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Scheduling Security-Critical Real-Time 
Applications on Clusters  

Tao Xie, Student Member, IEEE, and Xiao Qin, Member, IEEE

Abstract— Security-critical real-time applications such as military aircraft flight control systems have mandatory security 
requirements in addition to stringent timing constraints. Conventional real-time scheduling algorithms, however, either disregard 
applications’ security needs and thus expose the applications to security threats, or run applications at inferior security levels without 
optimizing security performance. In recognition that many applications running on clusters demand both real-time performance and 
security, we investigate the problem of scheduling a set of independent real-time tasks with various security requirements. We build 
a security overhead model that can be used to reasonably measure security overheads incurred by the security-critical tasks. Next, 
we propose a security-aware real-time heuristic strategy for clusters (SAREC), which integrates security requirements into the 
scheduling for real-time applications on clusters. Further, to evaluate the performance of SAREC, we incorporate the earliest 
deadline first (EDF) scheduling policy into SAREC to implement a novel security-aware real-time scheduling algorithm (SAEDF). 
Experimental results from both real-world traces and a real application show that SAEDF significantly improves security over three 
existing scheduling algorithms (EDF, Least Laxity First, and First Come First Serve) by up to 266.7% while achieving high 
schedulability. 

Index Terms—Clusters, scheduling, real-time systems, security-critical applications, security overhead model.  
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1 INTRODUCTION

LUSTERS have become the most cost-effective compu-
tational platforms for scientific applications [29][30]. 
As typical scientific simulation and computation re-

quire a large amount of compute power, it is common prac-
tice to apply cluster computing systems where nodes are 
interconnected through high-speed networks to meet the 
needs of complex scientific computing [4][28]. Meanwhile, a 
growing number of real-time applications have been devel-
oped and deployed in clusters [4][19][31][32]. The correct-
ness of real-time applications depends not only on the logi-
cal computation being performed, but also on the time at 
which the results are produced [16]. Real-time applications 
can be classified into two camps: hard real-time and soft 
real-time applications. Hard real-time applications require 
a guarantee that all real-time tasks complete within speci-
fied deadlines. Soft real-time systems, on the other hand, 
are less restrictive and do not require the completion of all 
tasks within deadlines. Examples of hard real-time applica-
tions include aircraft control, radar for tracking missiles, 
and medical electronics. On-line transaction processing 
systems are examples of soft real-time applications.  

Nowadays security is of critical importance for a wide 
range of real-time applications on clusters 
[4][5][6][11][27][36]. For example, in a real-time stock quote 
update and trading system, incoming requests from busi-
ness partners and outgoing responses from an enterprise’s 
back-end application have deadlines and security require-

ments, which have to be dealt with by a cluster located be-
tween the business partners and enterprise back-end appli-
cations [13]. Unfortunately, since clusters are built to exe-
cute a broad spectrum of unverified user-implemented ap-
plications from a vast number of different users, both ap-
plications and users can be sources of security threats to 
clusters [47]. For example, the vulnerabilities of applica-
tions can be exploited by hackers to compromise the clus-
ters, and malicious users can access the clusters to launch 
denial of service attacks. Even a legitimate user may tamper 
with shared data or excessively consume computing cycles 
to disrupt services available to other cluster users [47]. On 
the other hand however, many existing cluster computing 
environments have not employed any security mechanism 
to counter the security threats [11]. Thus, it is mandatory to 
deploy security services to protect security-critical applica-
tions running on clusters. Since snooping, alteration, and 
spoofing are three common attacks in cluster environments, 
we considered three security services (authentication ser-
vice, integrity service, and confidentiality service) to guard 
against the common threats to clusters. Snooping, an unau-
thorized interception of information, can be countered by 
confidentiality services. Alteration is an unauthorized 
change of information. Integrity services can be used to 
cope with threats of alteration. Spoofing, an impersonation 
of one entity by another, can be countered by authentica-
tion services [7]. With the three security services in place, 
users can flexibly select the security services to form an in-
tegrated security protection against a diversity of threats 
and attacks in a cluster environment.  

Scheduling algorithms play a key role in obtaining high 
performance in cluster computing [41][49]. Unfortunately, 
conventional real-time scheduling algorithms, which were 
developed to mainly guarantee timing constraints while 
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possibly ignoring security requirements, are not adequate 
for security-critical real-time applications on clusters. In 
this study we focus on a way of scheduling security-critical 
real-time applications in a cluster environment where the 
aforementioned security services are employed. We pro-
pose a security-aware real-time heuristic strategy on clus-
ters (SAREC), which integrates security requirements into 
real-time scheduling for applications running on clusters. 
To illustrate the effectiveness of SAREC, we implement a 
security-aware real-time scheduling algorithm (Security-
Aware EDF, or SAEDF for short) by incorporating the earli-
est deadline first (EDF) scheduling into SAREC. It is worth 
noting that SAREC is a flexible security-aware strategy in 
the sense that (1) the fundamental idea of SAREC can be 
readily extended to handle other QoS parameters such as 
power, fault-tolerance, etc; (2) SAREC can be easily com-
bined together with other existing real-time scheduling 
policies like the least-laxity-first algorithm [24] (see Section 
6.8), thereby making the existing scheduling algorithms 
adaptable to accommodating security requirements. 

 
              Fig. 1. Security-aware real-time scheduling framework. 

Fig. 1 depicts the security-aware scheduling framework.  
The scheduling core implements logic and timing mecha-
nisms for waiting, and relies on the SAREC strategy to de-
cide quality of security for newly arrived tasks. SAREC is 
independent of scheduling policies, and it is implemented 
as a module that can perform in concert with real-time 
scheduling policies. In doing so, it is easy to integrate the 
security-aware heuristic strategy into any real-time sched-
uling policy. 

The main contributions of this paper are: (1) an analysis 
of security and real-time performance needs of various ap-
plications running on clusters; (2) a security overhead 
model needed for quantitatively measuring overheads in-
troduced by security services; (3) a security-aware heuristic 
strategy that can be integrated into existing real-time 
scheduling policies; (4) two new performance metrics used 
to evaluate the security performance of our approach; and 
(5) a simulated cluster where the SAEDF algorithm is im-
plemented and evaluated. 

The rest of the paper is organized as follows. Section 2 
outlines related work in this area. In Section 3, we present a 
security-aware real-time scheduling architecture and a task 
model with security requirements. Section 4 proposes a 
security overhead model. In Section 5, we present a secu-
rity-aware scheduling algorithm and investigate its proper-
ties. Performance analysis of the SAEDF algorithm is dis-
cussed in Section 6. Section7 concludes the paper with 
summary and future work. 

2 RELATED WORK 
A large amount of work has been done to develop schedul-
ing algorithms for clusters [39][41]. Zhang et al. compared 
the advantages of various dynamic scheduling strategies 
over traditional gang scheduling [49]. Subramani et al. in-
corporated a buddy scheme for contiguous node allocation 
into a backfilling job scheduler for clusters [39]. Vallee et al. 
proposed a global scheduler architecture that can dynami-
cally change scheduling policies while applications are 
running on clusters [41]. Although these scheduling algo-
rithms can achieve high performance for non-real-time ap-
plications, they are not suitable for real-time applications 
due to the lack of guarantee to finish real-time tasks to meet 
their deadlines. 

Real-time tasks 

Security-Aware Real-Time Scheduling Algorithm 

The problem of real-time scheduling was extensively 
studied in the past both theoretically and experimentally. 
Real-time scheduling algorithms generally fall into two 
categories: static (off-line) [1] and dynamic (on-line) 
[10][21]. Many scheduling algorithms assume that real-time 
tasks are independent with one other [40], whereas others 
can schedule tasks with precedence constraints [1]. Conven-
tional real-time scheduling algorithms like Rate Monotonic 
(RM) algorithm [25], Earliest Deadline First (EDF) [38], and 
Spring scheduling algorithm [33] were successfully applied 
in real-time systems. Most existing real-time scheduling 
algorithms perform poorly for applications with both time 
and security constraints, because they generally ignore se-
curity requirements imposed by real-time applications. 

Security-Aware 
Heuristic Strategy 

(SAREC) 

Real-Time Schedul-
ing Policy 

(EDF, LLF, etc.) 
 

Cluster 

…… …… N1 Nj Nm

Recently increasing attention has been directed toward 
the issue of security in the context of clusters, because effi-
cient and flexible security has become a baseline require-
ment. Apvrille and Pourzandi developed a new security 
policy language named distributed security policy, or DSP, 
for clusters [5]. Wright et al. proposed a security architec-
ture for a network of computers bound together by an over-
lying framework that can be used to provide users a power-
ful virtual heterogeneous machine [42]. The language offers 
a precise way to customize security of clusters. Yurcik et al. 
developed tools for managing cluster security via process 
monitoring [46]. Connelly and Chien proposed an approach 
to protecting tightly-coupled, high-performance component 
communications [11]. Azzedin and Maheswaran applied 
the notion of “trust” into resource management of a large-
scale wide-area system [6]. However, the security tech-
niques mentioned above are not appropriate for real-time 
applications due to the lack of ability to express and handle 
timing constraints. 

Some work was done to incorporate security into a vari-
ety of real-time applications. George and Haritsa proposed 
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SAREC 

concurrency control protocols to support applications with 
real-time and security requirements [15]. Ahmed and 
Vrbsky developed a secure optimistic concurrency control 
protocol that can make trade-offs between security and 
real-time requirements [3]. Son et al. proposed a way of 
trading off quality of security to achieve required real-time 
performance [35]. In [36], a new scheme was developed to 
improve timeliness by allowing partial violations of secu-
rity. Our work is fundamentally different from the above 
approaches because they are focused on concurrency con-
trol protocols whereas our goal is to develop security-aware 
real-time scheduling algorithms. 

Song et al. developed security-driven scheduling algo-
rithms for grids [37]. Very recently we proposed a family of 
dynamic security-aware scheduling algorithms for single 
machines [45] and Grids [43]. We conducted simulations to 
show that the proposed algorithms can consistently im-
prove overall system performance in terms of quality of 
security and system schedulability under a wide range of 
workload conditions. 

3 SECURITY AND REAL-TIME REQUIREMENTS 
3.1 Security-Aware Scheduling Architecture 
We focus in this study on an m-node cluster in which m 
identical nodes are connected via a high-speed network, 
e.g., Myrinet and Fast Ethernet, to process soft real-time 
tasks submitted by r users. Let N = {N1, N2, …, Nm} denote a 
set of identical computational nodes. The architecture of 
security-aware real-time scheduling shown in Fig. 2 en-
compasses the SAREC strategy and a real-time scheduler. 
The SAREC strategy is implemented in form of a security 
level controller and an admission controller. In this study 
we build the real-time scheduler using the EDF policy, 
which can be substituted by other real-time scheduling 
policies. The admission controller determines if an arriving 
task in a schedule queue can be accepted or not, whereas the 
security level controller aims at maximizing the security 
levels of admitted tasks. 

The schedule queue maintained by the admission con-
troller is deployed to accommodate incoming real-time 
tasks. If the deadline and minimal security requirements of 
an incoming task can be guaranteed, the admission control-
ler will place the task in an accepted queue for further proc-

essing. Otherwise, the task will be dropped into a rejected 
queue. The real-time scheduler processes all the accepted 
tasks by its scheduling policy before the tasks are transmit-
ted into a dispatch queue, where the security level controller 
escalates the security level of the first task under two condi-
tions: (1) the security level promotion will not make the 
first task miss its deadline; and (2) increasing security level 
will not make any previously accepted task miss its dead-
line. After being handled by the security level controller, 
the task is dispatched to one of the designated node Ni ∈ N 
referred to as a processing node for execution. Each process-
ing node maintains a local queue. 

3.2 Real-Time Tasks with Security Requirements 
We consider a class of real-time applications, each of which 
is composed of a collection of tasks performed to accom-
plish an overall mission. It is assumed in this study that 
tasks with soft deadlines are independent of one another. 
The security requirements of each task are represented by a 
set of security level ranges specified by a user. Values of 
security levels are normalized to the range from 0 to 1. For 
example, a task specifies security level ranges [0.25, 0.75] 
for the authentication service, [0.3, 0.7] for the integrity ser-
vice, and [0.2, 0.8] for the confidentiality service. The higher 
the security levels, the more security-sensitive the task is. 
The same security level value in different security services 
has different meanings. 

A task Ti submitted by a user is modeled as a set of ra-
tional parameters, e.g., Ti = (ai, ei, fi, di, li, Si), where ai, ei, and 
fi are the arrival, execution, and finish times, di is the dead-
line, and li denotes the amount of data (measured in KB)  to 
be protected. ei can be estimated by code profiling and sta-
tistical prediction [9]. Suppose Ti requires q security ser-
vices represented by a vector of security level ranges, e.g., Si 
= ( 1

iS , iS , …, iS ). The vector characterizes the security re-
quirements of the task. j

iS  is the security level range of the 
jth security service required by T

2 q

i. The security level con-
troller determines the most appropriate point si in space Si, 
e.g., si = ( s , , …, ), where   1

i i i ii
It is imperative for a security-aware scheduler to adopt a 

way of measuring security benefits gained by each admit-
ted task. As such, the security benefit of task T

2s s j Ss ∈q ,j .1 qj ≤≤

i is quantita-
tively modeled as a security level function denoted by SL: Si 
→ ℜ, where ℜ is the set of positive real numbers:  

Accepted 
Queue 

Real-time 
Scheduler 

Rejected Queue 

Admission 
Controller 

Schedule 
Queue 

Dispatch 
Queue 

Security Level 
Controller

Local Queue 

N1 User 1 

User 2 N2 

User  r 
Nm 

                                 Fig. 2. Security-aware real-time scheduling architecture. 
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i. Users specify in their requests the weights to reflect 
relative priorities of the required security services. 

Xi denotes all possible schedules for task Ti, and xi ∈ Xi 

be a scheduling decision of Ti. xi is a feasible schedule if (1) 
deadline di can be guaranteed, i.e., fi ≤di, and (2) the security 
requirements are met, i.e., iii Given a 
real-time task T
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i, the security benefit of Ti, is expected to be 
maximized by the security level controller (See Fig. 2) un-
der the timing constraint: 
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i. 
A security-aware scheduler aims at maximizing the sys-

tem’s quality of security, or security value, defined by the 
sum of the security levels of admitted tasks (See Equation 
1). Thus, the following security value function needs to be 
maximized, subject to certain timing and security con-
straints: 
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where p is the number of submitted tasks, yi is set to 1 is 
task Ti is accepted, and is set to 0 otherwise. Substituting 
Equation 2 into 3 yields the following security value objec-
tive function. Our proposed security-aware scheduling al-
gorithm strives to schedule tasks in a way to maximize 
Equation 4: 
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4 SECURITY OVERHEAD MODEL 
It is critical and fundamental to quantitatively measure 
overheads incurred by an array of security services, be-
cause security is achieved at the expense of performance. 
However, attention paid to models used to measure secu-
rity overheads has been insufficient. Recently Irvine and 
Levin proposed a security overhead framework, which can 
be used for a variety of purposes [20]. Nevertheless, secu-
rity overhead models for security services in the context of 
real-time computing remains an open issue. To enforce se-
curity in real-time applications while making security-
aware scheduling algorithms predictable and practical, we 
propose in this section an effective model that is capable of 
approximately, yet reasonably, measuring security over-
heads experienced by tasks with security requirements. In 
light of the security overhead model, schedulers are en-
abled to incorporate security overheads into the process of 
scheduling tasks. Particularly, the model can be employed 
to compute the earliest start times and the minimal security 
overhead (see Equation 12 and Equation 13). 

 Without loss of generality, in this security overhead 
model we consider three security services widely deployed 
in clusters, namely, confidentiality, integrity, and authenti-
cation. We assume that the clusters are available, i.e., they 
respond tasks submitted by users. Please note that security 
mechanisms are not independent of one another. Rather, it 
is common that multiple security mechanisms are needed 
to form an integrated security solution, which can meet 
complex security demands. For example, authentication 
must be used in concert with message integrity. An array of 
primitive security services can be provided as building 
blocks for users to form integrated security solutions for 
applications. To examine the performance impact of each 
security service on our scheduling policies, we individually 
tested the three security services. This experimental strat-
egy by no means implies that in reality security services 
should be separated. The security overhead model (de-
scribed in section 4.4) consists of the following three items 
(section 4.1~4.3). 

4.1 Confidentiality Overhead 
Encryption mechanisms support confidentiality by enci-
phering real-time applications (executable files) and data 
such that information and resources are not made available 
or disclosed to unauthorized persons or processes. Suppose 
there are eight encryption algorithms (see Table 1) de-
ployed in a cluster. In accordance to the cryptographic al-
gorithms’ performance, each algorithm is assigned a secu-
rity level in the range from 0.08 to 1. For example, we as-
sign security level 1 to the strongest yet slowest encryption 
algorithm IDEA (see Table 1). Security levels for the rest 
algorithms can be computed by Equation 5, where i  is the 
performance of the ith (1 ≤ i ≤ 8) encryption algorithm. 

c

                                 .81,5.13 ≤≤= isl c
i

c
i µ                                 (5) 

Security levels of the algorithms are proportional to the 
algorithms’ performance. Since computation overhead 
caused by encryption mainly depends on the cryptographic 
algorithms used and the size of data to be protected, Fig. 3a 
shows encryption time in seconds as a function of encryp-
tion algorithms and size of secured data measured on a 175 
MHz Dec Alpha600 machine [26]. 

 
TABLE 1. CRYPTOGRAPHIC ALGORITHMS FOR CONFIDENTIALITY  

Cryptographic Algorithms c
isl : SL Security Level  

c
iµ :KB/ms 

SEAL 0.08 168.75 

RC4 0.14 96.43 

Blowfish 0.36 37.5 

Knufu/Khafre 0.40 33.75 

RC5 0.46 29.35 

Rijndael 0.64 21.09 

DES 0.90 15 

IDEA 1.00 13.5 

Let  be the confidentiality security level of task Te
is i, and 

the computation overhead of a selected confidentiality ser-
vice can be calculated using Equation 6, where li is the 
amount of data whose confidentiality must be guaranteed, 
and  is a function used to map a security level to its )( c

i
c sσ
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corresponding encryption method’s performance. 
                   81,)()( ≤≤= islsc c

i
c

i
c
i

c
i σ .                            (6) 

4.2 Integrity Overhead 
Integrity services ensure that no one can modify or tamper 
data and applications while they are executing on clusters 
without being detected. Integrity can be accomplished by 
using a variety of hash functions [8]. Seven commonly used 
hash functions and their performance (evaluated on a 90 
MHz Pentium machine) are shown in Table 2. Based on the 
hash functions’ performance, each function is assigned a 
security level in the range from 0.18 to 1.0. We assign secu-
rity level 1 to the strongest yet slowest hash function Tiger 
(see Table 2), and security levels for the other hash func-
tions can be calculated by Equation 7, where g  is the per-
formance of the ith (1 ≤ i ≤ 7) hash function.  

iµ

                              .71,36.4 ≤≤= isl g
i

g
i µ                         (7) 

TABLE 2. HASH FUNCTIONS FOR INTEGRITY  

Hash Functions g
is :Security Level  )( g

i
g sµ :KB/ms 

MD4 0.18 23.90 

MD5 0.26 17.09 

RIPEMD 0.36 12.00 

RIPEMD-128 0.45 9.73 

SHA-1 0.63 6.88 

RIPEMD-160 0.77 5.69 

Tiger 1.00 4.36 

 
Let  be the integrity security level of task Tg

is i, and the 
overhead of the integrity service can be calculated using 
Equation 8, where li is the amount of data whose integrity 
must be achieved, and i  is a function used to map a 
security level to its corresponding hash function’s perform-
ance. The security overhead model for integrity is depicted 
in Fig. 3b. 

)( gg sσ

                 71,)()( ≤≤= islsc g
i

g
i

g
i

g
i σ .                            (8) 

4.3 Authentication Overhead 
It is of necessity that tasks are submitted from authenti-
cated users and, therefore, authentication services are de-
ployed to authenticate users who intend to access clusters 
[12][14][17].  
Table 3 illustrates three authentication techniques: weak 

authentication using HMAC-MD5; acceptable authentica-
tion using HMAC-SHA-1, fair authentication using CBC-
MAC-AES. Each authentication technique is assigned a se-
curity level  in accordance with the performance. We 
assign security level 1 to the CBC-MAC-AES method. Secu-
rity levels for the other two methods can be obtained using 
Equation 9, where  is the performance of the ith (1 ≤ i ≤ 
3) authentication method. 

a
is

a
iµ

                                             (9) .31,163/ ≤≤= isl a
i

a
i µ

TABLE 3. AUTHENTICATION METHODS 

Authentication Meth-
ods 

a
isl : Security 

Level 

a
iµ : Computation 

Time (ms) 
HMAC-MD5 0.55 90 

HMAC-SHA-1 0.91 148 

CBC-MAC-AES 1 163 

 
Authentication overhead of task T)( a

i
a
i sc i is a function of 

Ti’s security level is . The security overhead model for au-
thentication is shown in Fig. 3c. 

a

4.4 Security Overhead Model 
We can derive security overhead, which is the sum of the 
overheads imposed by all involved security services. Sup-
pose task Ti requires q security services provided in sequen-
tial order. Let  and be the security level and 
overhead of the jth security service, the security overhead c

j
is )( j

i
j

i sc
i 

experienced by Ti, can be computed using Equation 10. In 
particular, the security overhead of Ti with security re-
quirements for the three services above is measured by 
Equation 11. 

                       , where .                 (10) ∑
=

=
q

j

j
i

j
ii scc

1
)( j

i
j

i Ss ∈

                       ∑
∈

=
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gcaj

j
i

j
ii scc ,where .                     (11) j

i
j

i Ss ∈

Noted that iic , ii , and iic  in Equation 11 are 
derived from Equation 6, Equation 8 and Table 3. In the 
subsequent section, Equation 11 will be applied to calcu-
lated the earliest start times and minimal security overhead 
(See Equation 12 and Equation 13). 

)( cc s g sc a s)( g )( a

5 THE SAEDF ALGORITHM 

         (a)                                                                        (b)                                                                            (c)         
                                                                  Fig. 3. Security overhead model. 
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In Section 3 we proposed the SAREC strategy. Now we 
evaluate the effectiveness of SAREC by proposing a novel 
security-aware real-time scheduling algorithm, SAEDF (Se-
curity-Aware EDF), which incorporates the earliest dead-
line first (EDF) scheduling algorithm into the SAREC strat-
egy. 

To support the presentation of the proposed algorithm, 
it is necessary to introduce three properties. The schedule 
of a task is feasible if the task is completed before its dead-
line. Hence, a task has a feasible schedule on a cluster if 
there exists at least one node, where a valid schedule is 
available for the task. More formally, this fact can be ex-
pressed by the following property. 
Property 1. If task Ti has a feasible schedule on a cluster 
with m nodes denoted by a set N = {N1, N2, …, Nm}, the fol-
lowing inequality must be satisfied: 

                       , under the 

condition stated below 
i

min
iiijj dceTNN ≤++∈∃ )(es:

   ,where es
k

min
iikjikjk dceTddNT ≤++>∈∀ )(es:, j(Ti) is 

the earliest start time of task Ti on node N2, ei and diare the 
execution time and deadline of Ti, and is the security 
overhead experienced by T

min
ic

i when its minimal security re-
quirements are met. The condition enforced in Property 1 
indicates that the execution of Ti on Nj results in no viola-
tion of any deadlines of tasks that have been admitted to 
the cluster. 

The earliest start time  can be computed by Equa-
tion 12. 

)(es ij T

        ,          (12) ∑ ∑
≤∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

ikjk ddNT gcal

l
k

l
kkjij scerT

, },,{
)()(es

where rj represents the remaining overall execution time of 
a task currently running on the jth node, and 

∑
∈

+
},,{

)(
gcal

l
k

l
kk sce is the overall execution time (security 

overhead is factored in) of task Tk whose deadline is earlier 
than that of Ti. Thus, the earliest start time of Ti is a sum of 
the remaining overall execution time of the running task 
and the overall execution times of the tasks with earlier 
deadlines.  

The minimal security overhead of Tmin
ic i can be calcu-

lated by the following equation.  

                      { }( )∑
∈

=
},,{

min
gcaj

j
i

j
i

min
i Scc ,                     (13) 

where { }( )j
ii  denotes the overhead of the jth security 

service when the corresponding minimal security require-
ment is satisfied. 

j Sc min

Given an arrival task Ti and a node Nj (Nj ∈ N) of the 
cluster, the task scheduling problem is to generate a feasible 
task schedule, which satisfies the following two properties. 
Property 2. Task Ti meets its deadline. Thus, 

1.for each task Ti submitted to the schedule queue do 
2.   for each node Nj in the cluster do 
3.        Use Equation 12 to compute esj(Ti), the earliest start time of task Ti on node Nj; 
4.        Use Equation 13 to obtain the minimal security overhead of task Tmin

ic i; 
5.        if  and 

i
min
iiij dceT ≤++)(es kjiikjikjk dNceTddNT ≤++>∈∃ )()(es, :

 (Property 1) 

6.  Sort the security service weights in a decreasing order of their values, e.g., 
         , where 321 v

i
v
i

v
i www << ;31},,,{ ≤≤∈ lgcavl  

7. for each security service ,31},,,{ ≤≤∈ lgcavl  do 

8.        { };min ll v
i

v
i

9.  end for 
Ss = /* Initialize the security value of security service vl */ 

10.    for each security service ,31},,,{ ≤≤∈ lgcav  do l
v S<

s

s
;0←j

iSL

jSLNN

11.        while s  do }max{ ll v
ii

12.  Increase security level  ;lv
i

13.  Use Equation 11 to calculate security overhead ci(Nj) of Ti on Nj; 
14a.   if  esj (Ti)+ei+ci> di (Property 2) 
14b.        ∃Tk ∈Nj, dk > di: esj (Tk)+ei+ ci (Nj) > dk  (Property 1) then 
15.        decrease security level  break; ;lv

is
16.         end while 
17.    end for 
18.  jSL ←  /* Obtain the security level of T);( i
19.       else  /* Set the security level to 0 because T

i SL i on Nj using Equation 1 */ 
i  has no feasible schedule on  Nj  */ 

20.   end for 
21.   if ∃ then 0: >∈ ij
22.       yi ← 1;  /* Accept task Ti  */ 
23.      /* Optimize quality of security, see Equation 2 */ 
           Find node Nk for Ti, subject to: { };max

1

j
inj

k
i SLSL

≤≤
=   

24.     dispatch task Ti  to Nk according to the schedule generated above; 
25.   else yi ← 0/* Reject Ti, since no feasible schedule is available */  
26.end for 
 

                                 Fig. 4. The SAEDF algorithm. 
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i
gcaj

j
i

j
iiij dsceT ≤++ ∑

∈ },,{
)()(es , where  is the 

security level of the jth security service.  

j
i

j
i Ss ∈

Property 3. The security level of an accepted task Ti on node 
Nj  is maximized at the task’s arrival time under the as-
sumption that no more tasks arrive on Nj after this arrival 
time. 

The SAEDF algorithm is outlined in Fig. 4. The goal of 
the algorithm is to deliver high quality of security while 
guaranteeing real-time requirements for tasks running on 
clusters. To achieve the goal, SAEDF strives to maximize 
security level (see Equation 1) of each accepted task (see 
Step 23) while maintaining reasonably high guarantee ra-
tios (see Step 5).  

Before optimizing the security level of task Ti on Nj, SA-
EDF attempts to meet the real-time requirement of Ti. This 
can be accomplished by calculating the earliest start time 
(see Equation 12) and the minimal security overhead of Ti 
(see Equation 13) in Steps 3 and 4. Next, Step 5 checks if the 
cluster can meet the timing constraints of Ti and tasks, 
whose deadlines are later than that of Ti. If the timing con-
straints can not be satisfied, Step 19 sets Ti’ security level on 
Nj to 0, indicating that Ti can not be allocated to node Nj. In 
case no node the cluster can produce a feasible schedule for 
Ti, it is rejected by Step 25. 

The security level of Ti on Nj is optimized in the follow-
ing way. The security service weights used in Equations 1 
and 2 reflect the importance of the three security services, 
indicating that it is desirable to give higher priorities to se-
curity services with higher weights (see Step 6). In other 
words, enhancing security levels of more important ser-
vices tends to yield a maximized security level of Ti on Nj. 

In case of a particular security service l , 
Step 12 escalates the security level  while satisfying the 
following two conditions: (1) increasing the security level 
will not lead to the missing deadline of T

},,{ gcav ∈

≤≤

lv
is

i; and (2) the in-
crement of the security level must not result in missing 
deadlines of any previously admitted task. These two con-
ditions are respectively enforced by Steps 5 and 14. Once 
Step 18 have finalized an array of the optimized security 
levels i , Step 23 is able to further maximize 
the security level of T

)1( njSL j

i by identifying a node Nk that pro-
vides the maximal security level. Finally, Ti is dispatched to 
Nk (see Step 24).  

Now we evaluate the time complexity of SAEDF as fol-
lows. 
Theorem 1. The time complexity of SAEDF is O(knm), where m 

is the number of nodes in the cluster, n is the number of tasks 
in the local queue of a node, and k is the number of possible se-
curity level ranks for a particular security service  

.  
lv

)31},,,{( ≤≤∈ lgcavl

Proof. The time complexity of finding the earliest start time 
for task Ti on a node is O(n) (Step 3). To obtain the mini-
mal security overhead of task Tmin

ic i; the time complex-
ity is a constant O(1) ( Step 4). Sorting the security ser-
vice weights in a decreasing order (Step 6) will take a 
constant time O(1) since we only have 3 security ser-
vices. To increase Ti’s three security level to their possi-
ble maximal ranks under the constraints 14a and 14b, the 

worst case time complexity is O(3kn) (Steps 10 ~ 17). To 
find node Nk on which the security level of task Ti is op-
timized (Steps 21 ~ 23), the time complexity is O(m). 
Thus, the time complexity of the SAEDF algorithm is as 
follows: O(m)(O(n) + O(1) + O(1) + O(3kn)) + O(n) = 
O(knm). � 
Since n, m and k can not be very big numbers in practice, 

the time complexity of SAEDF should be low based on the 
expression above. This time complexity indicates that the 
execution time of SAEDF is a small value compared with 
task execution times. Thus, the CPU overhead of executing 
SAEDF is ignored in our experiments. 

In what follows we prove the correctness of the SAEDF 
algorithm. 
Theorem 2. The SAEDF algorithm satisfies Properties 2 and 3. 

Proof. (1) First, we prove that SAEDF satisfies Property 2. A 
task Ti is accepted by a cluster with m nodes denoted by N 
= {N1, N2, …, Nm} ⇒  There is at least one node Nj (Nj ∈ N) 

on which Ti has a feasible schedule The two inequali-

ties in Property1 must hold task T

1Property

⇒
1inequality

⇒ i can be finished 
before its deadline  The deadline of task Tid ⇒ i must be 
met. Thus, each accepted task meets its deadline. 
(2) Second, we prove that SAEDF satisfies Property 3. We 
can provide a proof by contradiction. There are two cases 
after task Ti is accepted: 

(a) Task Ti is the last element in the local queue of node 
Nj based on the EDF order. In this case, there is no other 
task in the local queue of node Nj which is behind Ti. The 
only constraint for increasing the security level of Ti is its 
deadline di, which is enforced by Step 14a in Fig. 4. The se-
curity level of task Ti will eventually reach a critical value 

(Steps 10 ~ 18 in Fig. 4), meaning that any further in-

crease in security level of T

1jc
iSL

i will violate its deadline . 
Now suppose that there is a higher security level  
( > ) for task T

id
1jb

iSL
1jb

iSL 1jc
iSL i which is an accepted task on node 

Nj. However, this  definitely makes T1jb
iSL i violate its dead-

line  based on the conclusion drawn above because of 
the equality > . makes T

id
1jb

iSL 1jc
iSL 1jb

iSL i miss its deadline di 
 ⇒ iiiij dceT >++)(es ⇒  Ti cannot be accepted by node 

Nj ⇒  This statement contradicts our assumption that task 
Ti is an accepted task on Nj. Thus, must be the maxi-
mal security level of T

1jc
iSL

i under this situation. 
(b) Task Ti is not the last element in the local queue of 

node Nj based on the EDF order. Thus, there exists at least 
one previously accepted task to be executed after Ti is fin-
ished. The timing constraint is enforced by Step 14a. The 
security level of task Ti will also eventually reach a critical 
value (Steps 10 ~ 18 in Fig. 4), which means that fur-
ther increase in the security level of T

2jc
iSL

i will either violate Ti’s 
deadline or the deadlines of earlier accepted tasks. Now 
suppose is not T2jc

iSL i’s maximal security level under this 
circumstance and, thus, there is a larger security level 

 ( > ) for task T2jb
iSL 2jb

iSL 2jc
iSL i, an accepted task on node 

Nj under this situation. However, will violate either 2jb
iSL
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deadline or the deadlines of earlier accepted tasks be-
cause of the inequality > .  

id
2jb

iSL 2jc
iSL

Case one:  violates T2jb
iSL i’s deadline ⇒  

 Tiiiij dceT >++)(es ⇒ i cannot be accepted on node Nj , 

which contradicts our assumption that task Ti is an ac-
cepted task on node Nj. Thus,  must be the maximal 
security level of T

2jc
iSL

i under this situation. 
Case two:  violates the deadlines of earlier ac-

cepted tasks. Thus, ∃T

2jb
iSL

k∈Nj dk > di: esj (Tk)+ek+ ( Nmin
kc j) > dk. 

The implication is that the second inequality in Property 1 
does not hold. Therefore, task Ti has no feasible schedule on 
node Nj, meaning that Ti is not an accepted task on node Nj. 
This statement contradicts our assumption that Ti is an ac-
cepted task on node Nj. Consequently,  must be the 

maximal security level of T

2jc
iSL

i under this situation. � 

6 EXPERIMENTAL RESULTS 
We evaluate in this section the performance of the SAEDF 
algorithm using extensive simulation experiments based on 
real world traces consisting of 29695 tasks. A competitive 
advantage of conducting simulation experiments is that 
performance evaluation on a large-scale cluster can be ac-
complished without additional hardware cost. To reveal 
performance improvements gained by our proposed algo-
rithm,  
we  
compare SAEDF with three well-known scheduling algo-
rithms, namely, EDF (Earliest Deadline First) [38], LLF 
(Least Laxity First) [24], and FCFS (First Come First Serve). 
To make the comparisons fair, we slightly modify the three 
algorithms in a way that they arbitrarily pick a security 
level within the security level range of each service re-
quired by a task. Although these algorithms are intended to 
schedule real-time tasks with security requirements, they 
make no effort to optimize quality of security. The baseline 
algorithms are briefly described below. 
1. EDF:  The task with the earliest deadline is always exe-

cuted first.   
2. LLF: The task with the minimal laxity (slack time) is al-

ways executed first.  
3. FCFS: Tasks will be executed in the non-decreasing or-

der of their arrival times.  
The first goal of the performance evaluation is to exam-

ine the performance improvements of SAEDF over the 
three competitive algorithms. Second, we will investigate 
the performance impacts of the security overhead model 
presented in Section 4 on system performance in terms of 
security value and guarantee ratio. Especially, we pay at-
tention to performance impacts of security service weights 
on the four scheduling algorithms. Third, we study the per-
formance sensitivity of the SAEDF algorithm to CPU ca-
pacities of the nodes in a cluster. Fourth, we evaluate the 
scalability of the proposed SAEDF algorithm. Fifth, we as-
sess the performance impact of security-required data size. 
Sixth, we compare SALLF with LLF to demonstrate that 

SAREC is a general strategy, which can be incorporated 
into not only EDF but also other existing scheduling algo-
rithms like LLF. Last but not least, we validate the results 
from the synthetic real-time tasks by running a real world 
real-time application with SAEDF. Some preliminary re-
sults in Sections 6.2-6.3 were presented in [44]. 

6.1 Simulator and Simulation Parameters 
Before presenting empirical results in detail, we present 

the simulation model as follows. Table 4 summarizes the 
key configuration parameters of the simulated clusters used 
in our experiments. The parameters of nodes in clusters are 
chosen to resemble real-world workstations like Sun 
SPARC-20 and Sun Ultra 10. 

We modified the traces used in [18][48] by adding ran-
domly generated deadlines for all tasks in the traces, which 
were collected from one workstation on six different time 
intervals. The assignment of deadlines is controlled by the 
deadline base (Tbase) denoted as β, which sets an upper 
bound on tasks’ slack times. We use Equation 14 to gener-
ate Ti’s deadline di. 

                                                 (14) ,β+++= max
iiii cead

where ai and ei are the arrival and execution times obtained 
from the real-world traces. is the maximal security 
overhead (measured in ms), which is computed by Equa-
tion 15.  

max
ic

                        { }( )∑
∈

=
},,{

max max
gcaj

j
i

j
ii Scc ,                 (15) 

where { }( )j
i

j
i Sc max  represents the overhead of the jth secu-

rity service for Ti when the corresponding maximal re-
quirement is fulfilled.  

TABLE 4. CHARACTERISTICS OF SYSTEM PARAMETERS 

     Parameter Value (Fixed)-(Varied) 

CPU speed 
(100 million instruc-
tions/second or MIPS) – 
(100, 200,…800) 

β (Deadline Base, or 
Tbase)   

(1000 ms) – (1000, 2000, …, 
100000) ms 

Number of nodes (64) – (8, 16, 32, 64, 96, 128, 
256) 

Size of data to be secured 
(MB) 
 

([0.05, 40], [0.5, 20000], [1, 
20000]) – ({ [0.1, 400], [1, 
20000], [2, 20000]}, { [0.2, 
400], [2, 20000], [4, 20000]}) 
(mean, deviation) 

Required security services 
(Mixed) – (Confidentiality 
only, Integrity only, Authenti-
cation only) 

Weight of authentication (0.2) – (0.1, 0.3) 

Weight of confidentiality  (0.5) – (0.1, 0.2, 0.3, …, 0.8) 

Weight of integrity (0.3) – (0.1, 0.2, 0.3, …, 0.8) 
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                 (a)                                                                      (b)                                                                    (c)             
                                                  Fig. 5. Simulation performance of four scheduling algorithms. 

Although CPU demands of tasks submitted to the clus-
ters are taken directly from the existing traces, deadlines 
are synthetically generated in accordance with the above 
model. The simplification weakens correlations between 
real-time requirements and other workload characteristics. 
However, in the experiments we can examine impacts of 
deadlines on system performance by controlling the dead-
lines as fundamental simulation parameters (see Section 
6.2). Similarly, each task was synthetically assigned a block 
of data that needs to be protected from being disclosed or 
tampered. The impact of security-required data size is ex-
amined in Section 6.7. The performance metrics by which 
we evaluate system performance include: security value (SV, 
see Equation 4), guarantee ratio (GR, measured as a fraction 
of total submitted tasks that are found to be schedulable), 
and overall system performance (OSP, defined as a product of 
normalized security value and guarantee ratio, see Equa-
tion 16). 

                                                             (16) SVGROSP *=

6.2 Overall Performance Comparisons 
The goal of this experiment is two fold: (1) to compare the pro-
posed SAEDF algorithm against the three alternatives, and (2) to 
understand the sensitivity of SAEDF to parameter β, or deadline 
base (Tbase). To stress the evaluation, we assume that each task 
arrived in the cluster requires all of the three security services. 
Without loss of generality, it is assumed that no page fault occurs 
during the execution of each real-time task. This is because in 
case where a task experiences page faults, time in handling the 
page faults will be factored in its execution time. 

Fig. 5 shows the simulation results for these four algo-
rithms on a cluster with 64 nodes. We observe from Fig. 5a 
that SAEDF and EDF exhibit similar performance in terms 

of guarantee ratio, whereas SAEDF noticeably outperforms 
LLF and FCFS algorithms. Although LLF is a real-time 
scheduling algorithm, it does not favour short tasks as EDF 
does. Therefore, many subsequent short tasks are likely to 
miss their deadlines due to the acceptance of long tasks. 
FCFS has the lowest guarantee ratios, because FCFS is a 
non-real-time scheduling policy. It is observed that SAEDF 
and EDF maintain high guarantee ratios. We attribute the 
guarantee ratio improvement of SAEDF over LLF and FCFS 
to the fact that SAEDF judiciously boosts the security levels 
of accepted tasks under the condition that timing con-
straints are met. Fig. 5b plots security values of the four 
algorithms when the deadline base is increased from 1 to 
100 seconds.  Fig. 5b reveals that SAEDF consistently per-
forms better, with respect to quality of security, than all the 
rest approaches. Specifically, SAEDF outperforms EDF, 
LLF, and FCFS in security value by averages of 43.6%, 
248.9%, and 266.7%, respectively. Interestingly, when the 
deadlines become loose, the performance improvements of 
SAEDF over the three competitors are more pronounced. 
This is because the SAEDF approach is capable of employ-
ing slack times to improve the quality of security of ac-
cepted tasks. Therefore, the more slack time available, the 
higher security value can be achieved. The results clearly 
indicate that clusters can gain more performance benefits 
from the SAEDF algorithm under workload conditions 
where real-time tasks have loose deadlines. 

Fig. 5c plots the overall system performance improve-
ments achieved by SAEDF. An observation made from Fig. 
5c is that SAEDF significantly outperforms all the other 
three alternatives. This can be explained by the fact that, 
although the guarantee ratios of SAEDF and EDF are simi-
lar, SAEDF considerably improves security values over the 

                 (a)                                                                      (b)                                                                    (c)             
                                         Fig. 6. Performance impact of the authentication security service. 
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other algorithms, while achieving higher guarantee ratio 
than LLF and FCFS. The result suggests that if quality of 
security is the sole objective in scheduling, SAEDF is more 
suitable for clusters than the other algorithms. In contrast, if 
schedulability is the only performance objective, SAEDF 
can maintain the same guarantee ratios as those of EDF, 
which is inferior to SAEDF in terms of security. 

6.3 Impact of the Security Overhead Model 
This subsection is focused on performance impact of the 
security overhead model presented in Section 4. Specifi-
cally, we evaluate the performance of the four algorithms in 
the cases where each task poses requirement on one of the 
three security services. The goal is to examine the perform-
ance impact of each security service on the scheduling poli-
cies. These experimental settings do not necessarily imply 
that security services should be separated. On the contrary, 
multiple security mechanisms in most cases are aggregated 
to form an integrated security solution. 

Fig. 6- Fig. 8 show the performance impacts of the au-
thentication, confidentiality, and integrity services, respec-
tively. We observe from the figures that SAEDF delivers 
better overall system performance than the other competi-
tors under a wide range of workload conditions. This result 
is consistent with that observed from the previous experi-
ments (see Fig. 5), where each task requires multiple secu-
rity services. Interestingly, the security improvements are 
more pronounced when the confidentiality or integrity ser-
vice is required than when the authentication service is 
needed. The reason is three-fold. First, there simply exist 
three security levels for the authentication service in the 
security overhead model, and the granularity of security 
levels for authentication is coarser than those of the confi-
dentiality and integrity services. Second, the authentication 
overhead is less than that of the confidentiality and integ-
rity services in most cases. Thus, it is relatively easy to 
achieve a higher security level in the authentication service 
for an accepted task. Third, the confidentiality and integrity 

                 (a)                                                                      (b)                                                                    (c)             
                                                  Fig. 7. Performance impact of the confidentiality security service 

                 (a)                                                                      (b)                                                                (c)             
                                                  Fig. 8. Performance impact of the integrity security service 

                 (a)                                                                      (b)                                                                    (c)             
                              Fig. 9. Performance impact of security service weights, authentication weight = 0.1. 
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                 (a)                                                                      (b)                                                                    (c)             
                                  Fig. 10. Performance impact of security service weights, authentication weight = 0.3. 

overheads rely on the amount of data to be protected, 
whereas the authentication overhead is independent of the 
security-required data size. 

6.4 Impact of Security Service Weights 
Recall that the security level model proposed in Section 3.2 
is comprised of multiple security levels for a diversity of 
security services like confidentiality, integrity, and authen-
tication. Each service required by a task is assigned a 
weight, which reflects the priority of the service. To study 
the impact of security service weights on performance of 
SAEDF, we set the authentication weight to a constant 
value, and varied the confidentiality and integrity weights. 
Specifically, Fig. 9 plots the performances of the four algo-
rithms when the confidentiality weight is increased from 
0.1 to 0.8, whereas Fig. 10 depicts the performances when 
the confidentiality weight varies from 0.1 to 0.6.  

The first observation drawn from Fig. 9 and Fig. 10 is 
that for all the algorithms, the performance in guarantee 

ratio is independent of the security service weights. The 
implication of this result is that the security service weights 
are irrelevant to overall execution times of tasks. The sec-
ond intriguing observation made from Fig. 9 and Fig. 10 is 
that the confidentiality and integrity weights slightly affect 
the security performance of SAEDF, while making consid-
erable impact on the other three algorithms in terms of se-
curity value. This is because at the same security level, con-
fidentiality service overhead is relatively smaller than in-
tegrity service overhead. Consequently, the overall security 
values of accepted tasks tend to increase when the confi-
dentiality weight goes up. These results indicate that SA-
EDF can marginally improve security performance for 
workloads where confidentiality service is more important 
than the other concerns. 

6.5 Sensitivities to CPU Capacity 
To examine performance sensitivities of the four algorithms 
to CPU capacity, in this set of experiments we varied the 

                 (a)                                                                      (b)                                                                    (c)             
                                                   Fig. 11. Performance sensitivities to CPU capacity. 

                 (a)                                                                      (b)                                                                    (c)             
                                                            Fig. 12. Scalabilities of the four scheduling algorithms. 
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CPU capacity from 100 to 800 MIPS with increments of 100 
MIPS.  

The results reported in Fig. 11 reveal that SAEDF outper-
forms the other three alternatives in terms of security value 
and overall system performance. With respect to guarantee 
ratio, SAEDF exhibits a similar performance to EDF and 
LLF. The guarantee ratio of FCFS even decreases when 
CPU capacity enlarges. This is mainly because tasks with 
long execution times can be admitted when the CPU capac-
ity is high and, therefore, there is a strong likelihood for 
more small tasks to miss their deadlines. 

6.6 Scalability 
This experiment is intended to investigate the scalability of 
the SAEDF algorithm. We scale the number of nodes in a 
cluster from 8 to 256. Fig. 12 plots the performances as func-
tions of the number of nodes in the cluster. It is observed 
from Fig. 12 that the amount of improvement achieved by 
SAEDF becomes more prominent with the increasing value 
of the node number. This result shows that the SAEDF ap-
proach exhibits good scalability. 

Fig. 13 shows the improvements of SAEDF in overall 
system performance over the other three policies. SAEDF 
outperforms the three baseline algorithms in terms of over-
all system performance by averages of 70.4%, 201.2%, and 
625.6%, respectively. 

6.7 Security-Required Data Size 
In this set of experiments we evaluated the performance 
impact of security-required data size. We tested three con-
figurations of data size (see Table 4). The laxity is chosen to 
be 1000 millisecond. Without loss of generality, we assume 
that the distribution of the data size is a normal distribution. 
The mean size of the security-required data varies from 50 
KB to 4 MB and the standard deviation changes from 40 to 
20000. For example, in config1, the mean size is 50KB for 
short tasks, 500KB for middle tasks and 1MB for long tasks. 
The standard deviation is set to 40 for short tasks and set to 
20000 for medium and long tasks. 

There are several important observations that can be 
drawn from Fig. 14. First, when the security-required data 
size increases, the guarantee ratio of SAEDF almost remains 
unchanged, while SAEDF’s security value drops. This phe-
nomenon reveals that SAEDF is a security-aware algorithm, 
which judiciously lowers accepted tasks’ security levels 
under heavily loaded conditions in order to accommodate 
more tasks. Unlike SAEDF, the guarantee ratio of EDF no-
ticeably decreases with the increasing size of security-
required data. Second, Fig. 14 shows that the guarantee 
ratios of LLF and FCFS increase with the growing size of 
security-required data. This is because large tasks are more 
likely to be dropped due to their high security overhead 
caused by enlarged security-required data size. As a result, 
a vast majority of the small tasks submitted to the cluster 
can be finished before their deadlines.   Fig. 13. Overall system performance improvement. 

                                                Fig. 14. Performance impact of size of data to be secured. 

                                                Fig. 15. Performance improvement of SALLF over LLF. 
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6.8 Integrate SAREC into LLF 
To demonstrate that SAREC is a general security-aware 
strategy that can be incorporated into other existing real-
time scheduling algorithms, we integrate SAREC with the 
least-laxity-first algorithm (LLF) [24] to construct a new 
algorithm called SALLF (Security-Aware LLF). Now we 
evaluate the performance of SALLF in this subsection. 

   One important observation from Fig. 15 is that SALLF 
outperforms LLF in all cases. Specifically, SALLF improves 
guarantee ratio over LLF by an average of 6.1% and outper-
forms LLF in terms of security value by an average of 
55.8%. The rationale behind these results is that SALLF can 
maximize guarantee ratios by adaptively adjusting tasks’ 
security levels, while LLF has no capability of optimizing 
security levels. 

6.9 A Real Application – Aircraft Flight Control 
To validate the results from the trace-driven simulations, 
we applied our SAEDF algorithm to a real world system – 
an automated flight control system [2]. Table 5 shows the 
set of parameters present for all real-time tasks, including 
execution time, period, and three configurations of size of 
data to be secured. 

TABLE 5. TASK MODEL PARAMETERS FOR AUTOMATED FLIGHT 
CONTROL SYSTEM 

Task 
Exec  
Time 
(ms) 

Period  
(sec) 

Config1  
(KB) 

Config2  
(KB) 

Config3 
 (KB) 

Guidance 100 10 300 400 500 

 100 5 300 400 500 

 100 1 300 400 500 

Controller 80 5 200 300 500 

 60 1 100 100 500 

 80 1 100 100 500 

 60 0.2 50 50 200 

 80 0.2 50 50 200 
Slow  
Navigation 100 10 300 400 500 

 100 5 300 400 500 

 100 1 300 400 500 
Fast  
Navigation 60 5 200 300 200 

 60 1 100 100 200 

 60 0.2 50 50 200 
Missile  
Control 500 10 1000 2000 1000 

 500 1 500 500 1000 

 
The automated flight control system was utilized to fly a 

simulated model of an F-16 fighter aircraft. Details of the 
automated flight control system can be found in [23][24]. In 
this system all the flight control tasks - including Guidance, 
Slow Navigation, Fast Navigation, Controller and Missile 
Control - need to be executed in real-time to meet their 
deadlines. The functions of these five tasks are summarized 
as follows [2]: The “Guidance” task sets the reference trajec-
tory of the aircraft in terms of altitude and heading; the 
“Controller” is responsible for executing the closed-loop 

control functions that deal with actuator commands; the 
two “Navigation” tasks read sensor values distinguished 
by the required update frequency; and finally, the “Missile 
Control” task is responsible for reading radar and firing 
missiles. These separate tasks are mandatory to control the 
aircraft during flight, and they are all cyclic tasks with mul-
tiple versions. 

It is assumed that (1) all tasks have known bounded exe-
cution times, (2) task arrivals are independent, (3) each 
task’s deadline is equal to its period, and (4) tasks are non-
preemptive in nature [2]. Table 5 shows that each of the five 
tasks has multiple versions distinguished by their period or 
execution time. 

Since the automated flight control system is applied in a 
military battle field, where security requirements such as 
data confidentiality are mandatory, we synthetically choose 
security-required data sizes during the execution of each 
version of the five tasks. Each version of a task requires 
confidentiality, integrity, and authentication services. The 
security overhead for each task instance, which is com-
puted using Equation 11, largely depends on the security-
required data size. To evaluate the performance of our SA-
EDF algorithm under various scenarios, we constructed 
three configurations of the security-required data size for 
each version of the tasks (See columns 4, 5 and 6 in Table 5). 
In config1, we choose a relatively low security level for each 
task instance. Config2 represents a medium security level, 
whereas config3 reflects a relatively high security level to 
each task version. The experimental parameters for the 
automated light control system are summarized in Table 6. 

TABLE 6. EXPERIMENTAL PARAMETERS FOR AUTOMATED FLIGHT 
CONTROL SYSTEM 

             Parameter Value 

CPU speed 1000 MIPS 

Number of nodes 128 

Required security services Confidentiality, Integrity 
and Authentication 

Weight of authentication 0.2 

Weight of confidentiality  0.5 

Weight of integrity 0.3 
Number of F-16 aircraft 64, 128 
Sample period 600 Second 

 
In this experiment the arrival times, deadlines, and exe-

cution times of task instances are based on the real applica-
tion. The arrival time of a task instance Ti can be derived 
from Ti’s period, and the deadline of Ti is equal to Ti’s pe-
riod. All five tasks start to submit their task instances to the 
system at the same time, e.g., start time Ts. Each task ran-
domly selects one of its versions and submits it to the sys-
tem. The rationale behind the random task version submis-
sion is that available system resources are dynamic and 
unpredictable. For example, when some nodes in the sys-
tem fail at an unknown time, an inferior version of a task 
will be executed. We sampled task instances that were 
submitted to the system within 600 seconds since Ts, be-
cause the system behaviour was already manifest after this 
period of time. In this experiment, we sampled 1293 task 
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       (a)                                                                    (b)                                                                     (c)                       
                                                  Fig. 16. 128 nodes control 128 F-16 aircrafts. 

       (a)                                                                    (b)                                                                     (c)                      
                                                  Fig. 17. 128 nodes control 64 F-16 aircrafts. 

instances.  
We simulated a 128-node system where each node has a 

1000 MIPS CPU. We considered two node-to-aircraft con-
figurations: (1) 128 nodes were used to control 128 aircrafts, 
and (2) 128 nodes controlled 64 aircrafts. In the first ex-
perimental setting, each node was responsible for control-
ling one aircraft; and in the second setting two nodes con-
trolled one aircraft in a cooperative manner. The goal of the 
first case is to test the performance under a heavily loaded 
condition, whereas the second case is focused on the system 
performance under relatively light workloads.  

The experimental results are shown in Fig. 16 and Fig. 
17. Three observations are evident from Fig. 16. First, when 
the size of security-required data increases, guarantee ratio, 
security, and overall performance of the four algorithms 
noticeably decrease. This is because the security overhead 
rises with the increasing security-required data size. Con-
sequently, the number of feasible tasks reduces, and the 
quality of security suffers. 

Second, when 128 nodes are utilized to control 128 air-
crafts, the guarantee ratio of SAEDF on average is only 
79.84%, meaning that the system is slightly overloaded. In 
such a workload situation SAEDF consistently outperforms 
the other three algorithms in quality of security (see Fig. 
16b) while maintaining the same guarantee ratio perform-
ance as EDF (see Fig. 16a). The results demonstratively 
show that SAEDF can maintain the same level of schedula-
bility as EDF while significantly improving the security (by 
an average of 50.13%). More importantly, SAEDF signifi-
cantly outperformed EDF, LLF and FCFS in overall system 
performance, which is the most crucial metric for security-
critical real-time systems, by averages of 50.11%, 50.97% 
and 49.61%, respectively. The implication of this finding is 

that when system workloads are high, SAEDF can signifi-
cantly improve overall system performance without adding 
extra hardware. 

In the case where 128 nodes control 64 aircrafts, the av-
erage guarantee ratio of SAEDF is 93.93% (See Fig. 17). Un-
der such a light workload condition, the guarantee ratios of 
SAEDF and the other three alternatives are almost identical. 
We attribute this result to the fact that when an aircraft is 
controlled by two computers, almost all the tasks dedicated 
to the aircraft can be accomplished before their deadlines 
because of the sufficient computational resources. In addi-
tion, the results presented in Fig. 17 indicate that although 
EDF and LLF can achieve 94.12% and 93.26% in guarantee 
ratio, their average security values are as low as 0.62. These 
results suggest that EDF and LLF are unsuitable for security 
sensitive applications. By using SAEDF as a security-aware 
scheduling heuristic, perfor-mance in security value is im-
proved by an average of 50% over EDF and LLF. 

7 SUMMARY AND FUTURE WORK 
We presented in this paper a novel security-aware heuristic 
strategy (SAREC) for real-time applications on clusters. 
This strategy paves the way to the design of security-aware 
real-time scheduling algorithms. To make such security-
aware scheduling algorithms practical, we proposed a secu-
rity overhead model to quantitatively measure overheads 
of security services such as confidentiality, integrity, and 
authentication required by real-time applications. In doing 
so, security overheads can be taken into consideration in 
the process of scheduling real-time tasks. The effectiveness 
of the SAREC strategy was evaluated by implementing a 
novel security-aware real-time scheduling algorithm (SA-
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EDF), which incorporates the earliest deadline first (EDF) 
scheduling algorithm into the SAREC strategy. SAREC is a 
general strategy in the sense that it can be applied to other 
existing real-time scheduling policies like LLF (see Section 
6.8). To quantitatively validate the performance of the SA-
EDF algorithm, we conducted extensive trace-driven simu-
lations and introduced two new performance metrics, 
namely, security value (see Equation 4) and overall system 
performance (see Equation 16). Security value is a collective 
value of each accepted application’s security level and it 
can be used to measure the quality of security experienced 
by all schedulable real-time tasks. Overall system perform-
ance, the most important performance metric for security-
critical real-time systems, is a comprehensive metric de-
fined as a product of security value and guarantee ratio. 
Experimental results based on real-world traces and a real 
application show that SAEDF achieves overall system per-
formance over three existing scheduling algorithms (EDF, 
LLF, and FCFS) by average of 32.9%, 575.7%, and 713.6%, 
respectively. In addition, the empirical results reveal that 
SAEDF significantly improves quality of security for real-
time tasks while maintaining high guarantee ratios under a 
wide range of workload characteristics. 
Future studies in this research can be performed in the fol-
lowing directions. 
1. Extend our security overhead models to multi-

dimensional computing resources. For now, we simply 
consider CPU time, which is only one computing re-
source consumed by the security services. Memory, net-
work bandwidth and storage capacities should be con-
sidered in the future. 

2. Accommodate more security services into our security 
overhead model. Besides the three security services dis-
cussed, we plan to include authorization and auditing 
services into consideration. 

3. Extend SAREC strategy to heterogeneous distributed 
systems. In a heterogeneous computing system, different 
nodes have different powers and resources. Thus, the 
same security requirement for a particular security ser-
vice will result in different amount of overheads. A 
node-dependable security overhead calculating model 
should be developed. 
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