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Abstract – Nelder Mead’s simplex method is known as a fast and widely used algorithm in local minimum optimization. However, 

this algorithm by itself does not have enough capability to optimize large scale problems or train neural networks. This paper will 
present a solution to improve this deficiency of Nelder Mead’s simplex algorithm by incorporating with a quasi gradient method. 
This method approximates gradients of a function in the vicinity of a simplex by using numerical methods without calculating 
derivatives and it is much simpler than analytical gradient methods in mathematic perspectives. With this solution, the improved 
algorithm can converge much faster with higher success rate and still maintain the simplicity of simplex method. Testing results with 
several benchmark optimization problems of this improved algorithm will be compared with Nelder Mead’s simplex method. Then 
this algorithm will be applied in synthesizing lossy ladder filters and training neural networks to control robot arm kinematics. 
These typical applications are used to show the ability of the improved algorithm to solve the varieties of engineering problems.  
 

Index Terms — Nelder Mead’s simplex method, quasi gradient method, lossy filter, Error Back Propagation, Lavenberg 
Marquardt, neural networks 
 
 
 
 

1. INTRODUCTION 
Nelder Mead’s simplex method is a direct search method 

[1]. Its computational process is simple and it does not require 
calculation of derivatives [2]. However, Nelder Mead’s 
simplex method does not rely on the gradient so it may 
converge slowly or may not converge at all. This scenario 
usually happens and remarkably reduces efficiency of Nelder 
Mead’s simplex method in solving complicated problems 
such as optimizing multi-dimensional cases or training neural 
networks. To improve its performance, Nelder Mead’s 
simplex method can be incorporated with other techniques 
such as a quasi gradient method in this paper. The improved 
simplex method does not require complex mathematic 
computations can optimize complex multidimensional 
problems with higher success rate and faster convergence 
speed. The improved success rate of Nelder Mead’s simplex 
method shows its potential capability in many real 
applications [3], [4]. 

In recent years, artificial neural networks (ANNs) have 
been applied widely in industry as control system, VSLI, 
medical diagnosis, etc [5], [6], [7], [8], [9]. Although ANNs 
are very powerful in many applications, but at the same time 
it is not easy to train neural networks. Many training 
algorithms are introduced so far but none of them can train for 
all neural networks. The first order method Error Back 
Propagation (EBP) can be used to train simple ANNs but with 
more complex or large ANNs this method is not efficient 
because of its slow convergence [10]. The second order 

methods as Levenberg Marquardt (LM) [11], [12] or Neuron 
by Neuron (NBN) introduced recently [13] can train ANNs 
1000 times faster than EBP algorithm. Even though 
algorithms using Jacobian or Hessian matrix computation 
[10], [11], [12], [13] converge faster than Error Back 
Propagation or any algorithm based on steepest descent, they 
are not suitable for training large networks because their 
computing time grows proportional to the problem size. 
There are many algorithms developed to improve Error Back 
Propagation while maintaining its simplicity [14], [15], [16] 
but their convergence speed is still slow in order to be more 
realistic and applicable. Therefore, it is necessary to develop a 
reliable algorithm can train neural networks without 
expensive computational cost. Nelder Mead’s simplex 
method with its simple computations does not have to 
calculate first derivatives, second derivatives or does not have 
to invert Jacobian or Hessian matrix seems to be a potential 
algorithm to solve this problem. Unfortunately, Nelder 
Mead’s simplex method does not really have a good success 
rate and does not converge really well. However, by 
incorporating a quasi gradient method with Nelder Mead’s 
simplex method, the new algorithm can converge much faster 
and has ability to train neural networks for the purpose of 
many practical applications which are nontrivial or 
impossible for other well known algorithms as Lavenberg 
Marquardt or Error Back Propagation [17].  

 This paper is organized as follows. Section 2 reviews 
Nelder Mead’s simplex method. Section 3 presents the 
improved simplex method by combining with a quasi gradient 

Improved Nelder Mead’s Simplex Method and 
Applications 

Nam Pham†, Bogdan M. Wilamowski† 
†Electrical and Computer Engineering, Auburn University, Alabama, US                           



JOURNAL OF COMPUTING, VOLUME 3, ISSUE 3, MARCH 2011, ISSN 2151-9617 
HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/  
WWW.JOURNALOFCOMPUTING.ORG      56 

method. Section 4 presents experimental results. Section 5 
presents applications of the improved simplex method in 
synthesizing lossy filters and training neural networks to 
control robot arm kinematics.  Section 6 is a conclusion.        

 

2. OVERVIEW OF NELDER MEAD’S SIMPLEX 

METHOD 
Despite its age, Nelder Mead’s simplex method (SIM) is 

still a method of choice for many practitioners in the fields of 
statistics, engineering, and the physical and medical sciences 
because it is easy to code and very easy to use [18]. It is a fast 
algorithm to search for a local minimum and applicable for 
multi-dimensional optimization. It does not have to calculate 
derivatives to move along a function as gradient methods. It 
converges to minima by forming a simplex and using this 
simplex to search for its promising directions. A simplex is 
defined as a geometrical figure which is formed by (N+1) 
vertices (N: the number of variables of a function). In each 
iteration, SIM always starts calculating a reflected point of the 
worst point through the centroid point. According to this 
value, SIM algorithm will do reflection or extension, 
contraction or shrink to form a new simplex. In other words, 
the function values at each vertex will be evaluated in each 
iteration and the worst vertex with the highest value will be 
replaced by another vertex which has just been found. 
Otherwise, a simplex will be shrunk around the best vertex. 
This process will be repeated iteratively until a desired error 
value is satisfied. 

Convergence speed of the simplex method may be affected 
by three parameters α, β, γ (α is the reflection coefficient to 
define how far the reflected point should be from the centroid 
point, β is the contraction coefficient to define how far the 
contracted points should be when they are contracted from the 
worst point and the reflected point in case the function values 
at these points are the same, γ is the expansion coefficient to 
define how far to expand from the reflected point in case a 
simplex moves to the right direction). Depending on these 
coefficients α, β, γ, volume of the simplex will be changed by 
the operations of reflection, contraction or expansion 
respectively [1]. All steps of Nelder Mead’s simplex method 
can be summarized as following: 

 
 Step 1: get α, β, γ, select an initial simplex with random 
vertices x0, x1,…, xn and calculate their function values. 
 Step 2: sort the vertices x0.,x1,…, xn of the current 
simplex so that f0, f1,…, fn in the ascending order. 
 Step 3: calculate the reflected point xr, fr  
 Step 4: if fr < f0: 

(a) calculate the extended point xe, fe 

(b) if fe < f0 , replace the worst point by the extended 
point xn = xe, fn = fe 
(c) if fe > f0 , replace the worst point by the reflected 
point xn = xr, fn = fr  

 Step 5: if fr > f0:  
(a) if fr < fi, replace the worst point by the reflected 
point xn = xr, fn = fr 

(b) if fr > fi: 
 (b1) if fr > fn: calculate the contracted point xc, fc 
  (c1) if fc > fn then shrink the simplex  

(c2) if fc < fn then replace the worst point by the 
contracted point xn = xc, fn = fc 

(b2) if fr < fn: replace the worst point by the 
reflected point xn = xr, fn = fr   

 Step 6: if the stopping conditions are not satisfied, the 
algorithm will continue at step 2 

 

3. IMPROVED SIMPLEX METHOD WITH QUASI 

GRADIENT 
 Nelder Mead’s simplex method is considered as a fast and 
simple algorithm. However, its poor convergence restricts its 
application in class of problems with two or three variables. 
When optimizing high dimensional problems, Nelder Mead’s 
simplex method can fail to converge easily. Because of this 
deficiency, this algorithm needs to be altered in some how to 
be more robust and reliable. For this purpose, many authors 
propose different ideas to improve it. Fuchang Gao and 
Lixing Han propose an implementation of the Nelder-Mead 
method in which the expansion, contraction, and shrinking 
parameters depend on the dimension of the optimization 
problem [19]. Another author as Torczon suggests that this 
poor convergence may be due to the search direction becomes 
increasingly orthogonal to the steepest descent direction [20], 
etc. Without any satisfactory convergence theory, but it is 
clear that the effect of dimensionality should be extended and 
researched more. This paper is another effort to improve the 
simplex algorithm which is different from other explanations 
in the literature. This improved algorithm is addressed by its 
simplicity which is one of the key factors to make Nelder 
Mead simplex method so popular.   
  The major drawback of Nelder Mead’s simplex method is 
that it may not define its moving directions well enough just 
by simple geometrical movements in high dimensional cases. 
This explains why Nelder Mead’s simplex method is a simple 
and fast algorithm but is not stable in optimizing 
multi-dimensional problems.   

To illustrate this reasoning we can consider two extreme 
cases where Nelder Mead’s simplex method may not 
converge to local minima (using 2-d cases for easy 
illustration). These two cases with the locations of B (best), G 
(good), W (worst) points have significantly different gradient 
directions. In the case (a) Fig. 1the function values at W and G 
are similar while in the case (b) Fig.2 the function values at B 
and G are similar. In both cases, the gradients head to 
different directions from Nelder Mead’s simplex method. 
When it fails to search in R direction, it will repeat to search 
in that direction again R1 which is not the right direction to 
local minimia. In order to improve speed and convergence 
rate of the simplex method, it needs to rely on the gradient. 
With a new way to calculate the reflected point according to 
the quasi gradient method, a new simplex ΔBGR’ is created 
instead of ΔBGR Fig. 1, 2. 
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Fig. 1: The triangular simplex ΔBGW with similar 

function values at W and G 
 

 
Fig. 2: The triangular simplex ΔBGW with similar 

function values at B and G 
 
Nelder Mead’s simplex method is simple and can converge 

to local minima without calculating derivatives. To maintain 
this simplicity, one quasi gradient method is presented to 
approximate gradients of a function [16]. This method uses an 
extra point created from a simplex to approximate gradients. 
The accuracy of this method depends on the linearity of a 
function in the vicinity of a simplex. However, its computing 
cost does not increase significantly when the size of 
optimized problems becomes larger. 

This method approximates gradients of a (n+1) 
dimensional plane created from a geometrical simplex. By 
approximating gradients of the plane, we can approximate 
gradients in the vicinity of a simplex. First we select an extra 
point with its coordinates composed from (n+1) vertices in a 
simplex and then combine this point with n selected vertices 
in the same simplex to estimate gradients. Its steps are 
presented as following: 

 Assume an optimized function f: n →, x Є n  

 Step 1: initialize a simplex with (n+1) random vertices x1, 
x2, …, xn 
 Step 2: select an extra point xs with its coordinates 
composed from n vertices in the simplex. In other words, 
coordinates of the selected point are the diagonal of matrix 
X from n vertices in the simplex. 
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 Step2: calculate quasi gradients based on the selected 
point xs and other n points in the simplex. 
 

For i =1: n, 
 If mod (i, 2) == 0 
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  End 
End 

 
 Step 3: calculating the new reflected point R’ based on 
the best point B and the approximate gradients. Parameter σ 
is the learning constant or step size. 
 
  GBR  '                   (4) 
 
 Step 4: if the function value at R’ is smaller than the 
function value at B, it means that BR’ is the right direction 
of the gradient then R’ can be expanded to E’. 
 
   ')1(' RBE                   (5) 

 
 The quasi gradient method using numerical methods have 
just been presented above is much simpler than analytical 
gradient methods. This method does not have to derive 
derivatives of a function which is usually very difficult for 
complicated functions. Generally, the improved simplex 
method with the quasi gradient method is similar to Nelder 
Mead’ simplex method except the way it calculates the 
reflected point and the extended point in case the Nelder 
Mead’s simplex method cannot define its moving directions.   

 

4. EXPERIMENTAL RESULTS 
 All algorithms are written in Matlab and all experiments 
are tested on a PC with Intel Quad. Several benchmark 
functions which are well-known in local minimum 
optimization are tested in these experiments [1], [17], [18], 
[21]. Each function exhibits features deemed relevant for the 
purpose of this comparison. In order to compare 
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performances of these two algorithms, some assumptions are 
set: algorithms start with a random initial simplex in the range 
of [-100, 100]; dimensions of all benchmark problems are 
equal to 10, 15, 20 respectively; maximum iteration is equal 

to 50,000; desired error is predefined to terminate algorithms 
DE= 0.001; coefficients α= 1, β= 0.5, γ= 2; learning constant 
σ=1. All results in Table 1-3 are the average values calculated 
over 100 random running times. 
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EXPERIMENTAL RESULTS 

 
Function

 

Nelder Mead’s simplex method Improved simplex method with 
quasi gradient 

Success 
rate 

Iteration Computing 
time 

Success 
rate 

Iteration Computing 
time 

F1 100% 989 0.0907 100% 531 0.0806 
F2 100% 935 0.0863 100% 535 0.0825 
F3 41% 2148 0.2042 52% 1259 0.2038 
F4 100% 1041 0.1037 100% 777 0.1346 
F5 55% 9606 0.8812 76% 7993 1.2094 
F6 100% 1772 0.1666 100% 898 0.1400 
F7 99% 3415 0.3195 100% 1208 0.1879 
F8 52% 1158 0.11186 60% 2084 0.3301 
F9 46% 2065 0.2026 50% 1251 0.2081 
F10 65% 3435 0.3321 81% 4012 0.6398 
Table 1: Evaluation of success rate and computing time of 10-dimensional functions 
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Function

 

Nelder Mead’s simplex method Improved simplex method with 
quasi gradient

Success 
rate 

Iteration Computing 
time 

Success 
rate 

Iteration Computing 
time 

F1 9% 2739 0.2539 100% 1387 0.2172 
F2 13% 4492 0.4213 100% 1216 0.1927 
F3 12% 24832 2.3841 52% 3047 0.5078 
F4 100% 13406 1.5418 100% 2108 0.4105 
F5 Failure   55% 25165 3.9881 
F6 2% 11494 1.1187 100% 2389 0.3942 
F7 Failure   100% 3538 0.5598 
F8 4% 7285 0.74172 60% 8805 1.4860 
F9 10% 19891 1.9298 53% 3016 0.5028 
F10 Failure   19% 11228 1.8882 
Table 2: Evaluation of success rate and computing time of 15-dimensional functions 

 
 
Function

 

Nelder Mead’s simplex method Improved simplex method with 
quasi gradient

Success 
rate 

Iteration Computing 
time 

Success 
rate 

Iteration Computing 
time 

F1 Failure   100% 2735 0.4529 
F2 Failure   100% 1921 0.3207 
F3 Failure   44% 6618 1.1708 
F4 Failure   100% 4197 0.8969 
F5 Failure   54% 36073 6.0026 
F6 Failure   100% 4537 0.80412 
F7 Failure   100% 8204 1.3628 
F8 Failure   27% 17517 3.2283 
F9 Failure   40% 6559 1.1572 
F10 Failure   5% 12114 2.1718 
Table 3: Evaluation of success rate and computing time of 20-dimensional functions 

 
In experiments tested on PC with Intel Quad, the improved 

algorithm with quasi gradient method shows its better 
performance than Nelder Mead’s simplex method in terms of 
success rate and computing time. When the scale of 
optimizing problems become larger, Nelder Mead’s simplex 
method gets less success rate. With the same random choice 
of initial vertices, the improved simplex method always 
obtains higher convergence rate, less computing time than 
Nelder Mead’s simplex method. It means that the improved 
simplex method here is more reliable and more effective in 
optimization than the original simplex method. 

 

5. APPLICATIONS 
In the previous sections, the improved simplex method was 

presented. This algorithm has shown its better performance in 
several benchmark optimization functions. This section will 
apply this new algorithm in synthesizing lossy filters and 
training neural networks to control robot arm kinematics 

 
5.1 Synthesis of lossy ladder filters 

Ladder filters are made up of inductors and capacitors and 
widely used in communication systems. How to design a 
good filter with a desired frequency response is a challenging 

task because the traditional algorithms as Butterworth, 
Chebychev or inverse Chebychev, etc just synthesize filters 
without affects of lossy inductors and capacitors (Fig. 3). 
Therefore, frequency responses of these ideal filters are much 
different from the ones of real filters. In order to implement a 
real filter with lossy elements having similar characteristics as 
a prototype filter, we have to shift pole locations of the real 
filter close to pole locations of the prototype filter. In this part, 
the improved algorithm can be used to replace for analytical 
solutions which are very complex and inefficient especially 
with high order filters.   

 

     
Fig.3. Models of real capacitor and real inductor 

 
Our example is to design a 4th low-pass Chebychev filter 

with attenuation in pass-band αp= 3dB, attenuation in 
stop-band αs= 30 dB, pass-band frequency ωp= 1Khz, 
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stop-band frequency ωs=2Khz. Using Chebychev 
methodology with ideal elements [22] we can find transfer 
function of this filter (eq. 6) and its circuit with all element 
values (Fig. 4). 
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Fig.4. Circuit of ideal low-pass Chebychev filter 

 
Instead of using ideal elements, we replace them by the 

lossy elements respectively and assume that CG1= CG2= 
RL1=RL2= 0.1 (Fig. 5). On account of this affect, the 
synthesized filter has the new transfer function (eq. 7) with 
different pole locations (Fig. 7). Therefore, frequency 
response of the real filter is changed with its shifted cut-off 
frequency to the left (Fig. 6). 
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Fig.5. Circuit of lossy low-pass Chebychev filter 

 

 
Fig.6. Frequency responses of filters (normalized) 

 

 
Fig.7. Pole locations of filters 

 
In order to design a filter having desired characteristics as 

ideal filter, its transfer function (eq. 7) has to be similar to the 
transfer function of the prototype filter (eq. 6). In other words, 
its pole locations have to be close to pole locations of the ideal 
filter (Fig. 7). According to analytical method presented in 
[23], they have to solve a nonlinear system (eq. 9) of five 
equations with five unknowns (assume R2 is known). Clearly, 
the analytical method is not an effective way to find proper 
solutions for this filter. Firstly, it is not easy to solve this 
nonlinear system especially with high order filters. Secondly, 
its solutions may not be applied in real implementation if one 
of component values is a negative number.    
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As presented in previous sections, the improved simplex 

method has ability to optimize high dimensional problems 
with very reliable convergence rate. For this particular 
application, this algorithm can be applied very effectively to 
synthesize filters. Instead of using the analytical method, we 
can use the improved simplex method to optimize the error 
function (eq.10) between coefficients of two transfer 
functions (eq. 6, 7). To guarantee reasonable results with all 
positive values, we may divide the numerator and 
denominator of the transfer function of the real filter by the 
value of C1 in this case (which does not change characteristics 
of filters). The desired filter with R1= 0.07131, R2= 0.2, C1= 
3.3831, L1= 0.70676, C2= 9.7949, L2= 0.7189 has similar 
frequency response and pole locations as the ideal filter (Fig. 
6, 7). 
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5.2 Training neural networks to control robot arm 

kinematics  

 A neuron is normally connected by inputs, weights and a 
bias weight. Its output is defined by the standard activation 

function )(,)1( 1
bias

n

i
ii

a
wxwaef  

 while 

xi is the input, wi is the weight and wbias is the bias weight. 
Each neuron can be connected together to form a neural 
network. A neural network is trained by input patterns and 
desired outputs. The weights of a network are adjusted to 
minimize the error between actual outputs and desired outputs. 

The error function is 
 


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, pmy  and p
my are the actual and desired outputs of a network 

respectively, P is the total number of patterns and M is the 
total number of output neurons. 
 Although neural networks showed their potential power for 
many applications but it is so difficult to train neural networks 
successfully. This frustration comes from the architecture of 
neural networks and the training algorithms. If the size is too 
small, neural networks cannot be trained. Inversely, if the size 
is too large, outputs from neural networks maybe not satiable. 
It means that neural networks can be used once we can select 
good architectures and good algorithms to train it. Actually, 
some algorithms are good at training these types of neural 

network architectures but are not good at training the others. 
In other words, it is not easy to find a reliable algorithm which 
has ability to train all types of neural network. Error Back 
Propagation (EBP) is considered as a breakthrough to train 
neural networks but it is not an effective algorithm because of 
its slow convergence. Lavenberg Marquardt is much faster 
but it is not suitable for large networks. Although these two 
algorithms are well-known, they usually face difficulties in 
many real applications because of their complex 
computations. Training neural networks to control robot arm 
kinematics is a typical example. 

1R

2R





EffectorEnd

 
Fig. 8: Two-link planar manipulator  

 
 Forward kinematics is a practical example which can be 
resolved by neural networks. Neural networks can be trained 
to determine the position x and y of robot arms based on the 
data α, β read from sensors at the joints. This data set can be 
calculated from the following equations while R1, R2 are the 
fixed length arms and α, β are the movement angles of robot 
arms as shown in Fig. 8. By sensing its movement angles α, β, 
the position x and y of a robot arm can be determined. 
 

 )cos(cos 21   RRx           (11) 

 )sin(sin 21   RRy          (12) 

 
To train a neural network with three neurons fully cascaded 

in Fig. 9, we use 2500 (50x50) training patterns generated 
from equations (11) and (12) with parameters α, β uniformly 
distributed in the range of [0, π] and R1=R2=0.5. The desired 
outputs and the actual outputs from this network are depicted 
in Fig. 10, 11. 

 

 
Fig. 9: Neural network architecture to control robot arm 

kinematics 
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Fig. 10: Desired output and actual output from neural 
network in x direction 

 
Fig. 11: Desired output and actual output from neural 

network in y direction 
 

As we can see, the desired outputs and actual outputs from 
the neural network are not so much different with an error 
about 0.001. The advantage of this algorithm in training 
neural networks is that its computational cost is proportional 
to the number of weights not the number of input patterns. For 
this particular case, all 2500 patterns can be applied at once, 
and the improved simplex method will train neural networks 
by optimizing a function with seven variables which are equal 
to seven weights. In contrast, training neural networks with 
Error Back Propagation for 2500 patterns seems impractical 
because EBP has to adjust its weights for each training pattern 
in each iteration. This training process is very 
time-consuming and inapplicable for this particular case.  
Levenberg Marquardt is known as a fast training algorithm 
but its training ability is limited by the number of input 
patterns P, weights N, and outputs M. In other words, the 
problem becomes more difficult with increase of the size of 
the network. In each iteration, this algorithm has to calculate 
the Jacobian matrix JP*M X N and the inversion of JTJ square 
matrix. It is obvious that LM cannot train neural networks 
with seven weights and 2500 input patterns for this robot arm 
kinematics because of the huge size of Jacobian matrix J2500X7 
which over-limits computing capability of PC computers. In 
order to train neural networks with EBP or LM, the size of 
training patterns usually has to be reduced. This will ease the 
computing tension but it will affect the accuracy of neural 
network outputs significantly. Therefore, the actual outputs 
may be much different from the desired outputs. In contrast, 
the increased size of input patterns may affect the 
convergence rate but not the training ability of the improved 
simplex method. This character makes it different from Error 

Back Propagation and Lavenberg Marquardt. The improved 
simplex method can be a useful algorithm to train neural 
networks for many real applications.  

 

6. CONCLUSIONS 
 
 The improved simplex algorithm is presented in this paper. 
This algorithm is tested over several benchmark optimization 
problems and shows its better performance compared with 
Nelder Mead’s simplex method in terms of success rate or 
computing time. This algorithm shows a great deal of large 
scale optimization. This algorithm also shows its ability in 
many real applications which other algorithms or other 
analytical methods maybe not suitable ore ineffective because 
of their computing cost or complexity. Synthesizing lossy 
ladder filter or training neural networks to control robot arm 
kinematics with the improved simplex method are two typical 
examples presented in this paper. More methods of 
calculating quasi gradients with higher accuracy and more 
experiments which will be tested are our future researches.   
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