

A Dynamic and Reliability-Driven Scheduling Algorithm for Parallel
Real-time Jobs on Heterogeneous Clusters

Xiao Qin

Department of Computer Science,
New Mexico Institute of Mining and Technology,

801 Leroy Place, Socorro, New Mexico 87801-4796
xqin@cs.nmt.edu

Hong Jiang

Department of Computer Science and Engineering
University of Nebraska-Lincoln

Lincoln, NE 68588-0115
jiang@cse.unl.edu

Proposed running head:

DYNAMIC RELIABILITY DRIVEN REAL-TIME SCHEDULING ON CLUSTERS

Address for Manuscript correspondence:

Xiao Qin
Department of Computer Science,
New Mexico Institute of Mining and Technology,
801 Leroy Place, Socorro, New Mexico 87801-4796
E-mail: xqin@cs.nmt.edu

1

Abstract

In this paper, a heuristic dynamic scheduling scheme for parallel real-time jobs executing on a

heterogeneous cluster is presented. In our system model, parallel real-time jobs, which are modeled

by directed acyclic graphs, arrive at a heterogeneous cluster following a Poisson process. A job is said

to be feasible if all its tasks meet their respective deadlines. The scheduling algorithm proposed in this

paper takes reliability measures into account, thereby enhancing the reliability of heterogeneous

clusters without any additional hardware cost. To make scheduling results more realistic and precise,

we incorporate scheduling and dispatching times into the proposed scheduling approach. An

admission control mechanism is in place so that parallel real-time jobs whose deadlines cannot be

guaranteed are rejected by the system. For experimental performance study, we have considered a

real world application as well as synthetic workloads. Simulation results show that compared with

existing scheduling algorithms in the literature, our scheduling algorithm reduces reliability cost by

up to 71.4% (with an average of 63.7%) while improving schedulability over a spectrum of workload

and system parameters. Furthermore, results suggest that shortening scheduling times leads to a

higher guarantee ratio. Hence, if parallel scheduling algorithms are applied to shorten scheduling

times, the performance of heterogeneous clusters will be further enhanced.

Keywords: Dynamic scheduling, real-time, parallel processing, heterogeneous clusters, cluster

computing, reliability cost, performance evaluation.

1. Introduction
Heterogeneous clusters have become widely used for scientific and commercial applications. These

systems require a mixture of general-purpose machines, programmable digital machines, and

application specific integrated circuits [33]. A heterogeneous cluster involves multiple heterogeneous

modules that interact with one another to solve a problem [34][41]. In a heterogeneous cluster,

applications comprise multiple subtasks that have diverse execution requirements. The subtasks must

be assigned to machines and ordered for execution in such a way that the overall application

execution time is minimized [18].

Recently, heterogeneous clusters have also been employed in real-time applications [43], in which

the systems depend not only on results of computation, but also on time instants at which these results

become available. The consequences of missing deadlines of hard real-time systems may be

catastrophic, whereas such consequences for soft real-time systems are relatively less damaging.

2

Examples of hard real-time applications include aircraft control, radar for tracking missiles, and

medical electronics. On-line transaction processing systems are examples of soft real-time

applications. In real-time applications, reliability is one of the most important issues. Due to the

critical nature of jobs executed in many real-time systems, high reliability becomes an inherent

requirement of such systems, and this is especially true for hard real-time applications.

Growing evidence shows that scheduling is a key factor in obtaining high reliability and

performance in heterogeneous clusters supporting real-time applications. The objective of real-time

scheduling is to map tasks onto machines and order their execution so that task precedence

requirements are satisfied and a minimum schedule length, when attainable, is given. Besides

achieving this conventional objective, the dynamic scheduling strategy proposed in this paper

provides high reliability for non-preemptive, aperiodic, real-time jobs without any additional

hardware cost. In particular, we have developed a framework of real-time scheduling by which

parallel jobs are scheduled dynamically, as they arrive at a heterogeneous cluster. In this framework,

a designated machine, called scheduler, is responsible for dynamically scheduling real-time jobs as

they arrive, and dispatching them to other machines, called processing elements, to execute. The

proposed algorithm takes into account dispatching and scheduling times in addition to reliability

costs, and these factors have been neglected by most scheduling schemes that deal with real-time

heterogeneous clusters. This approach is shown by our simulation studies to not only make real-time

jobs more predictable and reliable, but also make the scheduling more realistic.

The paper is organized as follows. In Section 2, work reported in the literature that is the most

relevant to our work is briefly described. The system and reliability models are presented in Section

3. Section 4 proposes a novel dynamic scheduling algorithm. Performance evaluation is presented in

Section 5. Finally, Section 6 concludes the paper by summarizing the main contributions of this paper

and commenting on future directions of this work.

2. Related Work
Many scheduling algorithms have been proposed in the literature to support real-time systems.

Real-time scheduling algorithms are classified into two categories: static (off-line) [1][15][21][24]

[27][29][32] and dynamic (on-line) [13][17][19][22][31][36]. Very recently, Palis addressed task-

scheduling problems in the context of reservation-based real-time systems that provide quality of

service guarantees [22]. Real-time tasks in Palis’s scheduling framework are preemptive [22],

3

whereas it is assumed in our scheduling model that real-time tasks are non-preemptive. Moreover, the

algorithm proposed by Palis [22] as well as many other algorithms presented in [21][36] were

designed for independent real-time tasks. In contrast, our proposed algorithm, like those described in

[15][24][27][29], can schedule tasks with precedence constraints, which are represented by directed

acyclic graphs (DAG). We recently extended non-real-time DAGs into real-time DAGs to study real-

time scheduling of tasks with precedence constraints [24]. However, these algorithms, while

considering precedence constraints, belong to the static category, limiting their applications to offline

scheduling only. Furthermore, most of these real-time scheduling algorithms are designed for

homogeneous systems, making them unsuitable for heterogeneous systems.

In the literature, parallel jobs have often been represented by DAGs [4][7][15][29][41]. Wu et al.

proposed a runtime parallel incremental DAG scheduling approach [41]. Cosnard et al. developed a

scheduling algorithm for a parameterized DAG, which first derives symbolic linear clusters and then

assigns task clusters to machines [7]. As for distributed computing, a typical model is the fork-join

paradigm [30], where main program thread runs on one processor and spawns a number of tasks from

time-to-time. Sahni and Vairaktarakis addressed the scheduling problem in the fork-join paradigm,

and developed efficient heuristics to obtain minimum finish time schedules for single-master

processor and multiple-master systems [30]. The scheduling algorithms in these three studies,

however, were also designed for homogeneous systems.

The studies in heterogeneous clusters reveal a number of challenges, which include load balancing

[3][42][25], resource management [10] and scheduling [5][6][38]. The issue of scheduling on

heterogeneous systems has been addressed in many papers [3][6][8][11][28][29][35][37]. It is

suggested that minimizing a task's completion time leads to a minimal start time of the task [18][37].

Topcuoglu et al. studied two efficient and low-complexity heuristics for DAGs: the heterogeneous

Earliest-Finish-Time (HEFT) algorithm and the Critical-Path-on-a-Machine (CPOP) algorithm [37].

Iverson and Özgüner proposed a matching and scheduling framework where multiple applications

compete for computational resources on networks [11]. Maheswaran and Siegel investigated a

dynamic matching and scheduling algorithm for heterogeneous system [18], whereas Beaumont

proposed a static scheduling algorithm that based on a realistic model for heterogeneous networks of

workstations. To consider reliability of different resources in a system while making scheduling

decisions, Doğan and Özgüner introduced two cost functions that were incorporated into a matching

and scheduling algorithm for tasks with precedence constraints [8]. As computational Grids have

4

emerged as new platforms for high-performance computing, grids have become a new frontier for

research in the area of scheduling and resource management. Arora, Das, and Biswas proposed a new

scheduling algorithm for a generalized heterogeneous Grid environment [3]. Unfortunately, all these

scheduling algorithms assumed that tasks are non-real-time. Non-real-time scheduling algorithms are

unable to schedule real-time jobs efficiently, simply because they are not designed to meet the

predictability requirement of real-time jobs.

Some work has been done to combine real-time computing with heterogeneous systems

[10][29][31][38]. Tracy et al. addressed a real-time scheduling issue in heterogeneous systems [38].

Huh, Welch, Shirazi et al. proposed a solution for dynamic resource management problems in real-

time heterogeneous systems [10]. Ranaweera and Agrawal developed a scalable scheduling scheme

on heterogeneous systems to reduce the number of pipeline stages and the pipeline period of time-

critical applications [29]. Santos et al. introduced a new real-time scheduling concept based on the

hybrid deterministic/probabilistic analysis [31]. Although the above algorithms took both the real-

time and heterogeneous issues into consideration, these algorithms did not consider reliability. We

have proposed a real-time scheduling in heterogeneous systems, which can minimize the reliability

cost of the systems [24]. While the scheduling algorithms developed in [24] were static in nature,

algorithms studied in this paper, on the other hand, are dynamic.

To the best of our knowledge, scheduling and dispatching times are ignored by most dynamic non-

real-time and real-time scheduling algorithms. To make real-time scheduling results more precise,

scheduling and dispatching times have to be incorporated in dynamic scheduling algorithms.

Therefore, our study takes a closer look at the impact of scheduling and dispatching times on

scheduling performance (see Sections 5.4 and 5.5).

In this paper, we only focus on dynamic scheduling for real-time systems. For this reason, we have

not discussed a diversity of scheduling strategies developed for non-real-time applications. However,

Kwok and Ahmad provided classifications and detailed descriptions of various static scheduling

approaches [16], and many other scheduling schemes have been introduced for parallel computing

systems [9].

3. System and Reliability Models
 In this section we describe a general system model for parallel applications running on a

heterogeneous cluster. We then present a reliability model that captures the typical reliability

5

characteristics of a cluster. Reliability cost in the reliability model is an important performance metric

used throughout the rest of this study. This section ends by formulating scheduling and dispatching

times that are considered important for performance of real-time applications in dynamic cluster-

computing environments.

3.1 System Model
Fig. 1 depicts the scheduler model in a heterogeneous cluster environment. This model is similar to

the one described in [13][14][19][35], where a global scheduler works in concert with a Resource

Manager. It is assumed that all parallel jobs, along with information provided by application

programmers, are submitted to the global scheduler by a special user command. A schedule queue

(SQ) for arriving jobs is maintained by the scheduler, which schedules real-time tasks of each job in

SQ and places an accepted job in a dispatch queue (DQ) from which tasks of each accepted job are

transmitted to designated machines, also called processing elements (PEs), for execution. The

scheduler executes in parallel with PEs, each of which maintains a local queue (LQ) to which real-

time tasks are transmitted from DQ. A parallel job is considered acceptable if all tasks in this job can

be completed before their deadlines; otherwise, the job is rejected by the scheduler.

 Global
Scheduler

Schedule
Queue (SQ)

Dispatch
Queue(DQ)

Parallel real-time
jobs

Local Queue
 (LQ)

pm

p2

p1

Figure 1. The scheduler model for dynamic scheduling of
parallel real-time jobs in a heterogeneous cluster.

In a distributed scheduling scheme, an alternative approach to dynamic scheduling, jobs arrive

independently at each local scheduler, which produces schedules in parallel with other schedulers.

Compared with the distributed scheme, the centralized scheduling model has two attractive features.

First, it is straightforward to provide the centralized scheduler with fault-tolerance, using a backup

scheduler that concurrently executes with the primary scheduler. The backup scheduler independently

determines whether or not the timing constraints of given jobs can be satisfied and stores the tasks of

accepted jobs into the backup scheduler’s DQ. Tasks in the backup scheduler’s DQ will not be

transmitted to the processing elements until a failure of the primary scheduler is detected. Second,

6

implementation of a centralized scheduling model is simpler and easier than that of a distributed

scheduling model. If schedulers in the distributed model are dedicated to scheduling, the computing

power tends to be underutilized, especially when the schedulers are idle. On the other hand, if the

schedulers are able to serve as processing elements when they have no job to schedule, it is difficult

(if it is not impossible) to predict when the schedulers will be idle in a dynamic cluster environment.

Therefore, the centralized scheduler is employed in our scheduler model. Nevertheless, and

importantly, our proposed scheduling approach can also be implemented in a distributed scheduling

scheme.

A parallel real-time job is modeled by a directed acyclic graph (DAG) J = {V, E}, where V = {v1,

v2,...,vn} represents a set of real-time tasks, and E represents a set of weighted and directed edges

among real-time tasks. eij = (vi, vj) ∈ E denotes a message transmitted from task vi to vj, and |eij| is the

volume of data transmitted between these tasks.

A heterogeneous cluster is modeled by a set P = {p1, p2,..., pm} of machines, where pi is a machine

with local memory. Machines in the heterogeneous cluster are connected with one other by a high-

speed network. A machine communicates with other machines through message passing, and the

communication time between two tasks assigned to the same machine is assumed to be zero [26][27]

[37].

One challenging issue in improving performance of clusters lies in their heterogeneity. There are

two essential reasons that a homogeneous cluster will eventually become a heterogeneous cluster.

First, most of machines in a cluster are commercially off-the-shelf products, which are likely to

become outdated. Before predecessors become unusable, recently purchased machines will be added

into the cluster. As a result, a heterogeneous cluster may consist of different types of machines with a

broad range of both computing power and failure rate. Second, heterogeneous machines tend to be

connected with each other by different types of high-speed networks, since a cluster will consist of

outdated network from previous installation and new network that may have better communication

performance.

The computational heterogeneity of a job is expressed as a function, C: V × P → R, which

represents the execution time of each task on each available machine in a heterogeneous cluster

[11][26][34], where cij denotes the execution time of task vi on machine pj. Likewise, the

communicational heterogeneity of the job can be expressed by a function [11][26][34], COM: E × P ×

P → R, in which the communication time for transferring a message esr from task vs on machine pi to

7

task vr on machine pj is determined by wij*|esr| [6][26], where wij, the weight on the edge between pi

and pj, represents the time for transmitting a message of unit length between the two machines. Thus,

wij can be viewed as a measure of communicational heterogeneity.

3.2 Reliability Model
The reliability model, which is similar as the one defined in [24][26][34], assumes that permanent

failures occur according to a Poisson probability distribution and failures are mutually independent.

Let X be an m by n binary matrix corresponding to a schedule, in which n tasks of a job are assigned

to m processors. Element xij equals 1 if and only if vi has been assigned to pj; otherwise xij = 0.

A machine might fail during an idle time, but it is assumed that machines’ failures during an idle

time interval are not considered in our reliability model. The reason for this assumption is two-fold

[24][34]. First, instead of affecting the system reliability, failures during an idle time merely make

impact upon completion times of tasks. Second, a machine’s failure during an idle period can be fixed

by replacing the failed machine with a spare unit, meaning that such failures are not critical for

reliability analysis.

The reliability cost of a task vi on pj is a product of pj's failure rate λj and vi's execution time on pj.

Thus, the reliability cost of a machine is the summation over reliability costs of all tasks assigned to

that machine based on a given schedule. Given a vector of failure rates Λ= (λ1, λ2, …, λm), a specific

schedule X, and a job J, the reliability cost of the machines of the cluster is defined below,

 (∑∑
= =

−=Λ
m

j

n

i
ijijjPN cxJXRC

1 1

),,(λ) (1)

Before estimating reliability cost of links connecting among machines, we introduce a set Ekb,

containing all messages transmitted from pk to pb. Formally, Ekb is defined as below:

 { }110),(=∧=∧>= jbikijjikb xxevvE , ∀1 ≤ k, b ≤ m: k ≠ b.

Let kbµ be the failure rate of the link between pk and pb. The reliability cost of a message eij ∈ Ekb

is a product of kbµ and |. Therefore, e| ijkb ew ij’s reliability cost can be calculated as: || ijkbjbikkb ewxxµ−

|| ijkbkb ewµ−= . Based on the definition of one message’s reliability cost, the reliability cost of a link

between pk and pb, denoted as , can be computed as a cumulative reliability cost of all

messages assigned to this link. More precisely, is obtained by the following Equation,

where Μ is an m by m matrix of failure rates for links.

),,(JXΜRCkb

),,(JXΜRC kb

8

 . (2) [∑ ∑
= ≠=

−=
n

i

n

ijj
ijkbjbikkbkb ewxxJXΜRC

1 ,1
|)|(),,(µ]

)

) , the reliability cost of links in the system, can be derived from Equation (2).
Thus, equals to the summation over all link’s reliability cost, and therefore we have,

,,(JXΜRCLINK

),,(JXΜRCLINK

∑ ∑
= ≠=

=
m

k

m

kbb
kbLINK JXΜRJXΜRC

1 ,1
),,(),,(. (3)

We are now in a position to determine , the heterogeneous cluster’s reliability cost

that is a summation of the reliability cost of machines and links. Hence, we obtain

from Equation (1) and (3) as below:

),,,(JXΜRC Λ

),,,(JXΜRC Λ

 = (4)),,,(JXΜRC Λ +Λ),,(JXRC PN),,(JXΜRCLINK

Given a cluster with the reliability cost as RC(Λ,Μ,X,J), the reliability is given by Euqation (5):

 (5) () () ()(exp)(exp)(-exp)(Μ,X,JRCΛ,X,JRCΛ,Μ,X,JRCΛ,Μ,X,JyReliabilit LINKPN −−==

Therefore, scheduling a task with larger execution time to a more reliable machine is a good

approach to increase the system's overall reliability. For the convenience of reference in the rest of the

paper, we sumarize the notation of the system and reliability models in Table 1.
Table 1. Model Parameters

Parameter Explanation
cij execution time of task vi on machine pj

eij a message transmitted from task vi to vj

wij time for transmitting a message of unit length between machine pi and pj

λi failure rate of machine pi

µij failure rate of a link between pi and pj

xij xij = 1 if and only if task vi has been assigned to machine pj; otherwise xij = 0
RC reliability cost of a heterogeneous cluster

RCPN reliability cost of machines in a cluster
RCLINK reliability cost of communication links in a cluster

3.3 Scheduling and Dispatching Times
In a dynamic scheduling environment, it takes a scheduler a certain amount of time to schedule a

parallel job. This time can be significant if the number of tasks in the job is large. To the best of our

knowledge, most dynamic real-time scheduling algorithms either assumes zero scheduling time or do

not take scheduling time into account. In real clusters, a dynamic real-time scheduling algorithm that

does not consider scheduling time may not be predictable. Therefore in this study we will incorporate

scheduling time into the proposed scheme. To further improve the predictability of real-time

9

scheduling, we also take the so-called dispatch time - the time it takes a scheduler to send real-time

tasks of an accepted job from the DQ to the processing elements - into consideration.

Assume that vi is a real-time task in job Jk, thus, vi ∈ V(Jk). Let and denote the

time overhead of dispatching task v

)(idispatch vt)(ischedule Jt

i from the scheduler to the processing element and the scheduling

time for job Ji, respectively. It is assumed that the underlying network that connects the scheduler

with the processing elements affords real-time communications [12], which is able to guarantee a

given task vi to be dispatched within time interval . denotes the queuing delay in

DQ experienced by task v

)(idispatch vt)(i
DQ
delay vt

i, and represents the queuing delay in SQ experienced by job J)(i
SQ
delay Jt i.

Let be the inter-arrival interval between two consecutive jobs J)(k
job

interval Jt k-1 and Jk. denotes

the time interval between J

)(i
task
interval vt

k’s arrival at the scheduler and vi’s arrival at its target processing element.

The reason why the derivation of is important and indispensable in a practical

heterogeneous cluster is that a task v

)(i
task
interval vt

i can not start executing on a machine pj until vi arrives at pj. Thus,

the earliest start time of vi on any processing machine, determined in expression (10) to be presented

shortly, is less than or equal to . The time interval consists of four time intervals,

namely, queuing delay experienced in SQ, scheduling overhead incurred in job J

)(i
task
interval vt)(i

task
interval vt

k, delay time

experienced in DQ and the dispatch time. Therefore, can be defined below,)(i
task
interval vt

 , (6))()()()()(idispatchi
DQ
delaykschedulek

SQ
delayi

task
interval vtvtJtJtvt +++=

where vi ∈ V(Jk), and)()(j
SQJ

schedulek
SQ
delay JtJt

j

∑
∈

= = ∑
∈

=
DQv

jdispatchi
DQtdelay

j

vtv)()(

 0, if with probability)()()(11 k
job

intervalkschedulek
SQ
delay JtJtJt ≤+ −−)(k

s Jp ,

 , otherwise with probability 1-)()()(11 k
job

intervalkschedulek
SQ
delay JtJtJt −+ −−)(k

s Jp .

Let denote the probability that there is no task currently queued in the scheduling queue.

Thus, the probability of being equal to 0 is . For simplicity, we assume that the event

represented by is independent of other submitted jobs. However, our approach to calculating

 does not depend on this assumption. The probability can be obtained either from

experimental data or through profiling.

)(k
s Jp

)(k
SQ
delay Jt)(k

s Jp

)(k
s Jp

)(k
SQ
delay Jt)(k

s Jp

From the above equation, the following recursive expression can be obtained for k ≥ 2.

10

 . (7) ()()()()()(1)(11 k
job

intervalkschedulek
SQ
delayk

s
k

SQ
delay JtJtJtJpJt −+−= −−)

)
Applying the above equation recursively k-1 times, we obtain:

 . (8) ()({ }∏∑
=

−
=

−−=
k

ji
j

job
intervaljschedulek

s
k

j
k

SQ
delay JtJtJpJt)()()(1)(1

1

For future reference, we sumarize the notation for scheduling and disptaching times in Table 2.
Table 2. Notation of Scheduling and Dispatching Times

Notation Explanation
)(ischedule Jt scheduling time for job Ji

)(idispatch vt time overhead of dispatching task vi from the scheduler to its processing element
)(i

DQ
delay vt queuing delay in a Dispatch Queue experienced by task vi

)(i
SQ
delay Jt queuing delay in a Schedule Queue experienced by job Ji

)(k
job

interval Jt inter-arrival interval between two consecutive jobs Jk-1 and Jk

)(i
task
interval vt time interval between Jk’s arrival at the scheduler and vi’s arrival at its processing element

4. Scheduling Algorithms
4.1 Definitions and Assumptions

To facilitate the presentation of the proposed algorithm, it is necessary to introduce some additional

definitions and assumptions. Let st(vi), ft(vi) and dt(vi) be the start time, finish time, and deadline of

task vi, respectively. Our scheduling algorithms are devised to determine vi’s start time, which is

subject to constraints: ft(vi) = st(vi) + cij and ft(vi) ≤ dt(vi), where vi is allocated to pj.

Let be v)(r
j vest r’s earliest start time on pj. must satisfy the following three conditions:)(r

j vest

(4.1a) It is later than the time when all messages from vi’s predecessors arrive at pj,

(4.1b) It is later than the delay time and)(i
task
interval vt ,

(4.1c) Machine pj has an idle time slot sufficient to accommodate vi.

Before is computed, it is assumed that, without loss of generality, tasks v)(r
j vest i1, v i2,, …, v iq

have been allocated to pj. The idle time slots on pj are [0, st(vi1)], [ft(vi1), st(vi2)], …, [ft(vi(q-1)), st(viq)],

[ft(viq), ∞], and all idle time slots are scanned from left to right. Consequently, the first idle time slot

[ft(vik), st(vik+1)] that satisfies the following inequality is chosen,

 (9)))}(),(),({)()1(ijiki
task
intervali

j
ki cvftvtveatMAXvst ≥−+

Thus, the earliest start time is determined as follows:

 (10))}(),(),({)(iki
task
intervali

j
i

j vftvtveatMAXvest =

11

where is the earliest available time when all messages sent from v)(i
j veat i’s predecessors arrive at pj.

The earliest available time is computed as follows. Recall that D(v)(i
j veat i) is a set of messages

from vi’s predecessors to vi,),(eveat i
j denotes the earliest available time of task vi if message e

represents the only precedence constraint. Thus, we have:

)},({)(
)(

eveatMAXveat i
j

i
j

ivDe∈

= (11)

where can be obtained from the earliest start time of message e, mst(e), which depends on

how the message is routed and scheduled on the links. Thus, a message is allocated to a link if the

link has an idle time slot that is later than the sender’s finish time and is large enough to

accommodate the message. Before presenting the expression to calculate , we outline

below the algorithm to determine mst(e).

),(eveat i
j

),(eveat i
j

mst(e):
Note: e = (vj, v), mst(er+1) = ∞, mst(e0) = 0, |e0| = 0, and MQi = { e1, e2, …, er } is the message queue
containing all messages scheduled to the link.
1. for (g = 0 to r + 1) do /* Check the idle time slots */
2. if mstik(eg+1) - MAX{mst(eg) + wik*|eg|, ft(vj)} ≥ wik*|e| then /* If the idle time slots */
3. return mst(eg) + wik*|eg|, ft(vj); /* can accommodate v, return the value */
4. end for
5. return ∞; /* No such idle time slots is found, mst is set to be ∞ */

As mentioned earlier, , can be derived from mst(e). More precisely, , given

in expression (11), is equal to the finish time of message e if v

),(eveat i
j),(eveat i

j

i and its predecessor that generates e are

allocated to different machines, otherwise is fixed to be the finish time of its predecessor.),(eveat i
j

),(eveat i
j = mst(e) + |e|× wsj, where xij=1 and xks = 1, if j ≠ s (12)

 ft(vk), otherwise

4.2 Non-Reliability-Cost-Driven Scheduling Algorithms
In this section we present two variations of the list-scheduling family of algorithms, DASAP

(schedule As Soon As Possible) and DALAP (schedule As Late As Possible), in which system

reliability is not considered. The DASAP algorithm is an extended version of ASAP, a well-known

static scheduling algorithm presented in [23][39].

The DASAP algorithm, shown formally below, picks a job J at the head of SQ, if it is not empty, to

schedule. The real-time tasks in J are sorted in the increasing order of their deadlines. Thus, the task

12

with the earliest deadline is scheduled first. For each task vi, the algorithm computes its earliest start

time on each p)(i
j vest j, then the machine on which vi has the earliest start time is chosen. If the

deadline is not guaranteed, all scheduled tasks that belong to J are rejected and deleted from DQ,

otherwise vi is moved to the dispatch queue. Only when all the tasks in J have been moved into the

dispatch queue, can these tasks be dispatched to designated machines in the heterogeneous cluster.

The DASAP algorithm:
1. Get a job J from the head of the schedule queue SQ;
2. Sort tasks in J by their deadlines in increasing order;
3. for each task vi in J do
4. est ← ∞;
5. for each pj in P do
6. if () < est) then (i

j vest
 est ← ; x)(i

j vest ij ← 1; xik ← 0 where k ≠ j;
7. end for
8. if est + cij ≤ dt(vi), where xij = 1 then
9. st(vi) ← est; ft(vi) ← est + cij;
10. Move vi into the dispatch queue DQ;
11. else Reject vi and deleted the scheduled tasks in J from the dispatch queue DQ;
12. Update information of each message;
13. end for
14. Goto 1. to schedule the next job;

The algorithm outlined below is a DALAP. In this algorithm, tasks start as late as possible, subject

to the constraint that deadlines of all real-time tasks in a job are guaranteed. Let be the latest

start time of task v

)(r
j vlst

r on pj. is subject to four conditions, of which three are identical to

conditions 4.1a-4.1c presented in Section 4.1, and the fourth condition is described below.

)(r
j vlst

(4.2a) Task vr has to be finished before deadline dt(vr).

Again, before calculating lstj(vr), we assume that, without loss of generality, tasks v i1, v i2,, …, v iq

have been allocated to machine pj. The idle time slots on machine pj are [0, st(vi1)], [ft(vi1), st(vi2)], …,

[ft(viq), ∞). To find the latest idle time slot that satisfies above four conditions, we scan idle time slots

from right to left to select the first idle time slot [ft(vik), st(vik+1)] that satisfies the following inequality,

 (13) −+)}(),({ 1 iik vdtvstMIN)()}(),(),({ i
j

iki
task
intervali

j vcvftvtveatMAX ≥

Hence, the latest start time is computed as below:

 (14))}(),(),({)(iki
task
intervali

j
i

j vftvdtveatMAXvlst =

13

The DALAP algorithm is a modified version of the ALAP algorithm (As Late As Possible), a static

scheduling algorithm described by Marwedel [20]. Since ALAP belongs to the static scheduling

category, its applications are limited to offline scheduling only. However, DALAP is an online

scheduling algorithm in the sense that can dynamically schedule tasks with precedence constraints.

The DALAP picks a job J at the head of SQ, if it is not empty, computes of each task v)(i
j vlst i in J

on each machine in the cluster, then selects the machine on which vi has the latest . v)(i
j vlst i is

moved into DQ, if such proper machine is available. Otherwise, job J is not schedulable, and all

scheduled tasks belonging to J are deleted from DQ. DALAP is shown below.

The DALAP algorithm:
1. Get a job J from the head of the schedule queue SQ;
2. Sort tasks in J by their deadlines in increasing order;
3. for each task vi in job J do
4. lst ← 0; schedulable ← no;
5. for each machine pj in P do
6. if lstj(vi) is available then
7. schedulable ← yes;
8. if lstj(vi) > lst then
 lst ←) ; x(i

j vlst ij ← 1; xik ← 0 where k ≠ j;
9. end if
10. end for
11. if (schedule = yes) then
12. st(vi) ← est; ft(vi) ← est + cij, where xij = 1;
13. Move vi into the dispatch queue DQ;
14 . else Reject vi and deleted the scheduled tasks in J from the dispatch queue DQ;
15. Update information of each message;
16. end for
17. Goto 1. to schedule the next job;

4.3 A Dynamic Reliability-Cost-Driven (DRCD) Scheduling Algorithm

To improve the performance of the above algorithms, we make use of the following necessary

condition to identify jobs that are not feasible for any scheduling algorithm.

Necessary Condition 1. Let vi be a task of job J running on a cluster with m machines, then the

deadline of vi must be greater than or equal to the minimum execution time of vi. This argument is

formalized in the following expression. If job J has a feasible schedule, then:

 ∀vi ∈ J: dt(vi) ≥ { }ij
m
i cMIN 1=

Due to the fact that DASAP and DALAP do not take reliability cost into account, we design in

what follows a dynamic reliability-cost-driven (DRCD) scheduling algorithm. The DRCD algorithm

14

improves the reliability of the system with no extra hardware cost, by incorporating reliability cost

into task scheduling and reducing the overall reliability cost. The main objective of DRCD is to

minimize the system reliability cost, thereby increasing the reliability that is inversely proportional to

the reliability cost. Each real-time task is allocated in such a way that results in a minimal reliability

cost. DRCD is described below.

The DRCD algorithm:
1. Get a job J from the head of the schedule queue SQ;
2. If the job is not feasible for any scheduling algorithms (based on Necessary Condition 1) then
3. Goto 1. to schedule the next job;
4. Sort tasks in J by their deadlines in increasing order;
5. for each task vi in job J do
6. st ← ∞; find ← no; rc ← ∞; /* Initialization */
7. for each machine pj in P do
8. est ← ; /* Calculate the earliest start time of v)(i

j vest i on pj */
9. if est + cij ≤ dt(vi) then /* Check whether the deadline of vi can be guaranteed */
10. find ← yes;
11. x’ik← xik, where 1≤ k ≤ m; xij←1; xik←0 where k≠j; /* Backup the previous schedule */

12. rcPN←λj cij; rcLINK← ; /* Calculate the reliability cost */ ({∑ ∑∑
∈ = =

−
)(1 1ik vDv

m

a

m

b
jiabibjaab ewxxµ)}

13. if (rcPN + rcLINK < rc) or (rcPN + rcLINK = rc and est < st) then
14. st← est; rc←rcPN+rcLINK; /* Update the schedule, minimizing the reliability cost */
15. else xik ← x’ik, where 1≤ k ≤ m; /* Rollback to the previous schedule */
16. end if
17. end for
18. if (find = yes) then
19. st(vi) ← est; ft(vi) ← est + cij;
20. Move vi into the dispatch queue DQ;
21. else Reject vi and deleted the scheduled tasks in J from the dispatch queue DQ;
22. Update information of each message;
23. end for
24. Goto 1. to schedule the next job;

The time complexity of DRCD is given in Theorem 1 as follows.

Theorem 1. Let n be the number of tasks, m be the number of machines in a heterogeneous cluster,

and u be the number of messages in a job. The time complexity of the DRCD algorithm is O(m×n2×u).

Proof. It takes DRCD O(log(n)) time to sort the real-time tasks according to their deadlines. It takes

O(u) time to compute the eat, thus, the time complexity for calculating est is O(n×u). Since there are

m machines in the heterogeneous cluster and n real-time tasks in the job, the for loop takes

O(m×n)O(n×u). Therefore, time complexity of this algorithm is O(m×n2×u).

15

5. Performance Evaluation
To evaluate performance of the proposed scheduling approach, we present in this section several

sets of experimental results obtained from extensive simulations. In Section 5.1, we describe the

simulator, the workload parameters, and the performance metrics of interest. Performance

comparisons between our reliability-driven algorithm (DRCD) and two existing scheduling

algorithms (DASAP and DALAP) are provided in Section 5.2. Section 5.3 presents results showing

how job arrival rates affect guarantee ratios. Section 5.4 presents simulation results illustrating the

impact of scheduling times on guarantee ratio performance. A study of the performance impact of

dispatching times is presented in Section 5.5. In Section 5.6, we show how cluster sizes affect the

performance of DRCD. The effect of execution time on reliability cost is illustrated in Section 5.7.

Section 5.8 reports experimental results that show impacts of computational heterogeneity on the

guarantee ratio. Finally, to validate the results generated from synthesized benchmarks, to study the

scalability and effectiveness of DRCD on real-world applications, we applied DRCD to a benchmark

representing digital signal processing (DSP) applications in Section 5.9.

5.1 The Experimental Platform
In our simulation experiments, it is assumed that jobs arrive at the heterogeneous cluster according

to a Poisson Process [3][35]. In addition to a real-world real-time application, DSP [40], chosen as

our benchmark for the experimental study, we also conducted simulation studies on three different

types of real-time task graphs that are representative of many real-life parallel applications, namely,

binary trees [26][34], lattices [26][34] and random graphs [1][2][8]. Workload parameters are chosen

in such a way that they are either based on those used in the literature (see, for example, [1][2][8][19]

[29][34]) or represent reasonably realistic workload and provide some stress tests for our algorithm.
Table 3. Parameters for simulation experiments

Parameter Explanation Value (Fixed) (Varied)
FRPN Failure rate of machines -(0.95,0.96, …,1.05)×10-6/hour

FRLINK Failure rate of links Chosen uniformly from the range 7.5×10-6 to 12.5×10-6/hour
MIN E Minimum execution time (5) - (15, 25, 35 Sec.)
MAX E Maximum execution time (200) - (100, 120, 140, 160, 180, 200) (170, 180, 190 Sec.)

δ Range for generating deadlines ([1, 10]) - ([1, 100), [1, 300], …, [1, 1100 Sec.])
MIN_W, MAX_W Communication weights (0.5, 1.5) -
MIN_V, MAX_V Communication volumes (1, 10) -

M Number of machines in clusters (8) - (10, 15, 20, …, 40)
N Number of tasks in a job (30, 50, 70) for Btree, (9, 25, 36, 49) for Lattice
Γ Job arrival rate - (5, 10, 15, 20, 25)×10-4 No./Sec.

MIN_D, MAX_D Minimum and maximum dispatch (1, 10) - (5, 10, 15, 20, 25 Sec.)

For each point in the performance curves, the number of jobs arriving in the heterogeneous cluster

16

is 20,000. The parameters used in the simulation studies are given in Table 3. The heterogeneous

cluster for the simulation experiments is described as follows:

(1) The number of machines reflects the system size of a cluster [4][18]. Its default value is 8.

(2) The Failure rate for each machine is uniformly distributed [8] in the range from 0.95×10-6/hour to

1.05 × 10-6/hour [26][34].

(3) The link failure rates are uniformly distributed in the range from 0.75×10-7 to 1.25×10-7/hour [34].

The computation and communication workloads for the simulation are generated as follows:

(1) For each real-time task, the worst-case computation time in the execution time vector is randomly

chosen, uniformly distributed between MIN_E and MAX_E [18][19]. The scale of this range

approximates the level of computational heterogeneity.

(2) Given vi ∈V(J), if vi is on pk and vj is on pl, then vi’s deadline is chosen as follows: dt(vi) =

max{dt(vj)} + 1 + |eji| × wlk + max{cik} + δ, where eji ∈ E(J), k∈[1, m], and δ is randomly computed

according to a uniform distribution.

(3) The dispatch time of each task is chosen uniformly between MIN_D and MAX_D. This range

reflects the variance in job’s size and parallelism.

(4) Since the time complexity of the scheduling algorithm is O(m×n2×u), given in Theorem 1, we

model the scheduling time of a job as a function of m, n, and u, namely, 10-5× (m×n2×u). For random

graphs, we assume that u = n/2. The scheduling time is given in Table 4.
 Table 4. Scheduling time as a product of m = 8, n2 and u

 10 30 50 70 90
Btree 0.07 2.09 9.80 27.05 57.67

Random 0.04 1.08 5 13.72 29.16
N 9 25 49 64 81

Lattice 0.08 2.00 16.14 36.70 75.59

(5) Communication weight (wij) is chosen uniformly between MIN_W and MAX_W. The scale of this

range approximates the level of communicational heterogeneity.

(6) Communication volume between two real-time tasks is uniformly selected [18] between MIN_V

and MAX_V. This range reflects the variance in message size.

The performance measures in our simulation study are reliability cost (RC) that is defined in

expression (4) and guarantee ratio (GR) defined as follows [19][26].

 %100
arrived jobs ofnumber Total

deadlines meet their toguaranteed jobs ofnumber Total ×=GR (15)

While reliability cost gives a measure of system reliability as a result of a particular schedule,

17

guarantee ratio indicates how many of the arriving jobs can be scheduled, thus measuring the

effectiveness and power of a scheduling algorithm.

5.2 Reliability Cost
To validate the DRCD algorithm and compare its performance against two existing approaches, we

have tested the reliability cost performance of DRCD, DASAP, and DALAP. The benchmark task

graphs used for the evaluation include random graphs, binary trees, and lattices. We have chosen this

collection of task graphs as a set of benchmarks because they are representative of various

applications modeled as directed acyclic graphs. In Figures 2 and 3 we plot reliability cost with

increasing job size and job arrival rate. Since results for lattices and random graphs have similar

patterns as those for binary tree, we only show results of binary tree in Figure 2.

7

10

13

16

19

5 10 15 20 25

n=25
lattice
n=40
random
n=50
btree

Arrival rate(10-4)

Reliability Cost(10 -4)

0

5

10

15

20

25

30

35

40

10 20 30 40 50

DRCD
DASAP
DALAP

Number of tasks

Reliability cost(10 -4)

Fig. 2. Impact of task load on RC. Job aarrival
rate = 15*10-4 No./Sec. Binary trees are used.

Fig. 3. Impact of job arrival rate on reliability cost.
Binary tree, lattice, and random graphs are used.

Figure 2 shows that, compared with the existing scheduling approaches, DRCD reduces the

reliability cost of DASAP and DALAP by up to 71.4% and 66.8% (with average of 63.7% and

61.3%), respectively. The advantage of DRCD over DASAP and DALAP becomes more pronounced

as the job size increases. This is expected because DASAP and DALAP do not consider reliability

cost as one of their scheduling objectives. DRCD, however, tends to assign tasks to machines on

which their reliability cost are minimum.

Another interesting result from this experiment is that job arrival rate seems to have no impact on

reliability cost performance. Since DRCD, DASAP and DALAP share the same feature, we only ran

DRCD algorithm on three benchmark task graphs. The results shown in Figure 3 indicate that the

reliability cost performance depends on job size rather than job arrival rate. This can be attributed to

18

the fact that the scheduling algorithms employ an admission control strategy, which rejects jobs

whose deadlines cannot be guaranteed.

5.3 Guarantee Ratio
In this section we present some experimental results with respect to guarantee ratios. We present

two different groups of experimental results based on a set of synthetic benchmarks. First we present

performance comparison of the DRCD, DASAP, and DALAP algorithms on a heterogeneous cluster.

Second, we illustrate the impact of workload and job size on guarantee ratios.

Fig. 4 shows the results of the experiment where random graphs are used as benchmarks. Results

for binary trees and lattices are omitted because they are expected to be similar to those of random

graphs. We set the job arrival rate from 1×10-3 to 7×10-3No./Sec. in increments of 1×10-3No./Sec.

Figure 4 shows that the guarantee ratio of DRCD is slightly higher than that of the DALAP algorithm,

and DRCD significantly outperforms DASAP in terms of guarantee ratio. This is mainly because the

resource utilization of DRCD is less than those of DASAP and DALAP. In general, this result can be

attributed to the fact that, in an effort to minimize reliability cost, the DRCD approach constantly

strives to shorten execution times of each task in a job.

50

60

70

80

90

100

5 10 15 20 25

n=30 btree
n=70 btree
n=25 lattice
n=49 lattice

Arrival rate (10-4No./Sec.)

Guarantee ratio (%)

0

20

40

60

80

100

1 2 3 4 5 6 7

DRCD DALAP
DASAP

Arrival rate (10-3No./Sec.)

Guarantee ratio (%)

Fig. 4. Guarantee ratios of DRCD, DASAP, and
DALAP. Random graphs are tested. n = 10

Fig. 5. Impact of job load and task load on
guarantee ratio. Binary trees are tested.

Figure 5 shows the results of the second experiment on two types of benchmark task graphs: binary

trees and lattices. For each curve in Figure 5, the number of tasks in each job is fixed, whereas the job

arrival rate is changed from 5×10-4 to 25×10-4 No./Sec. Figures 4 and 5 show the drop in guarantee

ratio with increasing values of job arrival rate. Additionally, Figure 5 illustrates that guarantee ratio

19

decreases as the number of tasks increases. This is because increasing job arrival rate and size results

in increased scheduling and dispatching times, which in term give rise to lowered guarantee ratio.

5.4 Scheduling Time
To study the impact of scheduling time on guarantee ratios, we present in this section two sets of

experimental results. First, we illustrate the results for the DRCD algorithm in Figure 6. Second, we

compare DRCD against DASAP and DALAP with respect to the impact of the scheduling time on

their guarantee ratios (See Fig. 7). Although the scheduling time of each job can be estimated as a

function of m, n, and u (see Section 5.1 item 4), the scheduling time in this experiment varies from 10

to 90. This simplification deflates any correlations between scheduling times and other workload

parameters, but the goal of this simulation is to examine the impact of the scheduling time on system

performance by controlling the scheduling time as a parameter.

 Fig. 7. Guarantee ratios of the three heuristics
 when scheduling time is varied. Random graphs
 are tested. N = 10, arrival rate is 2*10-3No./Sec.

20

40

60

80

100

10 30 50 70 90

btree(n=110)
btree(n=70)
lattice(n=36)
lattice(n=25)
random(n=20)
random(n=10)

Scheduling time

Guarantee ratio (%)

0

20

40

60

80

100

10 20 30 40 50 60 70

DRCD DALAP
DASAP

Scheduling time

Guarantee ratio (%)

Fig. 6. Impact of scheduling time on guarantee
ratio. Arrival rate is 2*10-3 No./Sec.

Both binary tree-, lattice- and random graph-based jobs are considered. For each curve in Fig. 6,

the job size is fixed and the job arrival rate is set to be 2*10-3No./Sec. Fig. 6 shows guarantee ratio as

a function of scheduling time. It reveals that the scheduling time makes significant impact on the

performance of a dynamically scheduled real-time heterogeneous cluster. Without considering

scheduling time, the predictions on which scheduling is based cannot be accurate, thus lowering GR.

This impact is more pronounced as job arrival rate increases. The result also suggests that, under the

same workload, shortening the scheduling time can improve guarantee ratios, thus allowing more jobs

to be completed before their given deadlines. Ahmad and Kwok have developed a parallel algorithm

(referred to as PBSA) that could perform scheduling using multiple processors [2]. Therefore, it is

20

highly desirable to apply the parallel technique reported in [2] to our algorithm, thereby shortening

scheduling time to ultimately enhance the performance of the heterogeneous cluster.

Fig. 7 compares the guarantee ratios of the three heuristics when the scheduling time is varied in

this experiment. We find that DRCD can outperform the other alternatives in terms of guarantee ratio,

and this finding is consistent with the results shown in Fig. 4. We also observe from Fig. 7 that the

guarantee ratios of the DASAP and DALAP algorithms are more sensitive to changes in the

scheduling time than DRCD. The result reveals that the improvement in guarantee ratio offered by

DRCD becomes more pronounced when the scheduling time is relatively large.

5.5 Dispatching Time
Figure 8 shows the impact of dispatching time of the DRCD algorithm on guarantee ratio for

different values of n. Again, job arrival rate is fixed at 2*10-3No./Sec. Dispatching time is increased

from 5 to 25 with increments of 5 Sec. Job size is set to 50 and 70 for binary tree, 25 for lattice, and

20 for random graph, respectively. Fig. 8 clearly shows that decreasing dispatching time can

significantly improve guarantee ratios of the heterogeneous cluster. This result strongly suggests that

using a high-speed network to speed up the dispatching of scheduled tasks can substantially enhance

the system performance.

5.6 Heterogeneous Cluster Size
To study the impact of the heterogeneous cluster size m (number of nodes) on the performance of

DRCD, we fixed job arrival rate at 10*10-4No./Sec., and increased m from 10 up to 140. Figure 9

shows scheduling time as a function of the heterogeneous cluster size, indicating a noticeable impact

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100 120 140

btree,n=70
btree,n=30
lattice,n=49
lattice,n=36
random,n=70

Number of Nodes

Time Compexity (10-4)

30

40

50

60

70

80

90

5 10 15 20 25

n=70 (Btree)
n=50 (Btree)
n=25 (Lattice)
n=20 (Random)

Dispatching Time

Guarantee ratio (%)100

Fig. 8. Impact of dispatching time of DRCD
algorithm on GR. Arrival rate is 2*10-3No./Sec.

Fig. 9. Impact of the number of nodes on time
complexity of the DRCD algorithm.

21

of both the heterogeneous cluster size (m) and job size (n) on scheduling time. When the job size is

small, the impact of m on scheduling time is not very significant. But this impact becomes

increasingly noticeable as the job size increases. This is because scheduling time is the product of m,

n and u (Theorem 1).

Figure 10 illustrates the impact of the heterogeneous cluster size on the reliability cost. It shows

that under the same workload, the performance with respect to reliability cost improves as the

heterogeneous cluster size increases. The main reason behind this is that for a large heterogeneous

cluster, the DRCD algorithm has more choices for scheduling a real-time task. It is also observed

from Fig. 10 that when the cluster size is more than 30 the improvement in reliability cost starts to

diminish. This is because a higher value of m can result in a longer scheduling time (see Fig. 9),

especially when the value of n is also high. This result suggests that, under the workload in this

experiment, it may not be cost-effective for the system to grow beyond 30 machines. An optimal

value of m for a particular workload may be determined by experiments.

40

50

60

70

80

90

100

10 20 30 40 50 60

btree,n=70
btree,n=30
lattice,n=49
lattice,n=25
random, n=30

Number of nodes

Guarantee Ratio (%)

2

6

10

14

18

22

10 20 30 40 60 80 100

btree,n=70
btree,n=30
lattice,n=49
lattice,n=25
random,n=40

Number of nodes (m)

Reliability cost (10-4)

Fig. 10. Impact of the number of nodes on
reliability cost of DRCD. Arrival rate is
1*10-3No./Sec.

Fig. 11. Impact of the number of nodes on
guarantee ratio of the DRCD algorithm, arrival
rate is 1*10-3No./Sec.

The impact of cluster size on guarantee ratio is shown in Fig. 11, where guarantee ratio is plotted

as a function of the number of nodes. The results indicate that the impact of the cluster size on

guarantee ratios is mixed. On the negative side, a higher value of m can lead to a longer scheduling

time, as illustrated in Fig. 9. On the positive side, increasing the number of machines enhances the

computational capability of the system, which may in turn guarantee more jobs to be completed

before their deadlines. The final result depends on which side makes more significant impact.

As shown in Fig. 11, three curves illustrate the positive side, and two other curves depict the

negative side. We observe that when n (job size) is comparatively low, the net effect is positive (see

22

the three curves in Fig. 11 with n = 25, n = 30); whereas, the negative effect emerges as n becomes

relatively high (see two curves in Fig. 10, with n = 49 and n = 70). This suggests that the number of

machines is a critical parameter for scheduling parallel real-time jobs, which must be determined

carefully based on experiments.

5.7 Execution time
Figure 12 shows the impact of execution time on reliability cost. We only consider the DRCD

algorithm, since DASAP and DALAP have similar properties and are less relevant. In this experiment,

the job arrival rate is set at 10*10-4No./Sec., and MAX_E is varied from 100 to 200 Sec. with

increments of 20 Sec. For each value of MAX_E, we ran the DRDC algorithm on binary trees, lattices

and random graphs. From the simulation results shown in Fig. 12, we observe that the reliability cost

increases with the increase in the execution time. This is due to the simple fact that when execution

time in each cij increases the task reliability cost of machines, RCPN, also increases. We can conclude

from this experiment that as the execution time increases, the reliability cost of the cluster also

increases.

0

5

10

15

20

25

30

35

40

100 120 140 160 180 200

btree,n=70
btree,n=30
lattice,n=81
lattice,n=49
random,n=20

MAX_E

Reliability cost (10-4)

Fig. 12. Effect of the execution time on reliability
cost of DRCD. Arrival rate is 1*10-3No./Sec.

35

45

55

65

75

85

95

100 120 140 160 180 200

btree,n=70
btree,n=30
lattice,n=81
lattice,n=49
random,n=20

MAX E

Guarantee Ratio (%)

Fig. 13. Effect of the execution time on GR of
DRCD. Arrival rate is 1*10-3No./Sec.

As shown in Fig. 13, execution time also has a noticeable impact on guarantee ratios. When the

value of n is low (see the curve with n = 30), execution time does not make a significant impact on

guarantee ratio, but when n becomes large (see the curve with n = 81), we observe that guarantee

ratios are affected noticeably by the execution time. Since deadline is assumed to be a function of

execution time in our simulation model, the deadlines of tasks increase accordingly when execution

time increases. More real-time tasks can be guaranteed if their deadlines are relaxed.

23

5.8 Computational Heterogeneity
Fig. 14 shows the guarantee ratio as a function of job arrival rates, with different variances in task

execution time, where job arrival rate increases from 2*10-4No./Sec. to 12*10-4No./Sec. with

increments of 2*10-4No./Sec. Again, we only consider the DRCD algorithm and binary tree based

jobs in this experiment, since the other two types of jobs behave similarly.

80

85

90

95

100

2 4 6 8 10 12

[35, 170]
[25, 180]
[15, 190]
[5, 200]

Arrival rate(10-4No./Sec.)

Guarantee ratio(%)

2

4

6

8

10

12

14

16

2 4 6 8 10 12

[35, 170]
[25, 180]
[15, 190]
[5, 200]

Arrival rate (10-4No./Sec.)

Reliability Cost (10-4)

Fig. 15. Impact of computational heterogeneity
on reliability cost. Task graphs are btrees

Fig. 14. Impact of computational heterogeneity
 on guarantee ratios. Task graphs are btrees

Computational heterogeneity is reflected by the variance in execution times. In the experiment four

sets of execution times, all with the same average value, are selected uniformly from the four ranges,

[5, 200], [15, 190], [25, 180] and [35, 170], respectively. These four ranges correspond to four

different levels of heterogeneity, with [5, 200] being the highest. Fig. 14 and Fig. 15 indicate that the

DRCD scheduling algorithm has better performance for jobs with higher computational

heterogeneity. This result suggests that high computational heterogeneity helps the DRCD algorithm

increase guarantee ratio and reduce reliability cost, thereby enhancing the schedulability. This can be

explained by the fact that the advantage of DRCD over the two non-reliability driven algorithms in

schedulability mainly comes from the variance in tasks' reliability costs among different machines

and reduced heterogeneity implies reduced variance in tasks' reliability costs. It is proved by this

experiment that DRCD is efficient in terms of scheduling heterogeneous jobs, and its performance

varies with the heterogeneity of the parallel real-time jobs.

5.9 Performance on Real Applications
The goal of this experiment is two-fold: (1) to validate the results from the synthetic application

cases and (2) to test the scalability of the proposed algorithm. We chose a real-life application, a

digital signal processing (DSP) system with 119 tasks in the task graph [40], as a case study to

24

quantitatively evaluate the improvements in guarantee ratio and reliability cost as we increase the

number of nodes in the cluster.

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80

DRCD
DAEAP
DALAP

Number of Nodes

Guarantee ratio(%)

2

22

42

62

82

102

10 20 30 40 50 60 70 80

DRCD
DAEAP
DALAP

Number of Nodes

Reliability Cost (10-4)

Fig. 17. Impact of the number of nodes
on reliability cost for the DSP example

Fig. 16. Impact of the number of nodes
on guarantee ratio for the DSP example

We conducted experiments with eight cluster sizes (the number of nodes is varied from 10 to 80).

The guarantee ratio and reliability cost were obtained for each heterogeneous cluster, where machine

failure rates were randomly chosen between 9.5×10-7 and 10.5×10-7/hour and link failure rates

between 7.5×10-6 and 12.5×10-6/hour. Job arrival rates were kept constant at 1.0×10-4 No./ms., and

ranges for generating deadlines were fixed to 500 ms. Fig. 16 shows the guarantee ratios of the

DRCD, DASAP, and DALAP algorithms running on eight heterogeneous clusters. Comparing DRCD

with two other algorithms, we find that the DRCD algorithm performances better than the other

alternatives, and DRCD improves guarantee ratios over DASAP and DALAP by up to 3% and 45%,

respectively. Fig. 17 compares reliability cost for the DRCD, DASAP, and DALAP algorithms. We

observe that with respect to reliability cost, DRCD is constantly better than the other two algorithms.

Specifically, DRCD can reduce the reliability cost of DASAP and DALAP by up to 92% and 25%

(with average of 89% and 21%), respectively. From these results, we conclude that the proposed

DRCD algorithm can achieve the most reliable allocations for both small- and large-scale applications

by leveraging the reliability-cost driven technique while improving resource utilization.

6. Conclusion
Most research work in the area of real-time task scheduling in heterogeneous systems either

ignored reliability issues, or only considered homogeneous clusters, or assumed independent tasks, or

only schedule tasks with precedence constraints offline. In this paper, we have addressed these issues

25

by proposing a reliability aware algorithm (DRCD) that dynamically schedules real-time tasks with

precedence constraints in heterogeneous cluster environments. To make the scheduling more practical

and realistic, both scheduling time and dispatching time are incorporated in our scheduling algorithm.

In the DRCD algorithm, reliability cost is used as one of the objective functions for scheduling tasks

in parallel jobs. For comparison purposes, we have introduced two variations of the list-scheduling

family of algorithms, DASAP and DALAP, which are greedy in nature but make no effort to

maximize reliability. Simulation results show that DRCD outperforms DASAP and DALAP with

respect to reliability and schedulability in both synthetic workloads and real life applications. In

addition, our experiments suggested that higher computational heterogeneity is conducive to

improving the schedulability of DRCD, while computational heterogeneity had no apparent effect on

reliability. Simulation results also reveal that both scheduling time and dispatching time can

significantly impact the effectiveness of a scheduling algorithm. Thus, it is highly desirable to

substantially reduce both scheduling and dispatching time by parallelizing schedulers and providing

high-speed network capability.

This work represents our first and preliminary attempt to study a very complicated problem. Future

studies in this area are twofold. First, based on the DRCD algorithm, a dynamic fault-tolerant

scheduling algorithm will be investigated, and primary/backup versions will be our approach. Second,

we plan to study a more complex version of DRCD algorithm, in which power conservative issues are

taken into account.

Acknowledgments
This is a substantially revised and improved version of a preliminary paper [26] that appeared in the
Proc. of 2001 Int’l Conference on Parallel Processing (ICPP2001), pages 113-122, September 2001.
The revisions include a detailed reliability cost model, an improved scheduling algorithm that
considers the reliability of links connecting machines in a cluster, consideration of more workload
parameters, and performance evaluation with a real application. This work was partially supported by
an NSF grant (EPS-0091900), a start-up research fund (103295) from the research and economic
development office of the New Mexico Institute of Mining and Technology, a Nebraska University
Foundation grant (26-0511-0019), a UNL Academic Program Priorities Grant, and a Chinese NSF
973 project grant (2004cb318201). We are grateful to the anonymous referees for their insightful
suggestions and comments.

References
[1] T. F. Abdelzaher and K.G. Shin, “Combined Task and Message Scheduling in Distributed Real-Time

Systems,” IEEE Trans. Parallel and Distributed Systems, Vol. 10, No. 11, Nov. 1999.

26

[2] I. Ahmad and Y. K. Kwok, “Parallelizing the Multiprocessor Scheduling Problem,” IEEE Trans. Parallel
and Distributed Systems, vol. 10, no. 4, pp. 414-432, April 1999.

[3] M. Arora, S. K. Das and R. Biswas, “A De-centralized Scheduling and Load Balancing Algorithm for
Heterogeneous Grid Environments,” Proc. Workshop Scheduling and Resource Management for Cluster
Computing, Vancouver, Canada, pp. 499-505, Aug., 2002.

[4] I. D. Baev, W.M. Meleis, A. Eichenberger, “Lower bounds on precedence-constrained scheduling for
parallel machines,” Proc. the 29th Int’l Conf. Parallel Processing, pp.549-553, 2000.

[5] O. Beaumont, V. Boudet and Y. Robert, “A Realistic Model and an Efficient Heuristic for Scheduling with
Heterogeneous Processors,” Proc. 11th Heterogeneous Compting Workshop, 2002.

[6] O. Beaumont, A. Legrand, and Y. Robert, ENS Lyon, L. Carter and J. Ferrante, “Bandwidth-Centric
Allocation of Independent Tasks on Heterogeneous Platforms”, Proc. Int’l Parallel and Distributed
Processing Symp., 2002.

[7] M. Cosnard, E. Jeannot and T. Yang, “SLC: Symbolic Scheduling for Executing Parameterized Task
Graphs on Multimachines,” Proc. 28th Int’l Conf. Parallel Processing, Fukushima, Japan, 1999.

[8] A. Doğan, F. Özgüner, “Reliable matching and scheduling of precedence-constrained tasks in
heterogeneous distributed computing,” Proc. Int’l Conf. Parallel Processing, pp. 307-314, 2000.

[9] D.G Feitelson and L.Rudolph, “Job Scheduling for Parallel Supercomputers,” Encyclopedia of Computer
Science and Technology, Vol38, Marcel Dekker, Inc., New York, 1998

[10] E.N. Huh, L.R. Welch, B.A. Shirazi and C.D. Cavanaugh, “Heterogeneous Resource Management for
Dynamic Real-Time Systems,” Proc. 9th Heterogeneous Computing Workshop, pp. 287-296, 2000.

[11] M. Iverson and F. Özgüner, “Dynamic, Competitive Scheduling of Multiple DAGs in a Distributed
Heterogeneous Environment,” Proc. the 7th Heterogeneous Computing Workshop, pp.70-78, 1998.

[12] Xiaohua Jia, Wei Zhao and J.Li, "An integrated routing and admission control mechanism for real-time
multicast connections in ATM networks", IEEE Trans. Comm., Vol.49, No.9, pp.1515-1519, Sept. 2001.

[13] V. Kalogeraki, P.M. Melliar-Smith, L.E. Moser, “Dynamic scheduling for soft real-time distributed object
systems,” Proc. IEEE Int’l Symp. Object-Oriented Real-Time Distributed Computing, pp.114-121, 2000.

[14] D. Kebbal, E.G Talbi, and J.M Geib, “Building and scheduling parallel adaptive applications in
heterogeneous environments,” Proc. IEEE Int’l Workshop Cluster Computing, pp.195-201, 1999.

[15] Y. K. Kwok and I. Ahmad, “FASTEST: A Practical Low-Complexity Algorithm for Compile-Time
Assignment of Parallel Programs to Multiprocessors,” IEEE Trans. Parallel and Distributed Systems, Vol.
10, No. 2, pp. 147-159, Feb. 1999.

[16] Y.K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task Graphs to
Multiprocessors,” ACM Computing Surveys, Vol. 31, No. 4, pp. 406-471, Dec. 1999.

[17] T. Lundqvist and P. Stenstrom, “Timing anomalies in dynamically scheduled micromachines,” Proc.
IEEE Real-Time Systems Symp., pp.12-21, 1999.

[18] M. Maheswaran and H.J. Siegel, “A Dynamic Matching and Scheduling Algorithm for Heterogeneous
Computing Systems,” Proc. the 7th Heterogeneous Computing Workshop, pp.57-69, 1998.

[19] G. Manimaran and C.S.R Murthy, “An Efficient Dynamic Scheduling Algorithm for Multimachine Real-
Time Systems,” IEEE Trans. Parallel and Distributed System, Vol. 9, No. 3, pp. 312-319, 1998.

[20] P.Marwedel, “A new synthesis algorithm for the MIMOLA software system,” Proc. 23rd Design
Automat. Conf. (Las Vegas, NV), pp. 271-277, July 1986.

[21] J.C. Palencia, and H.M. Gonzalez, “Schedulability analysis for tasks with static and dynamic offsets,”
Proc. IEEE Real-Time Systems Symp., pp.26-37, 1998.

27

[22] M. A. Palis, “Online Real-Time Job Scheduling with Rate of Progress Guarantees," Proc. 6th Int’l Symp.
Parallel Architectures, Algorithms, and Networks, Manila, Philippines, pp. 65-70, 2002.

[23] P. G. Paulin and J. P. Knight, “Force Directed Scheduling for th behavioral synthesis of ASIC's,” IEEE
Trans. Computer Aided Design, Vol.8, pp. 661-679, June 1989.

[24] X. Qin, H. Jiang, C.S. Xie, and Z.F. Han, “Reliability-driven scheduling for real-time tasks with
precedence constraints in heterogeneous distributed systems,” Proc. Int’l Conf. Parallel and Distributed
Computing and Systems 2000.

[25] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “Dynamic Load Balancing for I/O-Intensive Tasks on
Heterogeneous Clusters,” Proc. Int’l Conf. High Performance Computing, pp.300-309, 2003.

[26] X. Qin and H. Jiang, “Dynamic, Reliability-driven Scheduling of Parallel Real-time Jobs in
Heterogeneous Systems,” Proc. Int’l Conf. Parallel Processing, Valencia, Spain, pp.113-122, 2001.

[27] X. Qin, H. Jiang, D. R. Swanson, "An Efficient Fault-tolerant Scheduling Algorithm for Real-time Tasks
with Precedence Constraints in Heterogeneous Systems," Proc. Int’l Conf. Parallel Processing, Vancouver,
Canada, pp. 360-368, 2002.

[28] A. Radulescu, A.J.C van Gemund, “Fast and effective task scheduling in heterogeneous systems,” Proc.
Euromicro Conf. Real-Time Systems, pp.229-238, 2000.

[29] S. Ranaweera, D.P. Agrawal, “Scheduling of Periodic Time Critical Applications for Pipelined Execution
on Heterogeneous systems,” Proc. Int’l Conf. Parallel Processing, pp. 131 –138, 2001.

[30] S. Sahni and G. Vairaktarakis, “Scheduling for distributed computing,” Proc. IEEE Workshop Future
Trends of Distributed Computing Systems, pp. 284-289, 1997.

[31] R.M. Santos, J. Santos, and J. Orozco, “Scheduling heterogeneous multimedia servers: different QoS for
hard, soft and non real-time clients,” Proc. Euromicro Conf. Real-Time Systems, pp.247-253, 2000.

[32] B. Shirazi, H.Y. Youn, and D. Lorts, "Evaluation of Static Scheduling Heuristics for Real-Time
Multiprocessing," Parallel Processing Letters, Vol. 5, No. 4, pp. 599-610, 1995.

[33] G.C.Sih and E.A.Lee, “A Compile-Time Scheduling heuristic for Interconnection-Constrained Heter-
ogeneous Machine Architectures,” IEEE Trans. Parallel and Distributed Systems, 4(2), pp.175-187, 1993.

[34] S. Srinivasan, and N.K. Jha, “Safty and Reliability Driven Task Allocation in Distributed Systems,” IEEE
Trans. Parallel and Distributed Systems, 10(3), pp. 238-251, 1999.

[35] X.Y. Tang, S.T. Chanson, “Optimizing static job scheduling in a network of heterogeneous computers,”
Proc. Int’l Conf. Parallel Processing, pp. 373-382, 2000.

[36] M.E. Thomadakis and Jyh-Charn Liu, “On the efficient scheduling of non-periodic tasks in hard real-time
systems,” Proc. IEEE Real-Time Systems Symp., pp.148-151, 1999.

[37] H. Topcuoglu, S. Hariri and M.Y.Wu, “Task Scheduling Algorithms for Heterogeneous Machines,” Proc.
Heterogeneous Computing Workshop, pp3-14, 1999.

[38] D. B. Tracy, Noemix, H.J. Siegel and A. Maciejewski, “Static Mapping Heuristics for Tasks with
Dependencies, Priorities, Deadlines, and Multiple Versions in Heterogeneous Environments,” Proc. Int’l
Parallel and Distributed Processing Symp., 2002.

[39] C. Tseng and D.P. Siewoirek, “Automated Synthesis of data paths in digital systems,” IEEE Trans.
Computer Aided Design, Vol CAD-5, pp. 379-295, July 1986.

[40] C.M. Woodside and G.G. Monforton, “Fast Allocation of Processes in Distributed and Parallel Systems,”
IEEE Trans. Parallel and Distributed Systems, Vol.4, No.2, pp.164-174, Feb. 1993.

[41] M.Y. Wu, W. Shu, Y. Chen, “Runtime parallel incremental scheduling of DAGs,” Proc. Int’l Conf. on
Parallel Processing, pp. 541-548, 2000.

28

[42] Y. Zhang, H. Kameda, K. Shimizu, “Adaptive Bidding Load Balancing Algorithms in Heterogeneous
Distributed Systems,” Proc. Int’l Symp. Modeling, Analysis, and Simulation on Computer and
Telecommunication Systems, pp. 250-254, 1994.

[43] Y. Zhang and A. Sivasubramaniam, “Scheduling Best-Effort and Real-Time Pipeline Application on
Time-Shared Clusters,” Proc. Int’l Symp Parallel Architecture and Algorithm, 2001.

Biographies

Xiao Qin received the BS and MS degrees in computer science from Huazhong
University of Science and Technology in 1992 and 1999, respectively. He
received the PhD degree in computer science from the University of Nebraska-
Lincoln in 2004. Currently, he is an assistant professor in the department of
computer science at the New Mexico Institute of Mining and Technology. He
had served as a subject area editor of IEEE Distributed System Online (2000-
2001). His research interests are in parallel and distributed systems, storage
systems, real-time computing, performance evaluation, and fault-tolerance. He
is a member of the IEEE.

Hong Jiang received the B.Sc. degree in Computer Engineering in 1982 from
Huazhong University of Science and Technology, Wuhan, China; the M.A.Sc.
degree in Computer Engineering in 1987 from the University of Toronto,
Toronto, Canada; and the PhD degree in Computer Science in 1991 from the
Texas A&M University, College Station, Texas, USA. Since August 1991 he
has been at the University of Nebraska-Lincoln, Lincoln, Nebraska, USA,
where he is Associate Professor and Vice Chair in the Department of
Computer Science and Engineering. His present research interests are
computer architecture, parallel/distributed computing, computer storage

systems and parallel I/O, performance evaluation, middleware, networking, and computational
engineering. He has over 90 publications in major journals and international Conferences in these
areas and his research has been supported by NSF, DOD and the State of Nebraska. Dr. Jiang is a
Member of ACM, the IEEE Computer Society, and the ACM SIGARCH and ACM SIGCOMM.

29

	801 Leroy Place, Socorro, New Mexico 87801-4796
	University of Nebraska-Lincoln
	Lincoln, NE 68588-0115
	Abstract

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

