CS122 Algorithms and Data Structures

MW 11:00 am - 12:15 pm, MSEC 101

Instructor: Xiao Qin

Lecture 10: Binary Search Trees and
Binary Expression Trees

A Property of Binary Search Trees

n The key of the root is larger than any
key in the left subtree

n The key of the root is smaller than any
key in the right subtree

n Note: Duplicated keys are not allowed

Traversing Binary Search Trees (cont.
n An Example:

void inorder_print(Node *root) {
if (root != NULL) {
inorder_print(root->left_child);
count << root->info;
inorder_print(root->right_child);

Uses for Binary Trees...
-- Binary Search Trees

n Use for storing and retrieving
information

n Insert, delete, and search faster than
with a linked list

n Take advantage of logn height

n ldea: Store information in an ordered
way (keys)

Traversing Binary Search Trees

n There are three ways to traverse a
binary tree
n Inorder Traversal:
Visit left subtree;
Visit root;
Visit right subtree;

Searching a Binary Search Trees

n Locate an element in a binary search tree

void search(Node *root, object key) {
if (root == NULL) return -1;
if (root->info == key) return root->info;
else {
if (key < root->info)
search(root->left_child, key);
else search(root->right_child, key);

Inserting an Element in a Binary
Search Trees

n Search for the Position in the tree where
the element would be found

n Insert the element in the position
n Note: a newly inserted node is a leaf
n Running time is:

—O(n) the worst case

—O(lgn) if the tree is balanced

Uy

Binary Expression Trees: Example

$o “

a+b -a

(@+b)*(c-d)/(e+f
®

Levels Indicate Precedence

The levels of the nodes in the tree indicate

their relative precedence of evaluation (e
do not need parentheses to indicate precedence).

Operations at lower levels of the tree are
evaluated later than those at higher
levels.

The operation at the root is always the last
operation performed.

Uses for Binary Trees...
-- Binary Expression Trees

n Binary trees are a good way to express
arithmetic expressions.

— The leaves are operands and the other
nodes are operators.

— The left and right subtrees of an operator
node represent subexpressions that must
be evaluated before applying the operator
at the root of the subtree.

Merits of Binary Tree Form

n Left and right operands are easy to visualize

n Code optimization algorithms work with the
binary tree form of an expression

n Simple recursive evaluation of expression

s

A Binary Expression Tree

A

What value does it have?

(4+2) *3 = 18

Inorder Traversal: A+ H) / (M -Y)

Print second

rint left subtree first Print right subtree last
13

Inorder Traversal (cont.)

©
.
oo
& © oo
& 0
Inorder traversal yields: (a + (b * c)) + ((d*€) +) * g)

Preorder Traversal/ + AH-M Y

Print left subtree second Print right subtree last
15

Preorder Traversal (cont.)

()

—
@ o

Y\
& B 0
@p\@

9))

Postorder TraversalAH+ M Y -/

Print last

rint left subtree first Print right subtree second
17

Postorder Traversal (cont.)

©
.
oo
& © oo
& 0

Traversals and Expressions

n Note that the postorder traversal produces the
postfix representation of the expression.

n Inorder traversal produces the infix
representation of the expression.

Preorder traversal produces a representation
that is the same as the way that the
programming language Lisp processes
arithmetic expressions!

S

class ExprTree {

public:
ExprTree (); /I Constructor
~ExprTree (); /I Destructor
void build (); /I build tree from prefix expression

void expression () const;

/I output expression in fully parenthesized infix form
float evaluate () const; /I evaluate expression
void clear (); /I clear tree

void showsStructure () const; /l display tree

private:
void showSub();
- I/l recursive partners
struct TreeNode *root;

I8

cl ass ExprTree

ExprTree

Each node contains two pointers
struct TreeNode
{

InfoNode info ; /I Data member

TreeNode* left ; /I Pointer to left child

TreeNode* right ; /I Pointer to right child
I

NULL OPERAND 7 6000

. WhichType . operand
«left «info «right
22

InfoNode has 2 forms

enum OpType { OPERATOR, OPERAND };
struct InfoNode

{
OpType whichType;
union /I ANONYMOUS union
{
char operation ;
int operand ;
}
h
OPERATOR ‘ + ‘ ‘ OPERAND‘ 7

- whichType . operation - whichType . operand

int Eval (TreeNode* ptr)
{ switch (ptr->info.whichType)
{
case OPERAND : return ptr->info.operand ;
case OPERATOR :
switch (tree->info.operation)
{
case ‘+' : return (Eval (ptr->left) + Eval (p tr->right));
case ‘-’ : return (Eval (ptr->left) - Eval (p tr->right));
case ' : return (Eval (ptr->left) * Eval (ptr->right)) ;

case ‘[: return (Eval (ptr->left) / Eval (ptr->right));
}

Constructing an Expression Tre

n There is a simple O(N) stack-based
algorithm to convert a postfix
expression into an expression tree.

n Recall we also have an algorithm to
convert an infix expression into postfix,
S0 we can also convert an infix
expression into an expression tree
without difficulty (in O(N) time).

Example

ab+:

NN
é)@B L]

e Note: These stacks are depicted horizontglly.

@ ®

Example
L] S |
= /Q
@ @

Expression Tree Algorithm

n Read the postfix expression one symbol at at
time:
— If the symbol is an operand, create a one-node
tree and push a pointer to it onto the stack.

— If the symbol is an operator, pop two tree pointers
T1 and T2 from the stack, and form a new tree
whose root is the operator, and whose children
areTland T2.

— Push the new tree pointer on the stack.

Example

ab+cde+ :

S

Example

ab+cde+**:

