;
5. if and

i
min
iiij dceT ≤++)(es kjiikjikjk dNceTddNT ≤++>∈∃)()(es, :

 (Property 1)

6. Sort the security service weights in a decreasing order of their values, e.g.,
 , where 321 v

i
v
i

v
i www << ;31},,,{ ≤≤∈ lgcavl

7. for each security service ,31},,,{ ≤≤∈ lgcavl do

8. { };min ll v
i

v
i

9. end for
Ss = /* Initialize the security value of security service vl */

10. for each security service ,31},,,{ ≤≤∈ lgcav do l
v S<

s

s
;0←j

iSL

jSLNN

11. while s do }max{ ll v
ii

12. Increase security level ;lv
i

13. Use Equation 11 to calculate security overhead ci(Nj) of Ti on Nj;
14a. if esj (Ti)+ei+ci> di (Property 2)
14b. ∃Tk ∈Nj, dk > di: esj (Tk)+ei+ ci (Nj) > dk (Property 1) then
15. decrease security level break; ;lv

is
16. end while
17. end for
18. jSL ← /* Obtain the security level of T);(i
19. else /* Set the security level to 0 because T

i SL i on Nj using Equation 1 */
i has no feasible schedule on Nj */

20. end for
21. if ∃ then 0: >∈ ij
22. yi ← 1; /* Accept task Ti */
23. /* Optimize quality of security, see Equation 2 */
 Find node Nk for Ti, subject to: { };max

1

j
inj

k
i SLSL

≤≤
=

24. dispatch task Ti to Nk according to the schedule generated above;
25. else yi ← 0/* Reject Ti, since no feasible schedule is available */
26.end for

 Fig. 4. The SAEDF algorithm.

XIE ET AL.: SCHEDULING SECURITY-CRITICAL REAL-TIME APPLICATIONS ON CLUSTERS

i
gcaj

j
i

j
iiij dsceT ≤++ ∑

∈ },,{
)()(es , where is the

security level of the jth security service.

j
i

j
i Ss ∈

Property 3. The security level of an accepted task Ti on node
Nj is maximized at the task’s arrival time under the as-
sumption that no more tasks arrive on Nj after this arrival
time.

The SAEDF algorithm is outlined in Fig. 4. The goal of
the algorithm is to deliver high quality of security while
guaranteeing real-time requirements for tasks running on
clusters. To achieve the goal, SAEDF strives to maximize
security level (see Equation 1) of each accepted task (see
Step 23) while maintaining reasonably high guarantee ra-
tios (see Step 5).

Before optimizing the security level of task Ti on Nj, SA-
EDF attempts to meet the real-time requirement of Ti. This
can be accomplished by calculating the earliest start time
(see Equation 12) and the minimal security overhead of Ti
(see Equation 13) in Steps 3 and 4. Next, Step 5 checks if the
cluster can meet the timing constraints of Ti and tasks,
whose deadlines are later than that of Ti. If the timing con-
straints can not be satisfied, Step 19 sets Ti’ security level on
Nj to 0, indicating that Ti can not be allocated to node Nj. In
case no node the cluster can produce a feasible schedule for
Ti, it is rejected by Step 25.

The security level of Ti on Nj is optimized in the follow-
ing way. The security service weights used in Equations 1
and 2 reflect the importance of the three security services,
indicating that it is desirable to give higher priorities to se-
curity services with higher weights (see Step 6). In other
words, enhancing security levels of more important ser-
vices tends to yield a maximized security level of Ti on Nj.

In case of a particular security service l ,
Step 12 escalates the security level while satisfying the
following two conditions: (1) increasing the security level
will not lead to the missing deadline of T

},,{ gcav ∈

≤≤

lv
is

i; and (2) the in-
crement of the security level must not result in missing
deadlines of any previously admitted task. These two con-
ditions are respectively enforced by Steps 5 and 14. Once
Step 18 have finalized an array of the optimized security
levels i , Step 23 is able to further maximize
the security level of T

)1(njSL j

i by identifying a node Nk that pro-
vides the maximal security level. Finally, Ti is dispatched to
Nk (see Step 24).

Now we evaluate the time complexity of SAEDF as fol-
lows.
Theorem 1. The time complexity of SAEDF is O(knm), where m

is the number of nodes in the cluster, n is the number of tasks
in the local queue of a node, and k is the number of possible se-
curity level ranks for a particular security service

.
lv

)31},,,{(≤≤∈ lgcavl

Proof. The time complexity of finding the earliest start time
for task Ti on a node is O(n) (Step 3). To obtain the mini-
mal security overhead of task Tmin

ic i; the time complex-
ity is a constant O(1) (Step 4). Sorting the security ser-
vice weights in a decreasing order (Step 6) will take a
constant time O(1) since we only have 3 security ser-
vices. To increase Ti’s three security level to their possi-
ble maximal ranks under the constraints 14a and 14b, the

worst case time complexity is O(3kn) (Steps 10 ~ 17). To
find node Nk on which the security level of task Ti is op-
timized (Steps 21 ~ 23), the time complexity is O(m).
Thus, the time complexity of the SAEDF algorithm is as
follows: O(m)(O(n) + O(1) + O(1) + O(3kn)) + O(n) =
O(knm). �
Since n, m and k can not be very big numbers in practice,

the time complexity of SAEDF should be low based on the
expression above. This time complexity indicates that the
execution time of SAEDF is a small value compared with
task execution times. Thus, the CPU overhead of executing
SAEDF is ignored in our experiments.

In what follows we prove the correctness of the SAEDF
algorithm.
Theorem 2. The SAEDF algorithm satisfies Properties 2 and 3.

Proof. (1) First, we prove that SAEDF satisfies Property 2. A
task Ti is accepted by a cluster with m nodes denoted by N
= {N1, N2, …, Nm} ⇒ There is at least one node Nj (Nj ∈ N)

on which Ti has a feasible schedule The two inequali-

ties in Property1 must hold task T

1Property

⇒
1inequality

⇒ i can be finished
before its deadline The deadline of task Tid ⇒ i must be
met. Thus, each accepted task meets its deadline.
(2) Second, we prove that SAEDF satisfies Property 3. We
can provide a proof by contradiction. There are two cases
after task Ti is accepted:

(a) Task Ti is the last element in the local queue of node
Nj based on the EDF order. In this case, there is no other
task in the local queue of node Nj which is behind Ti. The
only constraint for increasing the security level of Ti is its
deadline di, which is enforced by Step 14a in Fig. 4. The se-
curity level of task Ti will eventually reach a critical value

(Steps 10 ~ 18 in Fig. 4), meaning that any further in-

crease in security level of T

1jc
iSL

i will violate its deadline .
Now suppose that there is a higher security level
(>) for task T

id
1jb

iSL
1jb

iSL 1jc
iSL i which is an accepted task on node

Nj. However, this definitely makes T1jb
iSL i violate its dead-

line based on the conclusion drawn above because of
the equality > . makes T

id
1jb

iSL 1jc
iSL 1jb

iSL i miss its deadline di
 ⇒ iiiij dceT >++)(es ⇒ Ti cannot be accepted by node

Nj ⇒ This statement contradicts our assumption that task
Ti is an accepted task on Nj. Thus, must be the maxi-
mal security level of T

1jc
iSL

i under this situation.
(b) Task Ti is not the last element in the local queue of

node Nj based on the EDF order. Thus, there exists at least
one previously accepted task to be executed after Ti is fin-
ished. The timing constraint is enforced by Step 14a. The
security level of task Ti will also eventually reach a critical
value (Steps 10 ~ 18 in Fig. 4), which means that fur-
ther increase in the security level of T

2jc
iSL

i will either violate Ti’s
deadline or the deadlines of earlier accepted tasks. Now
suppose is not T2jc

iSL i’s maximal security level under this
circumstance and, thus, there is a larger security level

 (>) for task T2jb
iSL 2jb

iSL 2jc
iSL i, an accepted task on node

Nj under this situation. However, will violate either 2jb
iSL

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

deadline or the deadlines of earlier accepted tasks be-
cause of the inequality > .

id
2jb

iSL 2jc
iSL

Case one: violates T2jb
iSL i’s deadline ⇒

 Tiiiij dceT >++)(es ⇒ i cannot be accepted on node Nj ,

which contradicts our assumption that task Ti is an ac-
cepted task on node Nj. Thus, must be the maximal
security level of T

2jc
iSL

i under this situation.
Case two: violates the deadlines of earlier ac-

cepted tasks. Thus, ∃T

2jb
iSL

k∈Nj dk > di: esj (Tk)+ek+ (Nmin
kc j) > dk.

The implication is that the second inequality in Property 1
does not hold. Therefore, task Ti has no feasible schedule on
node Nj, meaning that Ti is not an accepted task on node Nj.
This statement contradicts our assumption that Ti is an ac-
cepted task on node Nj. Consequently, must be the

maximal security level of T

2jc
iSL

i under this situation. �

6 EXPERIMENTAL RESULTS
We evaluate in this section the performance of the SAEDF
algorithm using extensive simulation experiments based on
real world traces consisting of 29695 tasks. A competitive
advantage of conducting simulation experiments is that
performance evaluation on a large-scale cluster can be ac-
complished without additional hardware cost. To reveal
performance improvements gained by our proposed algo-
rithm,
we
compare SAEDF with three well-known scheduling algo-
rithms, namely, EDF (Earliest Deadline First) [38], LLF
(Least Laxity First) [24], and FCFS (First Come First Serve).
To make the comparisons fair, we slightly modify the three
algorithms in a way that they arbitrarily pick a security
level within the security level range of each service re-
quired by a task. Although these algorithms are intended to
schedule real-time tasks with security requirements, they
make no effort to optimize quality of security. The baseline
algorithms are briefly described below.
1. EDF: The task with the earliest deadline is always exe-

cuted first.
2. LLF: The task with the minimal laxity (slack time) is al-

ways executed first.
3. FCFS: Tasks will be executed in the non-decreasing or-

der of their arrival times.
The first goal of the performance evaluation is to exam-

ine the performance improvements of SAEDF over the
three competitive algorithms. Second, we will investigate
the performance impacts of the security overhead model
presented in Section 4 on system performance in terms of
security value and guarantee ratio. Especially, we pay at-
tention to performance impacts of security service weights
on the four scheduling algorithms. Third, we study the per-
formance sensitivity of the SAEDF algorithm to CPU ca-
pacities of the nodes in a cluster. Fourth, we evaluate the
scalability of the proposed SAEDF algorithm. Fifth, we as-
sess the performance impact of security-required data size.
Sixth, we compare SALLF with LLF to demonstrate that

SAREC is a general strategy, which can be incorporated
into not only EDF but also other existing scheduling algo-
rithms like LLF. Last but not least, we validate the results
from the synthetic real-time tasks by running a real world
real-time application with SAEDF. Some preliminary re-
sults in Sections 6.2-6.3 were presented in [44].

6.1 Simulator and Simulation Parameters
Before presenting empirical results in detail, we present

the simulation model as follows. Table 4 summarizes the
key configuration parameters of the simulated clusters used
in our experiments. The parameters of nodes in clusters are
chosen to resemble real-world workstations like Sun
SPARC-20 and Sun Ultra 10.

We modified the traces used in [18][48] by adding ran-
domly generated deadlines for all tasks in the traces, which
were collected from one workstation on six different time
intervals. The assignment of deadlines is controlled by the
deadline base (Tbase) denoted as β, which sets an upper
bound on tasks’ slack times. We use Equation 14 to gener-
ate Ti’s deadline di.

 (14) ,β+++= max
iiii cead

where ai and ei are the arrival and execution times obtained
from the real-world traces. is the maximal security
overhead (measured in ms), which is computed by Equa-
tion 15.

max
ic

 { }()∑
∈

=
},,{

max max
gcaj

j
i

j
ii Scc , (15)

where { }()j
i

j
i Sc max represents the overhead of the jth secu-

rity service for Ti when the corresponding maximal re-
quirement is fulfilled.

TABLE 4. CHARACTERISTICS OF SYSTEM PARAMETERS

 Parameter Value (Fixed)-(Varied)

CPU speed
(100 million instruc-
tions/second or MIPS) –
(100, 200,…800)

β (Deadline Base, or
Tbase)

(1000 ms) – (1000, 2000, …,
100000) ms

Number of nodes (64) – (8, 16, 32, 64, 96, 128,
256)

Size of data to be secured
(MB)

([0.05, 40], [0.5, 20000], [1,
20000]) – ({ [0.1, 400], [1,
20000], [2, 20000]}, { [0.2,
400], [2, 20000], [4, 20000]})
(mean, deviation)

Required security services
(Mixed) – (Confidentiality
only, Integrity only, Authenti-
cation only)

Weight of authentication (0.2) – (0.1, 0.3)

Weight of confidentiality (0.5) – (0.1, 0.2, 0.3, …, 0.8)

Weight of integrity (0.3) – (0.1, 0.2, 0.3, …, 0.8)

XIE ET AL.: SCHEDULING SECURITY-CRITICAL REAL-TIME APPLICATIONS ON CLUSTERS

 (a) (b) (c)
 Fig. 5. Simulation performance of four scheduling algorithms.

Although CPU demands of tasks submitted to the clus-
ters are taken directly from the existing traces, deadlines
are synthetically generated in accordance with the above
model. The simplification weakens correlations between
real-time requirements and other workload characteristics.
However, in the experiments we can examine impacts of
deadlines on system performance by controlling the dead-
lines as fundamental simulation parameters (see Section
6.2). Similarly, each task was synthetically assigned a block
of data that needs to be protected from being disclosed or
tampered. The impact of security-required data size is ex-
amined in Section 6.7. The performance metrics by which
we evaluate system performance include: security value (SV,
see Equation 4), guarantee ratio (GR, measured as a fraction
of total submitted tasks that are found to be schedulable),
and overall system performance (OSP, defined as a product of
normalized security value and guarantee ratio, see Equa-
tion 16).

 (16) SVGROSP *=

6.2 Overall Performance Comparisons
The goal of this experiment is two fold: (1) to compare the pro-
posed SAEDF algorithm against the three alternatives, and (2) to
understand the sensitivity of SAEDF to parameter β, or deadline
base (Tbase). To stress the evaluation, we assume that each task
arrived in the cluster requires all of the three security services.
Without loss of generality, it is assumed that no page fault occurs
during the execution of each real-time task. This is because in
case where a task experiences page faults, time in handling the
page faults will be factored in its execution time.

Fig. 5 shows the simulation results for these four algo-
rithms on a cluster with 64 nodes. We observe from Fig. 5a
that SAEDF and EDF exhibit similar performance in terms

of guarantee ratio, whereas SAEDF noticeably outperforms
LLF and FCFS algorithms. Although LLF is a real-time
scheduling algorithm, it does not favour short tasks as EDF
does. Therefore, many subsequent short tasks are likely to
miss their deadlines due to the acceptance of long tasks.
FCFS has the lowest guarantee ratios, because FCFS is a
non-real-time scheduling policy. It is observed that SAEDF
and EDF maintain high guarantee ratios. We attribute the
guarantee ratio improvement of SAEDF over LLF and FCFS
to the fact that SAEDF judiciously boosts the security levels
of accepted tasks under the condition that timing con-
straints are met. Fig. 5b plots security values of the four
algorithms when the deadline base is increased from 1 to
100 seconds. Fig. 5b reveals that SAEDF consistently per-
forms better, with respect to quality of security, than all the
rest approaches. Specifically, SAEDF outperforms EDF,
LLF, and FCFS in security value by averages of 43.6%,
248.9%, and 266.7%, respectively. Interestingly, when the
deadlines become loose, the performance improvements of
SAEDF over the three competitors are more pronounced.
This is because the SAEDF approach is capable of employ-
ing slack times to improve the quality of security of ac-
cepted tasks. Therefore, the more slack time available, the
higher security value can be achieved. The results clearly
indicate that clusters can gain more performance benefits
from the SAEDF algorithm under workload conditions
where real-time tasks have loose deadlines.

Fig. 5c plots the overall system performance improve-
ments achieved by SAEDF. An observation made from Fig.
5c is that SAEDF significantly outperforms all the other
three alternatives. This can be explained by the fact that,
although the guarantee ratios of SAEDF and EDF are simi-
lar, SAEDF considerably improves security values over the

 (a) (b) (c)
 Fig. 6. Performance impact of the authentication security service.

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

other algorithms, while achieving higher guarantee ratio
than LLF and FCFS. The result suggests that if quality of
security is the sole objective in scheduling, SAEDF is more
suitable for clusters than the other algorithms. In contrast, if
schedulability is the only performance objective, SAEDF
can maintain the same guarantee ratios as those of EDF,
which is inferior to SAEDF in terms of security.

6.3 Impact of the Security Overhead Model
This subsection is focused on performance impact of the
security overhead model presented in Section 4. Specifi-
cally, we evaluate the performance of the four algorithms in
the cases where each task poses requirement on one of the
three security services. The goal is to examine the perform-
ance impact of each security service on the scheduling poli-
cies. These experimental settings do not necessarily imply
that security services should be separated. On the contrary,
multiple security mechanisms in most cases are aggregated
to form an integrated security solution.

Fig. 6- Fig. 8 show the performance impacts of the au-
thentication, confidentiality, and integrity services, respec-
tively. We observe from the figures that SAEDF delivers
better overall system performance than the other competi-
tors under a wide range of workload conditions. This result
is consistent with that observed from the previous experi-
ments (see Fig. 5), where each task requires multiple secu-
rity services. Interestingly, the security improvements are
more pronounced when the confidentiality or integrity ser-
vice is required than when the authentication service is
needed. The reason is three-fold. First, there simply exist
three security levels for the authentication service in the
security overhead model, and the granularity of security
levels for authentication is coarser than those of the confi-
dentiality and integrity services. Second, the authentication
overhead is less than that of the confidentiality and integ-
rity services in most cases. Thus, it is relatively easy to
achieve a higher security level in the authentication service
for an accepted task. Third, the confidentiality and integrity

 (a) (b) (c)
 Fig. 7. Performance impact of the confidentiality security service

 (a) (b) (c)
 Fig. 8. Performance impact of the integrity security service

 (a) (b) (c)
 Fig. 9. Performance impact of security service weights, authentication weight = 0.1.

XIE ET AL.: SCHEDULING SECURITY-CRITICAL REAL-TIME APPLICATIONS ON CLUSTERS

 (a) (b) (c)
 Fig. 10. Performance impact of security service weights, authentication weight = 0.3.

overheads rely on the amount of data to be protected,
whereas the authentication overhead is independent of the
security-required data size.

6.4 Impact of Security Service Weights
Recall that the security level model proposed in Section 3.2
is comprised of multiple security levels for a diversity of
security services like confidentiality, integrity, and authen-
tication. Each service required by a task is assigned a
weight, which reflects the priority of the service. To study
the impact of security service weights on performance of
SAEDF, we set the authentication weight to a constant
value, and varied the confidentiality and integrity weights.
Specifically, Fig. 9 plots the performances of the four algo-
rithms when the confidentiality weight is increased from
0.1 to 0.8, whereas Fig. 10 depicts the performances when
the confidentiality weight varies from 0.1 to 0.6.

The first observation drawn from Fig. 9 and Fig. 10 is
that for all the algorithms, the performance in guarantee

ratio is independent of the security service weights. The
implication of this result is that the security service weights
are irrelevant to overall execution times of tasks. The sec-
ond intriguing observation made from Fig. 9 and Fig. 10 is
that the confidentiality and integrity weights slightly affect
the security performance of SAEDF, while making consid-
erable impact on the other three algorithms in terms of se-
curity value. This is because at the same security level, con-
fidentiality service overhead is relatively smaller than in-
tegrity service overhead. Consequently, the overall security
values of accepted tasks tend to increase when the confi-
dentiality weight goes up. These results indicate that SA-
EDF can marginally improve security performance for
workloads where confidentiality service is more important
than the other concerns.

6.5 Sensitivities to CPU Capacity
To examine performance sensitivities of the four algorithms
to CPU capacity, in this set of experiments we varied the

 (a) (b) (c)
 Fig. 11. Performance sensitivities to CPU capacity.

 (a) (b) (c)
 Fig. 12. Scalabilities of the four scheduling algorithms.

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

CPU capacity from 100 to 800 MIPS with increments of 100
MIPS.

The results reported in Fig. 11 reveal that SAEDF outper-
forms the other three alternatives in terms of security value
and overall system performance. With respect to guarantee
ratio, SAEDF exhibits a similar performance to EDF and
LLF. The guarantee ratio of FCFS even decreases when
CPU capacity enlarges. This is mainly because tasks with
long execution times can be admitted when the CPU capac-
ity is high and, therefore, there is a strong likelihood for
more small tasks to miss their deadlines.

6.6 Scalability
This experiment is intended to investigate the scalability of
the SAEDF algorithm. We scale the number of nodes in a
cluster from 8 to 256. Fig. 12 plots the performances as func-
tions of the number of nodes in the cluster. It is observed
from Fig. 12 that the amount of improvement achieved by
SAEDF becomes more prominent with the increasing value
of the node number. This result shows that the SAEDF ap-
proach exhibits good scalability.

Fig. 13 shows the improvements of SAEDF in overall
system performance over the other three policies. SAEDF
outperforms the three baseline algorithms in terms of over-
all system performance by averages of 70.4%, 201.2%, and
625.6%, respectively.

6.7 Security-Required Data Size
In this set of experiments we evaluated the performance
impact of security-required data size. We tested three con-
figurations of data size (see Table 4). The laxity is chosen to
be 1000 millisecond. Without loss of generality, we assume
that the distribution of the data size is a normal distribution.
The mean size of the security-required data varies from 50
KB to 4 MB and the standard deviation changes from 40 to
20000. For example, in config1, the mean size is 50KB for
short tasks, 500KB for middle tasks and 1MB for long tasks.
The standard deviation is set to 40 for short tasks and set to
20000 for medium and long tasks.

There are several important observations that can be
drawn from Fig. 14. First, when the security-required data
size increases, the guarantee ratio of SAEDF almost remains
unchanged, while SAEDF’s security value drops. This phe-
nomenon reveals that SAEDF is a security-aware algorithm,
which judiciously lowers accepted tasks’ security levels
under heavily loaded conditions in order to accommodate
more tasks. Unlike SAEDF, the guarantee ratio of EDF no-
ticeably decreases with the increasing size of security-
required data. Second, Fig. 14 shows that the guarantee
ratios of LLF and FCFS increase with the growing size of
security-required data. This is because large tasks are more
likely to be dropped due to their high security overhead
caused by enlarged security-required data size. As a result,
a vast majority of the small tasks submitted to the cluster
can be finished before their deadlines. Fig. 13. Overall system performance improvement.

 Fig. 14. Performance impact of size of data to be secured.

 Fig. 15. Performance improvement of SALLF over LLF.

XIE ET AL.: SCHEDULING SECURITY-CRITICAL REAL-TIME APPLICATIONS ON CLUSTERS

6.8 Integrate SAREC into LLF
To demonstrate that SAREC is a general security-aware
strategy that can be incorporated into other existing real-
time scheduling algorithms, we integrate SAREC with the
least-laxity-first algorithm (LLF) [24] to construct a new
algorithm called SALLF (Security-Aware LLF). Now we
evaluate the performance of SALLF in this subsection.

 One important observation from Fig. 15 is that SALLF
outperforms LLF in all cases. Specifically, SALLF improves
guarantee ratio over LLF by an average of 6.1% and outper-
forms LLF in terms of security value by an average of
55.8%. The rationale behind these results is that SALLF can
maximize guarantee ratios by adaptively adjusting tasks’
security levels, while LLF has no capability of optimizing
security levels.

6.9 A Real Application – Aircraft Flight Control
To validate the results from the trace-driven simulations,
we applied our SAEDF algorithm to a real world system –
an automated flight control system [2]. Table 5 shows the
set of parameters present for all real-time tasks, including
execution time, period, and three configurations of size of
data to be secured.

TABLE 5. TASK MODEL PARAMETERS FOR AUTOMATED FLIGHT
CONTROL SYSTEM

Task
Exec
Time
(ms)

Period
(sec)

Config1
(KB)

Config2
(KB)

Config3
 (KB)

Guidance 100 10 300 400 500

 100 5 300 400 500

 100 1 300 400 500

Controller 80 5 200 300 500

 60 1 100 100 500

 80 1 100 100 500

 60 0.2 50 50 200

 80 0.2 50 50 200
Slow
Navigation 100 10 300 400 500

 100 5 300 400 500

 100 1 300 400 500
Fast
Navigation 60 5 200 300 200

 60 1 100 100 200

 60 0.2 50 50 200
Missile
Control 500 10 1000 2000 1000

 500 1 500 500 1000

The automated flight control system was utilized to fly a

simulated model of an F-16 fighter aircraft. Details of the
automated flight control system can be found in [23][24]. In
this system all the flight control tasks - including Guidance,
Slow Navigation, Fast Navigation, Controller and Missile
Control - need to be executed in real-time to meet their
deadlines. The functions of these five tasks are summarized
as follows [2]: The “Guidance” task sets the reference trajec-
tory of the aircraft in terms of altitude and heading; the
“Controller” is responsible for executing the closed-loop

control functions that deal with actuator commands; the
two “Navigation” tasks read sensor values distinguished
by the required update frequency; and finally, the “Missile
Control” task is responsible for reading radar and firing
missiles. These separate tasks are mandatory to control the
aircraft during flight, and they are all cyclic tasks with mul-
tiple versions.

It is assumed that (1) all tasks have known bounded exe-
cution times, (2) task arrivals are independent, (3) each
task’s deadline is equal to its period, and (4) tasks are non-
preemptive in nature [2]. Table 5 shows that each of the five
tasks has multiple versions distinguished by their period or
execution time.

Since the automated flight control system is applied in a
military battle field, where security requirements such as
data confidentiality are mandatory, we synthetically choose
security-required data sizes during the execution of each
version of the five tasks. Each version of a task requires
confidentiality, integrity, and authentication services. The
security overhead for each task instance, which is com-
puted using Equation 11, largely depends on the security-
required data size. To evaluate the performance of our SA-
EDF algorithm under various scenarios, we constructed
three configurations of the security-required data size for
each version of the tasks (See columns 4, 5 and 6 in Table 5).
In config1, we choose a relatively low security level for each
task instance. Config2 represents a medium security level,
whereas config3 reflects a relatively high security level to
each task version. The experimental parameters for the
automated light control system are summarized in Table 6.

TABLE 6. EXPERIMENTAL PARAMETERS FOR AUTOMATED FLIGHT
CONTROL SYSTEM

 Parameter Value

CPU speed 1000 MIPS

Number of nodes 128

Required security services Confidentiality, Integrity
and Authentication

Weight of authentication 0.2

Weight of confidentiality 0.5

Weight of integrity 0.3
Number of F-16 aircraft 64, 128
Sample period 600 Second

In this experiment the arrival times, deadlines, and exe-

cution times of task instances are based on the real applica-
tion. The arrival time of a task instance Ti can be derived
from Ti’s period, and the deadline of Ti is equal to Ti’s pe-
riod. All five tasks start to submit their task instances to the
system at the same time, e.g., start time Ts. Each task ran-
domly selects one of its versions and submits it to the sys-
tem. The rationale behind the random task version submis-
sion is that available system resources are dynamic and
unpredictable. For example, when some nodes in the sys-
tem fail at an unknown time, an inferior version of a task
will be executed. We sampled task instances that were
submitted to the system within 600 seconds since Ts, be-
cause the system behaviour was already manifest after this
period of time. In this experiment, we sampled 1293 task

14 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

 (a) (b) (c)
 Fig. 16. 128 nodes control 128 F-16 aircrafts.

 (a) (b) (c)
 Fig. 17. 128 nodes control 64 F-16 aircrafts.

instances.
We simulated a 128-node system where each node has a

1000 MIPS CPU. We considered two node-to-aircraft con-
figurations: (1) 128 nodes were used to control 128 aircrafts,
and (2) 128 nodes controlled 64 aircrafts. In the first ex-
perimental setting, each node was responsible for control-
ling one aircraft; and in the second setting two nodes con-
trolled one aircraft in a cooperative manner. The goal of the
first case is to test the performance under a heavily loaded
condition, whereas the second case is focused on the system
performance under relatively light workloads.

The experimental results are shown in Fig. 16 and Fig.
17. Three observations are evident from Fig. 16. First, when
the size of security-required data increases, guarantee ratio,
security, and overall performance of the four algorithms
noticeably decrease. This is because the security overhead
rises with the increasing security-required data size. Con-
sequently, the number of feasible tasks reduces, and the
quality of security suffers.

Second, when 128 nodes are utilized to control 128 air-
crafts, the guarantee ratio of SAEDF on average is only
79.84%, meaning that the system is slightly overloaded. In
such a workload situation SAEDF consistently outperforms
the other three algorithms in quality of security (see Fig.
16b) while maintaining the same guarantee ratio perform-
ance as EDF (see Fig. 16a). The results demonstratively
show that SAEDF can maintain the same level of schedula-
bility as EDF while significantly improving the security (by
an average of 50.13%). More importantly, SAEDF signifi-
cantly outperformed EDF, LLF and FCFS in overall system
performance, which is the most crucial metric for security-
critical real-time systems, by averages of 50.11%, 50.97%
and 49.61%, respectively. The implication of this finding is

that when system workloads are high, SAEDF can signifi-
cantly improve overall system performance without adding
extra hardware.

In the case where 128 nodes control 64 aircrafts, the av-
erage guarantee ratio of SAEDF is 93.93% (See Fig. 17). Un-
der such a light workload condition, the guarantee ratios of
SAEDF and the other three alternatives are almost identical.
We attribute this result to the fact that when an aircraft is
controlled by two computers, almost all the tasks dedicated
to the aircraft can be accomplished before their deadlines
because of the sufficient computational resources. In addi-
tion, the results presented in Fig. 17 indicate that although
EDF and LLF can achieve 94.12% and 93.26% in guarantee
ratio, their average security values are as low as 0.62. These
results suggest that EDF and LLF are unsuitable for security
sensitive applications. By using SAEDF as a security-aware
scheduling heuristic, perfor-mance in security value is im-
proved by an average of 50% over EDF and LLF.

7 SUMMARY AND FUTURE WORK
We presented in this paper a novel security-aware heuristic
strategy (SAREC) for real-time applications on clusters.
This strategy paves the way to the design of security-aware
real-time scheduling algorithms. To make such security-
aware scheduling algorithms practical, we proposed a secu-
rity overhead model to quantitatively measure overheads
of security services such as confidentiality, integrity, and
authentication required by real-time applications. In doing
so, security overheads can be taken into consideration in
the process of scheduling real-time tasks. The effectiveness
of the SAREC strategy was evaluated by implementing a
novel security-aware real-time scheduling algorithm (SA-

XIE ET AL.: SCHEDULING SECURITY-CRITICAL REAL-TIME APPLICATIONS ON CLUSTERS

EDF), which incorporates the earliest deadline first (EDF)
scheduling algorithm into the SAREC strategy. SAREC is a
general strategy in the sense that it can be applied to other
existing real-time scheduling policies like LLF (see Section
6.8). To quantitatively validate the performance of the SA-
EDF algorithm, we conducted extensive trace-driven simu-
lations and introduced two new performance metrics,
namely, security value (see Equation 4) and overall system
performance (see Equation 16). Security value is a collective
value of each accepted application’s security level and it
can be used to measure the quality of security experienced
by all schedulable real-time tasks. Overall system perform-
ance, the most important performance metric for security-
critical real-time systems, is a comprehensive metric de-
fined as a product of security value and guarantee ratio.
Experimental results based on real-world traces and a real
application show that SAEDF achieves overall system per-
formance over three existing scheduling algorithms (EDF,
LLF, and FCFS) by average of 32.9%, 575.7%, and 713.6%,
respectively. In addition, the empirical results reveal that
SAEDF significantly improves quality of security for real-
time tasks while maintaining high guarantee ratios under a
wide range of workload characteristics.
Future studies in this research can be performed in the fol-
lowing directions.
1. Extend our security overhead models to multi-

dimensional computing resources. For now, we simply
consider CPU time, which is only one computing re-
source consumed by the security services. Memory, net-
work bandwidth and storage capacities should be con-
sidered in the future.

2. Accommodate more security services into our security
overhead model. Besides the three security services dis-
cussed, we plan to include authorization and auditing
services into consideration.

3. Extend SAREC strategy to heterogeneous distributed
systems. In a heterogeneous computing system, different
nodes have different powers and resources. Thus, the
same security requirement for a particular security ser-
vice will result in different amount of overheads. A
node-dependable security overhead calculating model
should be developed.

ACKNOWLEDGMENT
This is a substantially revised and improved version of a
preliminary paper [44] that appeared in the Proceedings of
the 34th International Conference on Parallel Processing
(ICPP’05), pages 5-12, June 2005. The revisions include a
new security overhead model, new experimental results for
performance of the SAEDF, EDF, LLF, and FCFS algorithms,
six new sets of experiments, three properties and two theo-
rems for the SAEDF algorithm, and performance evaluation
with a real application. The work reported in this paper
was supported in part by the New Mexico Institute of Min-
ing and Technology under Grant 103295 and by Intel Cor-
poration under Grant 2005-04-070. We are grateful to the
anonymous referees for their insightful suggestions and
comments.

REFERENCES
[1] T.F. Abdelzaher and K.G. Shin., “Combined Task and Message

Scheduling in Distributed Real-Time Systems,” IEEE Trans. Paral-
lel and Distributed Systems, Vol. 10, No. 11, Nov. 1999.

[2] T.F. Abdelzaher, E. M. Atkins, and K.G. Shin., “QoS Negotiation
in Real-Time Systems and Its Application to Automated Flight
Control,” IEEE Trans. Computers, 49(11), Nov. 2000, pp.1170-1183.

[3] Q. Ahmed and S. Vrbsky, “Maintaining security in firm real-time
database systems,” Proc. 14th Ann. Computer Security Application
Conf., 1998.

[4] A. Amin, R. Ammar, and A. El Dessouly, “Scheduling real time
parallel structures on cluster computing with possible processor
failures,” Proc. Int’l Symp. Computers and Comm., June 2004.

[5] A. Apvrille and M. Pourzandi, “XML Distributed Security Policy
for Clusters,” Computers & Security Journal, Elsevier, Vol.23, No.8,
pp. 649-658, Dec. 2004.

[6] F. Azzedin, M. Maheswaran, “Towards trust-aware resource
management in grid computing systems,” Proc. 2nd IEEE/ACM
Int’l Symp. Cluster Computing and the Grid, May 2002.

[7] M. Bishop, Computer Security, ISBN 0-201-44099-7, Addison-
Wesley, 2003.

[8] A. Bosselaers, R. Govaerts and J. Vandewalle, “Fast hashing on
the Pentium,” Proc. Advances in Cryptology, Springer-Verlag, 1996.

[9] T. D. Braun et al., “A comparison study of static mapping heuris-
tics for a class of meta-tasks on heterogeneous computing sys-
tems,” Proc. Workshop on Heterogeneous Computing, Apr. 1999.

[10] S. Cheng and Y. Huang, “Dynamic real-time scheduling for multi-
processor tasks using genetic algorithm,” Proc. 28th Ann. Int’l
Conf. Computer Software and Applications, pp. 154 – 160, Sept. 2004.

[11] K. Connelly and A. A. Chien, “Breaking the barriers: high per-
formance security for high performance computing,” Proc. Work-
shop on New security paradigms, Virginia, Sept. 2002.

[12] J. Deepakumara, H.M. Heys, and R. Venkatesan, “Performance
comparison of message authentication code (MAC) algorithms for
Internet protocol security (IPSEC),” Proc. Newfoundland Electrical
and Computer Engineering Conf., St. John's, Newfoundland, 2003.

[13] G. Donoho, “Building a Web Service to Provide Real-Time Stock
Quotes,” MCAD.Net, February, 2004.

[14] O. Elkeelany, M. Matalgah, K. Sheikh, M. Thaker, G. Chaudhry,
D. Medhi, J. Qaddouri, “Performance analysis of IPSec protocol:
encryption and authentication,” Proc. IEEE Int’l Conf. Communica-
tions, pp. 1164-1168, New York, NY, April-May 2002.

[15] B. George and J. Haritsa, “Secure transaction processing in firm
real-time database systems,” Proc. ACM SIGMOD Conf., 1997.

[16] W. A. Halang, et al., “Measuring the performance of real-time
systems,” Int’l Journal of Time-Critical Computing Systems, 18, pp.
59-68, 2000.

[17] A. Harbitter and D. A. Menasce, “The performance of public key
enabled Kerberos authentication in mobile computing applica-
tions,” Proc. ACM Conf. Computer and Comm. Security, 2001.

[18] M. Harchol-Balter and A. Downey, “Exploiting Process Lifetime
Distributions for Load Balacing,” ACM transaction on Computer
Systems, vol. 3, no. 31, 1997.

[19] L. He, A. Jatvis, and D. P. Spooner, “Dynamic scheduling of par-
allel real-time jobs by modelling spare capabilities in heterogene-
ous clusters,” Proc. Int’l Conf. Cluster Computing, pp. 2-10, Dec.
2003.

[20] C. Irvine and T. Levin, “Towards a taxonomy and costing method
for security services,” Proc. 15th Annual Computer Security Applica-
tions Conference, 1999.

16 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

[21] V. Kalogeraki, P.M. Melliar-Smith, L.E. Moser, “Dynamic sched-
uling for soft real-time distributed object systems,” Proc. IEEE
Int’l Symp. Object-Oriented Real-Time Distributed Computing,
pp.114-121, 2000.

[22] Z. Lan and P. Deshikachar, “Performance analysis of large-scale
cosmology application on three cluster systems,” Proc. IEEE Int’l
Conf. Cluster Computing, pp. 56-63, Dec. 2003.

[23] S. Liden, “The Evolution of Flight Management Systems,” Proc.
IEEE/AIAA 13th Digital Avionics Systems Conf., pp. 157-169, 1995.

[24] A. K. Mok, “fundamental Design Problems of Distributed Sys-
tems for the Hard Real-Time Environment,” Ph.D. Dissertation,
MIT, 1983.

[25] C. L. Liu, J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment,” Journal of the
ACM, Vol.20, No.1, pp. 46-61, 1973.

[26] E. Nahum, S. O'Malley, H. Orman and R. Schroeppel, “Towards
High Performance Cryptographic Software,” Proc. IEEE Workshop
Arch. and Implementation of High Perf. Comm. Subsys., August 1995.

[27] M. Pourzandi, I. Haddad, C. Levert, M. Zakrewski, and M.
Dagenais, “A New Architecture for Secure Carrier-Class Clus-
ters,” IEEE Int’l Workshop on Cluster Computing, 2002.

[28] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “Towards Load Balanc-
ing Support for I/O-Intensive Parallel Jobs in a Cluster of Work-
stations,” Proc. IEEE Int’l Conf. Cluster Computing, Dec. 2003.

[29] X. Qin and H. Jiang, “Improving Effective Bandwidth of Net-
works on Clusters using Load Balancing for Communication-
Intensive Applications,” Proc. 24th IEEE Int’l Performance, Comput-
ing, and Communications Conf., Phoenix, Arizona, April 2005.

[30] X. Qin, “Improving Network Performance through Task Duplica-
tion for Parallel Applications on Clusters,” Proc. 24th IEEE Int’l
Performance, Computing, and Communications Conf., Phoenix, Ari-
zona, April 2005.

[31] X. Qin, H. Jiang, D. R. Swanson, “An Efficient Fault-tolerant
Scheduling Algorithm for Real-time Tasks with Precedence Con-
straints in Heterogeneous Systems,” Proc. 31st Int’l Conf. Parallel
Processing, pp.360-368. Aug. 2002.

[32] X. Qin and H. Jiang, “A Dynamic and Reliability-driven Schedul-
ing Algorithm for Parallel Real-time Jobs on Heterogeneous Clus-
ters,” Journal of Parallel and Distributed Computing, Vol. 65, No. 8,
pp.885-900, August 2005.

[33] K. Ramamritham, J. A. Stankovic, “Dynamic task scheduling in
distributed hard real-time system,” IEEE Software, Vol. 1, No. 3,
July 1984.

[34] J. Schreur, “B737 Flight Management Computer Flight Plan Tra-
jectory Computation and Analysis,” Proc. Am. Control Conf., 1995.

[35] S. H. Son, R. Zimmerman, and J. Hansson, “An adaptable security
manager for real-time transactions,” Proc. 12th Euromicro Conf.
Real-Time Systems, pp. 63 – 70, June 2000.

[36] S. H. Son, R. Mukkamala, and R. David, “Integrating security and
real-time requirements using covert channel capacity,” IEEE
Trans. Knowledge and Data Engineering, Vol. 12 , No. 6, pp. 865 –
879, 2000.

[37] S. Song, Y.K. Kwok, and K. Hwang, “Trusted Job Scheduling in
Open Computational Grids: Security-Driven Heuristics and A
Fast Genetic Algorithms,” Proc. Int’l Symp. Parallel and Distributed
Processing, 2005.

[38] J. A. Stankovic, M. Spuri, K. Ramamritham, G.C. buttazzo, “Dead-
line Scheduling for Real-Time Systems – EDF and Related Algo-
rithms,” Kluwer Academic Publishers, 1998.

[39] V. Subramani, V., R. Kettimuthu, S. Srinivasan, J. Johnston, and P.

Sadayappan, “Selective buddy allocation for scheduling parallel
jobs on clusters,” Proc. IEEE Int’l Conf. Cluster Computing, pp. 107
– 116, Sept. 2002.

[40] M.E. Thomadakis and J.-C. Liu, “On the efficient scheduling of
non-periodic tasks in hard real-time systems,” Proc. 20th IEEE
Real-Time Systems Symp., pp.148-151, 1999.

[41] G. Vallee, C. Morin, J.-Y. Berthou, and L. Rilling, “A new ap-
proach to configurable dynamic scheduling in clusters based on
single system image technologies,” Proc. Int’l Symp. Parallel and
Distributed Processing, April 2003.

[42] R. Wright, D. J. Shifflett, C. E. Irvine, “Security Architecture for a
Virtual Heterogeneous Machine,” Proc. 14th Ann. Computer Secu-
rity Applications Conference, 1998.

[43] T. Xie and X. Qin, “Enhancing Security of Real-Time Applications
on Grids through Dynamic Scheduling,” Proceedings of the 11th
Workshop on Job Scheduling Strategies for Parallel Processing PP.146-
158, MA, USA, June 19, 2005.

[44] T. Xie, X. Qin, and A. Sung, “SAREC: A Security-Aware Schedul-
ing Strategy for Real-Time Applications on Clusters,” Proc. the
34th Int’l Conf. Parallel Processing, Norway, June 14-17, 2005.

[45] T. Xie, X. Qin, A. Sung, M. Lin, and L. Yang, “Real-Time Schedul-
ing with Quality of Security Constraints,” Int’l Journal of High Per-
formance Computing and Networking, February, 2006.

[46] W. Yurcik, X. Meng, G. A. Koenig, “A Cluster Process Monitoring
Tool for Intrusion Detection: Proof-of-Concept,” Proc. 29th IEEE
Conf. Local Computer Networks 2004.

[47] W. Yurcik, X. Meng, G. Koenig, J.Greenseid “Cluster security as a
unique problem with emergent properties”, The 5th LCI Interna-
tional Conference on Linux Clusters: The HPC Revolution 2004, Aus-
tin, TX, May 18-20, 2004.

[48] X. Zhang, Y. Qu, and L. Xiao, “Improving Distributed Wrokload
Performance by Sharing both CPU and Memory Resources,” Proc.
20th Int’l Conf. Distributed Computing Systems, Apr. 2000.

[49] Y. Zhang, A. Sivasubramaniam, J. Moreira, and H. Franke, “Im-
pact of workload and system parameters on next generation clus-
ter scheduling mechanisms,” IEEE Trans. Parallel and Distributed
Systems, Vol. 12 , No. 9, pp. 967 – 985, Sept. 2001.

Tao Xie is a Ph.D. Candidate in Computer Sci-
ence at the New Mexico Institute of Mining and
Technology, USA. He received the BSc and
MSc from Hefei University of Technology,
China, in 1991 and 2000, respectively. His re-
search interests are security-aware scheduling,
high performance computing, cluster and Grid
computing, parallel and distributed systems,
real-time/embedded systems, and Information
Security.

Xiao Qin received the BSc and MSc degrees in
Computer Science from Huazhong University of
Science and Technology, China in 1996 and
1999, respectively. He received his Ph.D. in
Computer Science from University of Nebraska-
Lincoln, USA, in 2004. He is an Assistant Pro-
fessor in Department of Computer Science at
the New Mexico Institute of Mining and Tech-
nology, USA. His research interests are paral-
lel/distributed systems, real-time computing,
storage systems, and performance evaluation.

He has published more than 45 technical papers and served as pro-
gram committee of several prestigious conferences, including The 35th
International Conference on Parallel Processing, and The 25th IEEE
International Performance Computing and Communications Confer-
ence.

	1 Introduction
	2 Related Work
	3 Security and Real-Time Requirements
	3.1 Security-Aware Scheduling Architecture
	3.2 Real-Time Tasks with Security Requirements

	4 Security Overhead Model
	4.1 Confidentiality Overhead
	4.2 Integrity Overhead
	4.3 Authentication Overhead
	4.4 Security Overhead Model

	5 The SAEDF Algorithm
	6 Experimental Results
	6.1 Simulator and Simulation Parameters
	6.2 Overall Performance Comparisons
	6.3 Impact of the Security Overhead Model
	6.4 Impact of Security Service Weights
	6.5 Sensitivities to CPU Capacity
	6.6 Scalability
	6.7 Security-Required Data Size
	6.8 Integrate SAREC into LLF
	6.9 A Real Application – Aircraft Flight Control

	7 Summary and Future Work

