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Abstract

This paper presents a compact architecture for CMOS

implementation of a PCNN and its application to image

processing.  A computational style described in this
article mimics a biological neural network using pulse-

stream signaling and analog summation and

multiplication.  Pulse-stream encoding technique
utilizes pulse streams to carry information and control

analog circuitry, while storing further analog

information on the time axis.   The structural form of

the pulse-coupled neuron is presented first, then its
application to image processing and the synchronization

effect between neighboring neurons are demonstrated.

1. Introduction
In the vertebrate nervous system, communication

between distant neurons is accomplished using encoded

pulse streams [1],[2].  It was well into the 1930’s before
significant measurements of pulse-coded electrical

activity in the brain had begun.  Schmitt [3] devised a

means of solving the equations proposed in theories of

biological impulse propagation via vacuum tube circuits.
In any event, the neuristor and its derivatives led to a

large number of circuits being proposed for neural

network realizations in mid 1960s through the mid 1970s.

The idea of the neuristor is to abstract the five key axon
properties of (i) threshold of excitation, (ii) refractory

period, (iii) constant pulse-propagation velocity, (iv)

pulse-shaping action during its propagation through the

neuristor line, and (v) annihilation of pulses in case of
their collision.

Pulse-stream encoding technique [4]-[8] uses pulse
streams to carry information and control analog circuitry,

while storing further analog information on the time axis.

The firing rate of action potentials in biological neurons

is roughly proportional to change in the original graded
potential, which is categorized as frequency modulation.

 Padgett, Werbos, and Kohonen [9] present overview

of the use of PCNN in pattern recognition applications.  
PCNN models and their applications are also covered in

more detail in several articles [10]-[13].

2. CMOS Architecture of PCNN
Inspired by biological models and the advantages of

PCNN, a compact integrated circuit structure for a

neuron with synaptic weight multiplication and
summation is described in this section.  The neuron

circuit and its associated circuits function similar to a

biological neuron with synaptic junctions.  The

presented neuron cell circuitry shown in Fig. 1 is an
electronic analogy of a biological soma; i.e., it initiates

reactions, with a given external stimulus, by generating a

stream of electrical pulse waves.  In this case, the

external stimulus is current.  The circuit structure is
based on the current-driven simple neuron cells [5]-[7]

and its voltage-driven circuit [8].

The presented neuron circuit in Fig. 1 functions as

follows.  The circuit has two capacitors, C1 and C2.
The stored charge on capacitor C1 corresponds to the

charge of sodium ions (Na+) accumulated on the external

side of the biological neuron membrane, and the charge

stored on C2 corresponds to the potassium ions (K+)
accumulated inside the neuron cell [8].  The potential
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due to sodium ions changes at a faster rate than the
potential due to potassium ions.  Therefore, the time

constant of the C1 circuit is made smaller than that of the

C2 circuit.  In a steady state, the MOS transistors (M1-

M3) are cut off.  As the potential on C1 increases and
exceeds the potential on C2 by the threshold value of

transistor M1 at some point, then transistor M1 change its

state into active region of operation and further activates

transistors M2 and M3 which form a current mirror. This
positive feedback through transistors M1, M2 and M3 is

quickly terminated once capacitor C2 is fully charged,

and all the transistors become turned off.  During the

recovery process, known as refractory period, capacitor
C2 is slowly discharged by resistor R2, and the neuron
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Fig. 1.  CMOS circuit diagram of the presented neuron.
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Fig. 2.  Transient response of the neuron model

simulated with SPICE.  The neuron is excited with a

shifted sinusoidal input.  Notice that the discharge time

on C2 (bottom graph) is much slower than the discharge

time on C1 (top graph).

cell does not respond to any incoming excitations until
the potential on C1 exceeds the potential on C2 by the

threshold value of M1.  The transient response of the

circuit of Fig. 1 for a shifted sinusoidal input excitation

is illustrated in Fig. 2.  Notice from Fig. 2 that the
frequency of output pulses is proportional to the input

excitation level (i.e., the highest firing frequency occurs

at the peaks of the sinusoidal input signal); however, the

maximum frequency of output oscillation is limited by
this refractory period.  One can observe this effect with

an almost constant frequency for high input excitation

level. ,

Notice that the presented circuit design has two input
nodes in the neuron cell - one node at capacitor C1 for an

excitatory (positive) synaptic input, and the other at

capacitor C2 for an inhibitory (negative) synaptic input.

Incoming input currents at the excitatory node are
charging up capacitor C1, yielding a positive effect on

triggering transistor M1. Incoming input currents at the

inhibitory node are charging up capacitor C2 that has a

negative effect on triggering transistor M1 by increasing
its threshold value. In this scheme both excitatory and

inhibitory synaptic weights are controlled, as in natural

biological neural networks.  By adjusting the resistance

of the coupling resistors, the current, which flows
through the axon, is controlled, yielding a corresponding

rate of injecting charges into the input capacitor C1.  In

the simplest case, NMOS transistors with their gates

connected to positive power supply can be used to
represent synaptic weights, as Fig. 3 illustrates.
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Fig. 3.  Concept diagram of neuron cells connected in a

chain to form an axon with coupling resistors.  Each

resistor (NMOS transistor) represents a synaptic weight.
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3. Properties of PCNN and Its Model
The inputs of series of neural cells can be connected in

a chain by simple coupling resistors to form an axon as

shown in Fig. 3.  In this section, the following basic
properties of axons are emphasized and demonstrated:

1. threshold point of a pulse firing action

2. pulse shaping action during its propagation

3. refractory period
4. constant pulse-propagation velocity

5. annihilation of pulses in case of their collision

Several researchers have developed a neuromorphic

delay lines [7],[12] demonstrating some of the above
properties.  The biggest merit of the presented design

here, compared to other existing designs, is the small

number of CMOS transistors with a compact design,

allowing less power consumption and reduced silicon
area.  These five axon properties with the presented

circuitry are discussed in below.

1. Threshold Point:

The first property, threshold point of a pulse firing
action, was already demonstrated in Fig. 2 in the

previous section.  Recall that a pulse is fired when the

potential on C1 exceeds the potential on C2 by the

threshold value of transistor M1.

2. Pulse Shaping Action:

Without a pulse shaping action, traveling pulses could

be seriously attenuated and dispersed throughout the

transmission.  Thus, axons that have similar membrane
structures should be able to regenerate the shape of

transmitting pulses.  Incoming pulses are regenerated

and shaped as they transmit along the axon.  Fig. 4

illustrates the pulse shaping action for a square input
pulse.  If an input pulse is too narrow, it will be

annihilated.  The shaping of the propagated pulse

through the axon depends on the time constant of the

output capacitor circuit
3. Refractory Period:

When the axon circuit is excited with a series of

incoming pulses, those pulses can be transmitted through

the axon if the incoming pulses are widely separated. On
the other hand, some incoming pulses are skipped and

not transmitted when the time interval between the

incoming pulses is small.  This property is

demonstrated in Fig. 5.  The refractory period of the
delay line is caused by significant increase of the

threshold voltage at the transistor M1 after pulse firing.
4. Constant Pulse-Propagation Velocity:

Fig. 4 also demonstrates the property of constant

pulse-propagation velocity.  Neuron Cell 1 of Fig. 3 is

initially stimulated with a voltage input in this simulation.
One can observe that the resulting output pulse from

Neuron Cell 1 activates Neuron Cell 2 and is seen to

propagate at a constant velocity from left to right toward

Neuron Cell 5.  The extended refractory period of the
excited pulses prevents the output pulses of neighboring

units from reactivating a previous neural cell and insures

that a single pulse is propagated.
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Fig. 4.  SPICE simulated transient response to

demonstrate the pulse shaping action and constant pulse

propagation velocity.  The square-wave pulse is applied

to the input.
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   (a)  (b)

Fig. 5.  Demonstration of effect of the refractory period.

(a) With a large time interval between input excitation, all

excitations are transmitted through the axon.  (b) With a

small time interval between input excitations, some of

them are not transmitted due to the refractory period.
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5. Mutual Pulse Annihilation:
Annihilation of pulses in case of their collision when

pulses are propagating from opposite directions is a

consequence of the existence of the refractory period,

which causes pulse attenuation.  By simultaneously
stimulating Neuron Cell 1 and Neuron Cell 5 in Fig. 3,

two analog pulses will collide at Neuron Cell 3 and

annihilate each other since both Neuron Cell 2 and

Neuron Cell 4 will both be in refractory period when
Neuron Cell 3 fires a pulse.

4. Image Processing with the PCNN
Biological vision processing appears to require a

number of parallel signals, containing color and intensity

information, edge enhancement information which is

provided by lateral inhibition between adjacent neurons.
PCNN appear to manage combining such a wide variety

of information into a coherent process.  Eckhorn et al.

[10] devised an integrate-and-fire neuron model based

upon their studies of the visual cortices of cats.  The
Eckhorn dynamic model represents a visual neuron as a

multi-input element with a single output.  A leaky

integrate-to-fire pulse generator [8], unlike the

modulatory Eckhorn linking field, shows that its noise-
smoothing capability is sperior to median filtering and

average-filter smoothing.  Most dynamic models of the

neural computation suggest that synchronization between

regions is the primary information carrier [8].  Johnson
[11] states that the time signals are unique, object-

specific and roughly invariant time signature for their

corresponding input spatial image or distribution.

There is normally one-to-one correspondence between
the neurons in the network and the pixels in the image.

Therefore, the neuron Ni,j in the network corresponds to

the pixel Pi,j in the image, and vice versa.  The key

features of image processing with the proposed pulse-
coupled neurons are as follows.  Suppose that the

intensity range of the input image is mapped within [Xmin,

Xmax].  The neurons with intensity Xmax fire pulses

naturally at the highest frequency.  This intensity range
is referred to as the capture range of Ni,j with respect to

the group of neurons pulsing at certain time.  Then the

number of pulses in certain time period is used to extract

an image from the time signal back into the
corresponding image signal.  This image extraction

depends on the strength of neuron couplings in the
network.  This coupling strength, expressed by neuron

coupling coefficient β, of every neuron in the PCNN has
the same value. The following example demonstrates

image filtering (de-noising) and edge smoothing with the
presented PCNN.   

In general, the intensity of a noisy pixel is

significantly different from the intensity of the

neighboring pixels.  Therefore, the intensity of the
noisy pixel is unlikely to lie within its capture range with

respect to its neighboring neurons.  As a result, the

noisy neuron is neither captured by its pulsing neighbors

nor captures them.  Fig. 6(a) shows the original image
without any noise, and Fig. 6(b) is corrupted with

additive random noise.  Figs. 6(c) and 6(d) show the

results of filtering the noisy image using the PCNN-

based filtering technique with a neuron coupling strength

of β=0.01 and β=0.05, respectively.  First, note that
PCNN-based filtering does not blur, dilate, or erode the

edges of the image.  If conventional median filtering or

average filtering technique were to be used, the filtered
image would have rounded corners and/or blurred the

entire image [8].  On the other hand, the PCNN filtering

retains the narrow features in the image significantly

well.
It is also interesting to observe from Figs. 6(c) and

6(d) that the extent of the capture range increases as the

neuron coupling coefficient β increases.  In other words,
a group of pulsing neurons can capture a neuron with
considerably lower intensity if a sufficiently large

neuron-coupling coefficient is used.

Hence, the idea of adjusting the neuron coupling

coefficients is extended to the edge smoothing.  That is,
for some images where existence of sharp edges is not

preferred or yields unnatural appearance to human eyes,

an inclusion of edge smoothing in the original image is

often preferred.  In this case, a higher neuron coupling
coefficient should be assigned.  As can be seen from

Fig. 6(d), which is resulted from assigning a higher

coupling coefficient than one assigned in Fig. 6(c), the

edges of the image feature is somewhat smoothed out
from the background (base) intensity level.

Furthermore, for a complex edge smoothing or edge

enhancement and other feature extraction, multiple

neuron-coupling coefficients can be assigned in a single
PCNN architecture.
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As can be seen from this image processing example,
the capture phenomenon and the capture range play an

important role in the image processing applications.

That is, the neuron coupling strength determines the

neuron synchronization effect.  Recall that the coupling
between neurons provides a global connection for all

sub-regions in the image, and the neuron coupling

enforces global synchrony between local regions.  The

effect of neuron synchronization is demonstrated by
varying the neuron coupling coefficient and is seen in

Fig. 7.

As the simulated result in Fig. 7 illustrates, the

synchronization effect is stronger with a higher coupling
coefficient, and vice versa.  In fact, there is almost no

synchronization between two neighboring neurons if β=0
in Fig. 7(a).  On the other hand, a complete

synchronization between two neighboring neurons is

observed in case of β=0.95 in Fig. 7(c).
Furthermore, the existence of synchronization between

neighboring neurons depends upon how these neurons

are coupled together.

   (a) (b)

(c) (d)

Fig. 6.  An example of image filtering and extraction with

PCNN.  The original image (a) is added with some

random noise (b).  The results of PCNN-based image

filtering with neuron coupling coefficient β=0.01 (c) and

β=0.05 (d).

 Fig. 8 shows the concept diagram of three basic types
of neuron couplings.  If there is no coupling between

neighboring neurons, as seen in Fig. 8(a), each neuron

oscillates at its own frequency that is proportional to the

corresponding input excitation level.  The second type,
cross-coupled neurons as seen in Fig. 8(b), exhibits an

averaging property among the neighboring neurons.

Therefore, the output pulse excitation is determined by

the weighted sum of the prime and neighboring neuron
excitation levels.  The third type is straight-coupled

neurons, as shown in Fig. 8(c), which exhibits a

synchronization effect between neurons.
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               (c)

Fig. 7.  Demonstration of the neuron synchronization

effect on neighboring neurons.  (a) β=0;   (b) β=0.03;

(c) β=0.95.

      
       (a)         (b)               (c)

Fig. 8.  Three basic types of neuron couplings.  (a) No

coupling between neurons.  (b) Cross-coupled neurons.

(c) Straight-coupled neurons which exhibit the

synchronization effect and can be observed in PCNN.
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5. Conclusions
In this paper, a CMOS hardware architecture that

implements a pulse coupled neural network is described.   

The hardware design uses a leaky integrate-to-fire pulse
generator, adaptive synaptic coupling, and dendritic

delay-line propagation.  The presented neuron circuit

has its merits in hardware implementation owing to its

simple structure, small size, and high speed of operation,
yet achieving all the basic properties of natural biological

neurons: (1) threshold-based firing (settable from

external controls), (2) pulse shaping action and delay due

to axonal propagation, (3) refractory period (i.e.,
showing a nonlinear sigmoidal characteristic), and (4)

characteristic autowave behavior of mutual pulse

annihilation.  Another important feature of the proposed

design is that the circuitry is robust to additive noise.
Excitatory and inhibitory synaptic inputs are applied to

the two capacitors (two input nodes), C1 and C2,

respectively.  The neuron cell circuitry which has been

described here exhibits functional similarities to natural
biological neurons.

The resulting PCNN architecture provides a practical

near-term implementation leading to greatly enhanced

image segmentation capability.   It has also been shown
that the PCNN has a unique synchronization property,

and the capture phenomenon and the capture range play

an important role in the image processing applications.

That is, the neuron coupling strength determines the
neuron synchronization effect.
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