
JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 55

Abstract – Nelder Mead’s simplex method is known as a fast and widely used algorithm in local minimum optimization. However,

this algorithm by itself does not have enough capability to optimize large scale problems or train neural networks. This paper will
present a solution to improve this deficiency of Nelder Mead’s simplex algorithm by incorporating with a quasi gradient method.
This method approximates gradients of a function in the vicinity of a simplex by using numerical methods without calculating
derivatives and it is much simpler than analytical gradient methods in mathematic perspectives. With this solution, the improved
algorithm can converge much faster with higher success rate and still maintain the simplicity of simplex method. Testing results with
several benchmark optimization problems of this improved algorithm will be compared with Nelder Mead’s simplex method. Then
this algorithm will be applied in synthesizing lossy ladder filters and training neural networks to control robot arm kinematics.
These typical applications are used to show the ability of the improved algorithm to solve the varieties of engineering problems.

Index Terms — Nelder Mead’s simplex method, quasi gradient method, lossy filter, Error Back Propagation, Lavenberg
Marquardt, neural networks

1. INTRODUCTION
Nelder Mead’s simplex method is a direct search method

[1]. Its computational process is simple and it does not require
calculation of derivatives [2]. However, Nelder Mead’s
simplex method does not rely on the gradient so it may
converge slowly or may not converge at all. This scenario
usually happens and remarkably reduces efficiency of Nelder
Mead’s simplex method in solving complicated problems
such as optimizing multi-dimensional cases or training neural
networks. To improve its performance, Nelder Mead’s
simplex method can be incorporated with other techniques
such as a quasi gradient method in this paper. The improved
simplex method does not require complex mathematic
computations can optimize complex multidimensional
problems with higher success rate and faster convergence
speed. The improved success rate of Nelder Mead’s simplex
method shows its potential capability in many real
applications [3], [4].

In recent years, artificial neural networks (ANNs) have
been applied widely in industry as control system, VSLI,
medical diagnosis, etc [5], [6], [7], [8], [9]. Although ANNs
are very powerful in many applications, but at the same time
it is not easy to train neural networks. Many training
algorithms are introduced so far but none of them can train for
all neural networks. The first order method Error Back
Propagation (EBP) can be used to train simple ANNs but with
more complex or large ANNs this method is not efficient
because of its slow convergence [10]. The second order

methods as Levenberg Marquardt (LM) [11], [12] or Neuron
by Neuron (NBN) introduced recently [13] can train ANNs
1000 times faster than EBP algorithm. Even though
algorithms using Jacobian or Hessian matrix computation
[10], [11], [12], [13] converge faster than Error Back
Propagation or any algorithm based on steepest descent, they
are not suitable for training large networks because their
computing time grows proportional to the problem size.
There are many algorithms developed to improve Error Back
Propagation while maintaining its simplicity [14], [15], [16]
but their convergence speed is still slow in order to be more
realistic and applicable. Therefore, it is necessary to develop a
reliable algorithm can train neural networks without
expensive computational cost. Nelder Mead’s simplex
method with its simple computations does not have to
calculate first derivatives, second derivatives or does not have
to invert Jacobian or Hessian matrix seems to be a potential
algorithm to solve this problem. Unfortunately, Nelder
Mead’s simplex method does not really have a good success
rate and does not converge really well. However, by
incorporating a quasi gradient method with Nelder Mead’s
simplex method, the new algorithm can converge much faster
and has ability to train neural networks for the purpose of
many practical applications which are nontrivial or
impossible for other well known algorithms as Lavenberg
Marquardt or Error Back Propagation [17].

 This paper is organized as follows. Section 2 reviews
Nelder Mead’s simplex method. Section 3 presents the
improved simplex method by combining with a quasi gradient

Improved Nelder Mead’s Simplex Method and
Applications

Nam Pham†, Bogdan M. Wilamowski†
†Electrical and Computer Engineering, Auburn University, Alabama, US

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 56

method. Section 4 presents experimental results. Section 5
presents applications of the improved simplex method in
synthesizing lossy filters and training neural networks to
control robot arm kinematics. Section 6 is a conclusion.

2. OVERVIEW OF NELDER MEAD’S SIMPLEX

METHOD
Despite its age, Nelder Mead’s simplex method (SIM) is

still a method of choice for many practitioners in the fields of
statistics, engineering, and the physical and medical sciences
because it is easy to code and very easy to use [18]. It is a fast
algorithm to search for a local minimum and applicable for
multi-dimensional optimization. It does not have to calculate
derivatives to move along a function as gradient methods. It
converges to minima by forming a simplex and using this
simplex to search for its promising directions. A simplex is
defined as a geometrical figure which is formed by (N+1)
vertices (N: the number of variables of a function). In each
iteration, SIM always starts calculating a reflected point of the
worst point through the centroid point. According to this
value, SIM algorithm will do reflection or extension,
contraction or shrink to form a new simplex. In other words,
the function values at each vertex will be evaluated in each
iteration and the worst vertex with the highest value will be
replaced by another vertex which has just been found.
Otherwise, a simplex will be shrunk around the best vertex.
This process will be repeated iteratively until a desired error
value is satisfied.

Convergence speed of the simplex method may be affected
by three parameters α, β, γ (α is the reflection coefficient to
define how far the reflected point should be from the centroid
point, β is the contraction coefficient to define how far the
contracted points should be when they are contracted from the
worst point and the reflected point in case the function values
at these points are the same, γ is the expansion coefficient to
define how far to expand from the reflected point in case a
simplex moves to the right direction). Depending on these
coefficients α, β, γ, volume of the simplex will be changed by
the operations of reflection, contraction or expansion
respectively [1]. All steps of Nelder Mead’s simplex method
can be summarized as following:

 Step 1: get α, β, γ, select an initial simplex with random
vertices x0, x1,…, xn and calculate their function values.
 Step 2: sort the vertices x0.,x1,…, xn of the current
simplex so that f0, f1,…, fn in the ascending order.
 Step 3: calculate the reflected point xr, fr
 Step 4: if fr < f0:

(a) calculate the extended point xe, fe

(b) if fe < f0 , replace the worst point by the extended
point xn = xe, fn = fe
(c) if fe > f0 , replace the worst point by the reflected
point xn = xr, fn = fr

 Step 5: if fr > f0:
(a) if fr < fi, replace the worst point by the reflected
point xn = xr, fn = fr

(b) if fr > fi:
 (b1) if fr > fn: calculate the contracted point xc, fc
 (c1) if fc > fn then shrink the simplex

(c2) if fc < fn then replace the worst point by the
contracted point xn = xc, fn = fc

(b2) if fr < fn: replace the worst point by the
reflected point xn = xr, fn = fr

 Step 6: if the stopping conditions are not satisfied, the
algorithm will continue at step 2

3. IMPROVED SIMPLEX METHOD WITH QUASI

GRADIENT
 Nelder Mead’s simplex method is considered as a fast and
simple algorithm. However, its poor convergence restricts its
application in class of problems with two or three variables.
When optimizing high dimensional problems, Nelder Mead’s
simplex method can fail to converge easily. Because of this
deficiency, this algorithm needs to be altered in some how to
be more robust and reliable. For this purpose, many authors
propose different ideas to improve it. Fuchang Gao and
Lixing Han propose an implementation of the Nelder-Mead
method in which the expansion, contraction, and shrinking
parameters depend on the dimension of the optimization
problem [19]. Another author as Torczon suggests that this
poor convergence may be due to the search direction becomes
increasingly orthogonal to the steepest descent direction [20],
etc. Without any satisfactory convergence theory, but it is
clear that the effect of dimensionality should be extended and
researched more. This paper is another effort to improve the
simplex algorithm which is different from other explanations
in the literature. This improved algorithm is addressed by its
simplicity which is one of the key factors to make Nelder
Mead simplex method so popular.
 The major drawback of Nelder Mead’s simplex method is
that it may not define its moving directions well enough just
by simple geometrical movements in high dimensional cases.
This explains why Nelder Mead’s simplex method is a simple
and fast algorithm but is not stable in optimizing
multi-dimensional problems.

To illustrate this reasoning we can consider two extreme
cases where Nelder Mead’s simplex method may not
converge to local minima (using 2-d cases for easy
illustration). These two cases with the locations of B (best), G
(good), W (worst) points have significantly different gradient
directions. In the case (a) Fig. 1the function values at W and G
are similar while in the case (b) Fig.2 the function values at B
and G are similar. In both cases, the gradients head to
different directions from Nelder Mead’s simplex method.
When it fails to search in R direction, it will repeat to search
in that direction again R1 which is not the right direction to
local minimia. In order to improve speed and convergence
rate of the simplex method, it needs to rely on the gradient.
With a new way to calculate the reflected point according to
the quasi gradient method, a new simplex ΔBGR’ is created
instead of ΔBGR Fig. 1, 2.

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 57

Fig. 1: The triangular simplex ΔBGW with similar

function values at W and G

Fig. 2: The triangular simplex ΔBGW with similar

function values at B and G

Nelder Mead’s simplex method is simple and can converge

to local minima without calculating derivatives. To maintain
this simplicity, one quasi gradient method is presented to
approximate gradients of a function [16]. This method uses an
extra point created from a simplex to approximate gradients.
The accuracy of this method depends on the linearity of a
function in the vicinity of a simplex. However, its computing
cost does not increase significantly when the size of
optimized problems becomes larger.

This method approximates gradients of a (n+1)
dimensional plane created from a geometrical simplex. By
approximating gradients of the plane, we can approximate
gradients in the vicinity of a simplex. First we select an extra
point with its coordinates composed from (n+1) vertices in a
simplex and then combine this point with n selected vertices
in the same simplex to estimate gradients. Its steps are
presented as following:

 Assume an optimized function f: n →, x Є n

 Step 1: initialize a simplex with (n+1) random vertices x1,
x2, …, xn
 Step 2: select an extra point xs with its coordinates
composed from n vertices in the simplex. In other words,
coordinates of the selected point are the diagonal of matrix
X from n vertices in the simplex.

nxn

nnnnnn

nn

nn

xxxx

xxxx

xxxx

diagxs





























,1,2,1,

,21,22,21,2

,11,12,11,1

...

.........................

...

...

 (1)

 Or  nnxxxxs ,2,21,1 ,...,, (2)

 Step2: calculate quasi gradients based on the selected
point xs and other n points in the simplex.

For i =1: n,
 If mod (i, 2) == 0

iiii

i xsx

xsfif

x

f
g









 ,1

)()1(

 Else (3)

iiii

i xsx

xsfif

x

f
g









 ,1

)()1(

 End
End

 Step 3: calculating the new reflected point R’ based on
the best point B and the approximate gradients. Parameter σ
is the learning constant or step size.

 GBR  ' (4)

 Step 4: if the function value at R’ is smaller than the
function value at B, it means that BR’ is the right direction
of the gradient then R’ can be expanded to E’.

 ')1(' RBE   (5)

 The quasi gradient method using numerical methods have
just been presented above is much simpler than analytical
gradient methods. This method does not have to derive
derivatives of a function which is usually very difficult for
complicated functions. Generally, the improved simplex
method with the quasi gradient method is similar to Nelder
Mead’ simplex method except the way it calculates the
reflected point and the extended point in case the Nelder
Mead’s simplex method cannot define its moving directions.

4. EXPERIMENTAL RESULTS
 All algorithms are written in Matlab and all experiments
are tested on a PC with Intel Quad. Several benchmark
functions which are well-known in local minimum
optimization are tested in these experiments [1], [17], [18],
[21]. Each function exhibits features deemed relevant for the
purpose of this comparison. In order to compare

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 58

performances of these two algorithms, some assumptions are
set: algorithms start with a random initial simplex in the range
of [-100, 100]; dimensions of all benchmark problems are
equal to 10, 15, 20 respectively; maximum iteration is equal

to 50,000; desired error is predefined to terminate algorithms
DE= 0.001; coefficients α= 1, β= 0.5, γ= 2; learning constant
σ=1. All results in Table 1-3 are the average values calculated
over 100 random running times.

(1) De Jong function 1





n

i
ixF

1

2
1

(2) Step function
2

1
2 5.0




n

i
ixF

(3) Wood function

   

)]1)(1(8.19

))1()1((1.10

)1()(90

1100[

31

2
3

2
1

2
2

22
23

1

222
13

















ii

ii

iii

n

i
iii

xx

xx

xxx

xxxF

(4) Powell function

   

   ]102

510[

4
3

4
21

1

2
32

2
14










iiii

n

i
iiii

xxxx

xxxxF

(5) Rosenbrock function

 


 
n

i
iii xxxF

1

222
15)1()(100

(6) Schwefel function

2

1 1
6  

 










n

i

i

j
jxF

(7) Zarakov function

]5.05.0[
4

11

2

1

2
7 

















  

 

n

i
i

n

i

n

i
ii ixixxF

 (8) Biggs Exp6 function

iii

iiiiii

ttt
i

i

i
xt

i
xt

i
xt

n

i
i

eeey

itwhere

yexexexF

410

2
53

1
28

35

5.0:

][41















 

(9) Colville function

)]1)(1(8.19)(90

))1()1((1.10

)1()1()(100[

31
2

3
2

2

2
3

2
1

1

2
2

22
1

2
9














iiii

ii

n

i
iiii

xxxx

xx

xxxxF

(10) Box function

 
constaistitawhere

eexeeF
n

i

aa
i

axax ii

,*:

)(
1

210
210

1



 





 

EXPERIMENTAL RESULTS

Function

Nelder Mead’s simplex method Improved simplex method with
quasi gradient

Success
rate

Iteration Computing
time

Success
rate

Iteration Computing
time

F1 100% 989 0.0907 100% 531 0.0806
F2 100% 935 0.0863 100% 535 0.0825
F3 41% 2148 0.2042 52% 1259 0.2038
F4 100% 1041 0.1037 100% 777 0.1346
F5 55% 9606 0.8812 76% 7993 1.2094
F6 100% 1772 0.1666 100% 898 0.1400
F7 99% 3415 0.3195 100% 1208 0.1879
F8 52% 1158 0.11186 60% 2084 0.3301
F9 46% 2065 0.2026 50% 1251 0.2081
F10 65% 3435 0.3321 81% 4012 0.6398
Table 1: Evaluation of success rate and computing time of 10-dimensional functions

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 59

Function

Nelder Mead’s simplex method Improved simplex method with
quasi gradient

Success
rate

Iteration Computing
time

Success
rate

Iteration Computing
time

F1 9% 2739 0.2539 100% 1387 0.2172
F2 13% 4492 0.4213 100% 1216 0.1927
F3 12% 24832 2.3841 52% 3047 0.5078
F4 100% 13406 1.5418 100% 2108 0.4105
F5 Failure 55% 25165 3.9881
F6 2% 11494 1.1187 100% 2389 0.3942
F7 Failure 100% 3538 0.5598
F8 4% 7285 0.74172 60% 8805 1.4860
F9 10% 19891 1.9298 53% 3016 0.5028
F10 Failure 19% 11228 1.8882
Table 2: Evaluation of success rate and computing time of 15-dimensional functions

Function

Nelder Mead’s simplex method Improved simplex method with
quasi gradient

Success
rate

Iteration Computing
time

Success
rate

Iteration Computing
time

F1 Failure 100% 2735 0.4529
F2 Failure 100% 1921 0.3207
F3 Failure 44% 6618 1.1708
F4 Failure 100% 4197 0.8969
F5 Failure 54% 36073 6.0026
F6 Failure 100% 4537 0.80412
F7 Failure 100% 8204 1.3628
F8 Failure 27% 17517 3.2283
F9 Failure 40% 6559 1.1572
F10 Failure 5% 12114 2.1718
Table 3: Evaluation of success rate and computing time of 20-dimensional functions

In experiments tested on PC with Intel Quad, the improved

algorithm with quasi gradient method shows its better
performance than Nelder Mead’s simplex method in terms of
success rate and computing time. When the scale of
optimizing problems become larger, Nelder Mead’s simplex
method gets less success rate. With the same random choice
of initial vertices, the improved simplex method always
obtains higher convergence rate, less computing time than
Nelder Mead’s simplex method. It means that the improved
simplex method here is more reliable and more effective in
optimization than the original simplex method.

5. APPLICATIONS
In the previous sections, the improved simplex method was

presented. This algorithm has shown its better performance in
several benchmark optimization functions. This section will
apply this new algorithm in synthesizing lossy filters and
training neural networks to control robot arm kinematics

5.1 Synthesis of lossy ladder filters

Ladder filters are made up of inductors and capacitors and
widely used in communication systems. How to design a
good filter with a desired frequency response is a challenging

task because the traditional algorithms as Butterworth,
Chebychev or inverse Chebychev, etc just synthesize filters
without affects of lossy inductors and capacitors (Fig. 3).
Therefore, frequency responses of these ideal filters are much
different from the ones of real filters. In order to implement a
real filter with lossy elements having similar characteristics as
a prototype filter, we have to shift pole locations of the real
filter close to pole locations of the prototype filter. In this part,
the improved algorithm can be used to replace for analytical
solutions which are very complex and inefficient especially
with high order filters.

Fig.3. Models of real capacitor and real inductor

Our example is to design a 4th low-pass Chebychev filter

with attenuation in pass-band αp= 3dB, attenuation in
stop-band αs= 30 dB, pass-band frequency ωp= 1Khz,

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 60

stop-band frequency ωs=2Khz. Using Chebychev
methodology with ideal elements [22] we can find transfer
function of this filter (eq. 6) and its circuit with all element
values (Fig. 4).

0.17198 0.64803S

2
1.22091S

3
0.88598S

4
S

0.17198
)(


SH (6)

Fig.4. Circuit of ideal low-pass Chebychev filter

Instead of using ideal elements, we replace them by the

lossy elements respectively and assume that CG1= CG2=
RL1=RL2= 0.1 (Fig. 5). On account of this affect, the
synthesized filter has the new transfer function (eq. 7) with
different pole locations (Fig. 7). Therefore, frequency
response of the real filter is changed with its shifted cut-off
frequency to the left (Fig. 6).

5
a S

4
a

2
S

3
a

3
S

2
a

4
S

1
a

)(
1


SH (7)

















































2
R

1
0.201R

2
1.0301R

1
1.01R0.201

5

2
R

1
R

2
0.01L

2
R

1
R

2
1.01C

2
R

1
R

1
1.01C

2
R

2
0.101L

2
R

1
0.201L

2
R

2
0.201C

2
R

1
0.101C

1
R

2
0.1L

1
R

1
0.1C

2
1.01L

1
1.01L

1
0.01C

4
a

2
R

1
R

2
L

2
0.1C

2
R

1
R

2
L

1
0.1C

2
R

1
R

2
C

1
0.1C

2
R

2
L

1
0.01L

2
R

2
L

2
1.01C

2
R

2
L

1
0.01C

2
R

1
L

2
1.01C

2
R

1
L

1
1.01C

2
R

2
C

1
0.01C

1
R

2
L

1
C

2
L

1
0.1L

2
L

1
0.1C

1
L

1
0.1C

3
a

2
R

1
R

2
L

2
C

1
C

2
R

2
L

1
L

2
0.1C

2
R

2
L

1
L

1
0.1C

2
R

2
L

2
C

1
0.1C

2
R

1
L

2
C

1
0.1C

2
L

1
L

1
C

2

2
R

2
L

1
L

2
C

1
C

1

:

a

a

a

where

 (8)

Fig.5. Circuit of lossy low-pass Chebychev filter

Fig.6. Frequency responses of filters (normalized)

Fig.7. Pole locations of filters

In order to design a filter having desired characteristics as

ideal filter, its transfer function (eq. 7) has to be similar to the
transfer function of the prototype filter (eq. 6). In other words,
its pole locations have to be close to pole locations of the ideal
filter (Fig. 7). According to analytical method presented in
[23], they have to solve a nonlinear system (eq. 9) of five
equations with five unknowns (assume R2 is known). Clearly,
the analytical method is not an effective way to find proper
solutions for this filter. Firstly, it is not easy to solve this
nonlinear system especially with high order filters. Secondly,
its solutions may not be applied in real implementation if one
of component values is a negative number.

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 61




















0.17198

0.64803

1.22091

0.88598

 1

5

4

3

2

1

a

a

a

a

a

 (9)

As presented in previous sections, the improved simplex

method has ability to optimize high dimensional problems
with very reliable convergence rate. For this particular
application, this algorithm can be applied very effectively to
synthesize filters. Instead of using the analytical method, we
can use the improved simplex method to optimize the error
function (eq.10) between coefficients of two transfer
functions (eq. 6, 7). To guarantee reasonable results with all
positive values, we may divide the numerator and
denominator of the transfer function of the real filter by the
value of C1 in this case (which does not change characteristics
of filters). The desired filter with R1= 0.07131, R2= 0.2, C1=
3.3831, L1= 0.70676, C2= 9.7949, L2= 0.7189 has similar
frequency response and pole locations as the ideal filter (Fig.
6, 7).

5/]0.1719)(0.6480)(

1.2209)(0.8859)(1)[(
2

5
2

4

2
3

2
2

2
1





aa

aaaEr
 (10)

5.2 Training neural networks to control robot arm

kinematics

 A neuron is normally connected by inputs, weights and a
bias weight. Its output is defined by the standard activation

function)(,)1(1
bias

n

i
ii

a
wxwaef  

 while

xi is the input, wi is the weight and wbias is the bias weight.
Each neuron can be connected together to form a neural
network. A neural network is trained by input patterns and
desired outputs. The weights of a network are adjusted to
minimize the error between actual outputs and desired outputs.

The error function is 
 







 

P

p

M

m
pmpm yywE

1

2

1
,

^

,2

1
)(, where

^

, pmy and p
my are the actual and desired outputs of a network

respectively, P is the total number of patterns and M is the
total number of output neurons.
 Although neural networks showed their potential power for
many applications but it is so difficult to train neural networks
successfully. This frustration comes from the architecture of
neural networks and the training algorithms. If the size is too
small, neural networks cannot be trained. Inversely, if the size
is too large, outputs from neural networks maybe not satiable.
It means that neural networks can be used once we can select
good architectures and good algorithms to train it. Actually,
some algorithms are good at training these types of neural

network architectures but are not good at training the others.
In other words, it is not easy to find a reliable algorithm which
has ability to train all types of neural network. Error Back
Propagation (EBP) is considered as a breakthrough to train
neural networks but it is not an effective algorithm because of
its slow convergence. Lavenberg Marquardt is much faster
but it is not suitable for large networks. Although these two
algorithms are well-known, they usually face difficulties in
many real applications because of their complex
computations. Training neural networks to control robot arm
kinematics is a typical example.

1R

2R





EffectorEnd

Fig. 8: Two-link planar manipulator

 Forward kinematics is a practical example which can be
resolved by neural networks. Neural networks can be trained
to determine the position x and y of robot arms based on the
data α, β read from sensors at the joints. This data set can be
calculated from the following equations while R1, R2 are the
fixed length arms and α, β are the movement angles of robot
arms as shown in Fig. 8. By sensing its movement angles α, β,
the position x and y of a robot arm can be determined.

)cos(cos 21   RRx (11)

)sin(sin 21   RRy (12)

To train a neural network with three neurons fully cascaded

in Fig. 9, we use 2500 (50x50) training patterns generated
from equations (11) and (12) with parameters α, β uniformly
distributed in the range of [0, π] and R1=R2=0.5. The desired
outputs and the actual outputs from this network are depicted
in Fig. 10, 11.

Fig. 9: Neural network architecture to control robot arm

kinematics

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 62

Fig. 10: Desired output and actual output from neural
network in x direction

Fig. 11: Desired output and actual output from neural

network in y direction

As we can see, the desired outputs and actual outputs from
the neural network are not so much different with an error
about 0.001. The advantage of this algorithm in training
neural networks is that its computational cost is proportional
to the number of weights not the number of input patterns. For
this particular case, all 2500 patterns can be applied at once,
and the improved simplex method will train neural networks
by optimizing a function with seven variables which are equal
to seven weights. In contrast, training neural networks with
Error Back Propagation for 2500 patterns seems impractical
because EBP has to adjust its weights for each training pattern
in each iteration. This training process is very
time-consuming and inapplicable for this particular case.
Levenberg Marquardt is known as a fast training algorithm
but its training ability is limited by the number of input
patterns P, weights N, and outputs M. In other words, the
problem becomes more difficult with increase of the size of
the network. In each iteration, this algorithm has to calculate
the Jacobian matrix JP*M X N and the inversion of JTJ square
matrix. It is obvious that LM cannot train neural networks
with seven weights and 2500 input patterns for this robot arm
kinematics because of the huge size of Jacobian matrix J2500X7
which over-limits computing capability of PC computers. In
order to train neural networks with EBP or LM, the size of
training patterns usually has to be reduced. This will ease the
computing tension but it will affect the accuracy of neural
network outputs significantly. Therefore, the actual outputs
may be much different from the desired outputs. In contrast,
the increased size of input patterns may affect the
convergence rate but not the training ability of the improved
simplex method. This character makes it different from Error

Back Propagation and Lavenberg Marquardt. The improved
simplex method can be a useful algorithm to train neural
networks for many real applications.

6. CONCLUSIONS

 The improved simplex algorithm is presented in this paper.
This algorithm is tested over several benchmark optimization
problems and shows its better performance compared with
Nelder Mead’s simplex method in terms of success rate or
computing time. This algorithm shows a great deal of large
scale optimization. This algorithm also shows its ability in
many real applications which other algorithms or other
analytical methods maybe not suitable ore ineffective because
of their computing cost or complexity. Synthesizing lossy
ladder filter or training neural networks to control robot arm
kinematics with the improved simplex method are two typical
examples presented in this paper. More methods of
calculating quasi gradients with higher accuracy and more
experiments which will be tested are our future researches.

REFERENCES

[1] J. A. Nelder, R. Mead, “A Simplex Method for Function

Minimization”, Computer Journal, vol. 7, pp. 308-313,
1965.

[2] I. Jordanov, A. Georgieva, “Neural Network Learning
with Global Heuristic Search”, IEEE Trans. on Neural
Networks, vol. 18, no. 3, pp. 937-942, 2007.

[3] S. Shrivastava, K. R. Pardasani, M. M. Malik, “SVM
Model for Identification of human GPCRs“, Journal of
Computing, vol. 2, no. 2, pp. , 2010.

[4] G. Guo, Y. Shouyi, “Evolutionary Parallel Local Search
for Function Optimization”, IEEE Trans. on System,
Man, and Cybernetics, vol. 33, no. 6, pp. 864-876, 2003.

[5] D. Stiawan, A. H. Abdullah and M. Y. Idris,
“Classification of Habitual Activities in Behavior-based
Network Detection“, Journal of Computing, vol. 2, no. 8,
pp. , 2010.

[6] E. Öz, İ. Guney, “A Geometric Programming Approach
for The Automotive Production in Turkey“, Journal of
Computing, vol. 2, no. 7, pp. , 2010.

[7] H. Miyamoto, K. Kawato, T. Setoyama, and R. Suzuki,
“Feedback-Error Learning Neural Network for
Trajectory Control of a Robotic Manipulator”, IEEE
Trans. on Neural Networks, vol. 1, no. 3, pp. 251–265,
1988.

[8] Y. Fukuyama, Y. Ueki, “An Application of Neural
Networks to Dynamic Dispatch Using Multi Processors”,
IEEE Trans. on Power Systems, vol. 9, no. 4, pp.
1759-1765, 1994.

[9] S. Sadek, A. Al-Hamadi, B. Michaelis, U. Sayed,
“Efficient Region-Based Image Querying “, Journal of
Computing, vol. 2, no. 6, pp. , 2010.

JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/
WWW.JOURNALOFCOMPUTING.ORG 63

[10] D. E. Rumelhart, G. E Hinton, and R. J. Williams,
“Learning Representations by Back-propagating Errors”,
Nature, vol. 323, pp. 533-536, Oct. 9, 1986.

[11] M. T. Hagan, M. Menhaj, “Training Feedforward
Networks with the Marquardt Algorithm”, IEEE Trans.
on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994.

[12] K. Levenberg, “A Method for the Solution of Certain
Problems in Least Squares,” Quart. Appl. Mach., vol. 2,
pp. 164–168, 1944.

[13] B. M. Wilamowski, Hao Yu, “Improved Computation for
Levenberg-Marquardt Training”, IEEE Trans. on Neural
Networks, vol. 21, no.6, pp. 930-937, June. 2010.

[14] R. A. Jacobs, “Increased Rates of Convergence through
Learning Rate Adaption”, IEEE Trans. on Neural
Network, vol. 5, no. 1, pp. 295-307, 1988.

[15] T. Tollenaere, “SuperSAB: Fast Adaptive Back
Propagation with Good Scaling Properties”, IEEE Trans.
on Neural Networks, vol. 3, no. , pp. 561-573, 1990.

[16] R. Salomon, J. L. Van Hemmen, “Accelerating Back
Propagation through Dynamic Self-Adaption”, IEEE
Trans. on Neural Networks, vol. 9, no. , pp.589-601,
1996.

[17] M. Manic, B. M. Wilamowski, “Random Weights Search
in Compressed Neural Networks Using Over-determined
Pseudoinverse”, IEEE International Symposium on
Industrial Electronics 2003, vol. 2, pp. 678-683, 2003.

[18] L. Nazareth, P. Tseng, “Gilding the Lily: A Variant of the
Nelder-Mead Algorithm Based on Golden-Section
Search”, Comput. Optim. Appl, vol. 22, no. 1, pp.
133–144, 2002.

[19] F. Gao, L. Han, “Implementing the Nelder-Mead
Simplex Algorithm with Adaptive Parameters”, Comput.
Optim. Appl, vol., no. , pp. , 4th May 2010.

[20] Torczon, V.:Multi-directional Search: A Direct Search
Algorithm for ParallelMachines. Ph.D. Thesis, Rice
University, TX (1989).

[21] J. T. Betts, “Solving the Nonlinear Least Square
Problems: Application of a General Method”, Journal of
Optimization Theory and Applications, vol. 8, no. 4,
1976.

[22] B. M. Wilamowski and R. Gottiparthy “Active and
Passive Filter Design with MATLAB”, International
Journal on Engineering Educations, vol. 21, No 4, pp.
561-571, .2005

[23] Marcin Jagiela and B.M. Wilamowski “A Methodology
of Synthesis of Lossy Ladder Filters”, 13th IEEE
Intelligent Engineering Systems Conference, INES 2009,
Barbados, April 16-18., 2009, pp. 45-50, 2009.

Nam D. Pham (S’08) received the M.S.
degree in electrical engineering from
Auburn University, Auburn, AL, where he
is currently working toward the Ph. D
degree in electrical engineering.He is a
Research Assistant with the Department of

Electrical and Computer Engineering, Auburn University.
His main interests include numerical optimization, neural
networks, database systems and network security.

Bogdan M. Wilamowski (M’82– SM’83–F’00) received the
M. S. degree in computer engineering, the Ph.D. degree in
neural computing, and the Dr. Habil. degree in integrated
circuit design in 1966, 1970, and 1977, respectively. He
received the title of Full Professor from the President of
Poland in 1987. He was the Director of the Institute of
Electronics (1979–1981) and the Chair of the Solid State
Electronics Department (1987–1989), Technical University
of Gdansk, Gdansk, Poland. He was/has been a Professor with
the Gdansk University of Technology, Gdansk (1987–1989),
the University of Wyoming, Laramie (1989–2000), the
University of Idaho, Moscow (2000–2003), and Auburn
University, Auburn, AL (2003–present), where he is currently
the Director of the Alabama Micro/Nano Science and

Technology Center and a Professor with
the Department of Electrical and
Computer Engineering. He was also with
the Research Institute of Electronic
Communication, Tohoku University,
Sendai, Japan (1968–1970), and the
Semiconductor Research Institute, Sendai

(1975–1976), Auburn University (1981–1982 and
1995–1996), and the University of Arizona, Tucson
(1982–1984). He is the author of four textbooks and about
300 refereed publications and is the holder of 28 patents.

