
Toward Zero Backtracks in Test Pattern Search Algorithms
with Machine Learning

by

Soham Roy

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 7, 2021

Keywords: Automatic test pattern generation (ATPG), Artificial intelligence (AI),
Artificial neural network (ANN), Digital testing, Heuristics in algorithms, Principal

component analysis (PCA)

Copyright 2021 by Soham Roy

Approved by

Spencer K. Millican, Co-chair, Assistant Professor of Electrical and Computer Engineering
Vishwani D. Agrawal, Co-chair, Professor Emeritus of Electrical and Computer Engineering

Adit D. Singh, Godbold chair, Professor of Electrical and Computer Engineering
Victor P. Nelson, Professor Emeritus of Electrical and Computer Engineering
Sanjeev Baskiyar, Professor of Computer Science and Software Engineering

Abstract

A digital circuit with n primary input lines has N = 2n possible input vectors and a

test vector that detects a fault in the circuit may be among those 2n n-bit combinations.

A pure random test generator can generate these test vectors, but this is inefficient due

to its random generation of n-bit combinations. Various testing algorithms were developed

and implemented over six decades to overcome this inefficiency. Classic algorithms like D

algorithm, PODEM, and FAN laid the foundations over which other algorithms were built

upon to improve the search time for test vectors.

Because the search for tests for hard-to-detect faults in a circuit has exponential com-

plexity, test generation, whether performed randomly or algorithmically, is computationally

expensive. Backtrack is one of the essential activities in ATPG algorithms that directly im-

pacts search time. In colloquial terms, backtrack means the algorithm took a bad decisions

when determining which circuit inputs should be set to achieve an objective to find a test

vector. Contemporary algorithms use various circuit topological information and testability

measures as heuristics to reduce backtracks and improve search time. Patel and associate

concluded from their experiments that rather than using a single testability measure with

a high backtrack limit, it is more efficient to use multiple testability measures successively

with lower backtrack limits. However, the use of multiple testability measures successively

as ATPG heuristic still remains quite expensive in test generation time.

To address unmanageable time complexity, engineers often rely on human “hunches”

and heuristics learned through experience. Training machines to adopt these human skills is

known as machine learning (ML) or machine intelligence (MI). This dissertation examines

MI for its ability to enhance automatic test pattern generation (ATPG) by the combining

ii

circuit topological information and testability measures as a novel heuristic to reduce back-

tracks. Instead of a conventional heuristic to guide backtracing directions, this work uses

MI algorithms. The guidance can come from unclassified data in which we find patterns –

known as unsupervised learning – or it can come from a database of training problems with

desired outcomes, known as supervised learning. The ML framework applied to ISCAS’85

and ITC’99 benchmark circuits showed significant improvements in ATPG performance as

reduced backtracks and computation time. Initial experiments found a significant decrease

in computation time and backtracks with basic MI structures and training.

In this research, a PODEM ATPG program is implemented with ML-based guidance

for backtraces. Initially, basic trained-ANN guidance is found to reduce backtracks and

CPU time over any single heuristic guidance. Then, an optimally-trained-ANN guidance

enhances the ATPG performance. Next, principal component analysis (PCA) combines

several heuristics to train the ANN. The PCA-trained-ANN guidance produced the best

ATPG performance.

iii

To the divine power of this universe

For being beside me invisibly and help me to evolve consciously

In the loving memory of my grandparents: (Dadu, Thamdadu, Dida, Thamma)

For their blessings, love, and faith

To my beloved parents: (Ma and Baba)

For their constant love, affection, and support

iv

Acknowledgments

Through the words of The Beatles “The long and winding road ...”, I could see the

entire two years and 11 months of doctoral life as a journey. Many people came, became a

part, and left my side, but few people stood by me along with my ups and downs of life. I am

truly honored to be surrounded by great friends, motivating advisors, an incredible group,

and a family that filled my heart with umpteen joy and happiness. In the late evening

of the snowy winter of Dresden, Germany, 2018–I wrote an email to Prof. Vishwani D.

Agrawal regarding my Ph.D. at Auburn University, USA. Later, I got an interview email

from Prof. Spencer K. Millican that turned out to be positive. On 9th August 2018, I landed

in the United States and started my research journey with dreams, aspirations, passion, and

insanely hard work. I thank the Electrical and Computer Engineering (ECE) department

(Prof. Mark Nelms and Prof. Stuart Wentworth) for supporting my graduate study by

providing me a Teaching Assistantship (TA), without which I would not have been able to

complete my Ph.D. work successfully. I am immensely thankful to Prof. Ujjwal Guin and

Prof. John Y. Hung for allowing me to assist as TA in their respective (ELEC 4200 and

ELEC 3040/3050) laboratories. I am also thankful to Prof. Sanjeev Baskiyar for becoming

a University Reader of my dissertation.

I want to bestow my regards to all my committee members. Without their support, my

journey till now and in the future would not have been possible. It is my honor and pleasure

to have Prof. Spencer K. Millican and Prof. Vishwani D. Agrawal as my advisors who

helped me grow technically, spiritually, and professionally. During my initial days here at

Auburn, I got the opportunity to nurture my skills and have a deeper understanding of VLSI

design and test through our untimely discussions with Prof. Adit D. Singh. My research

path demanded learning Automatic Test Equipment (ATE). Prof. Victor P. Nelson was too

v

generous in providing the knowledge transfer added with a hands-on experience. Without

which it would have been difficult for me to be an expert in ATE in that brief period.

I thank Prof. Spencer K. Millican for encouraging me to write C++ codes for ATPG

tools. We had our disagreements, technical and casual discussions over a cup of coffee.

Because of him, I got to know variants of coffee flavor. Prof. Millican’s reviews were

genuinely helping me evolve my English language, for which I shall be truly grateful. I

was, and I will be surprised by how he thinks while coding ahead of time.

I thank Prof. Vishwani D. Agrawal for encouraging me to THINK technically and

non-technically. His constant attitude of challenging me to push the limits and seek out

bold, new ideas. His enthusiasm for research and learning is infectious, which is something

I hope I have picked up and would like to embody in my entire life. I am a firm believer

of THINK->EXECUTE->PUBLISH, and he supported my philosophy throughout my

doctoral journey. I thank Prof. Prathima Agrawal for giving words of advice and encour-

agement as and when required.

I thank all my friends (Yang, Joshua, Pouyan, Ayokunle, Krishna, Ziqi, Yuqiao, and

Wendong) who have supported me over the years and have provided me constant encour-

agement and moral support. Office staff in ECE, namely Mary Lloyd, Linda Allgood, Faith

Fain, John Tennant, Linda Newton, and L. Autry May were accommodating throughout my

stay in Auburn. I especially thank my best friend, Joshita Majumdar, without whom I could

not have successfully done many thought experiments in my Ph.D. that led to the enlighten-

ment of many facts in my research. She gave me suggestions and solved technical problems

(both coding and writing) and was like a giant tree beside me who always supported and

believed in my mission and vision.

For all that I have learned, everything that I have gained, whatever I have achieved - I

owe my deepest thanks and express my gratitude to my parents and grandparents for their

constant love, support, and encouragement. Without you, I could not have been so happily

motivated.

vi

Table of Contents

Abstract . ii

Acknowledgments . v

List of Figures . ix

List of Tables . xii

List of Abbreviations . xiii

1 Introduction . 1

2 Automatic Test Pattern Generation – History and Challenges 6

2.1 Standard Terms in ATPG . 6

2.2 Critical Concepts of ATPG . 10

2.3 ATPG and its Evolution . 12

3 Machine Intelligence – General Theory and its Application in State-

of-the-Art ATPG . 19

3.1 Artificial Neural Network (ANN) . 21

3.2 Principal Component Analysis (PCA) . 23

3.3 Machine Intelligence (MI) Applied to Test 23

4 Machine Intelligence for Efficient Test Pattern Generation 26

4.1 Modus Operandi . 27

4.2 Experimental Results . 29

5 Training Neural Network for Machine Intelligence in Automatic Test

Pattern Generator . 35

5.1 Modus Operandi . 36

5.2 Experimental Results . 42

6 Unsupervised Learning in Test Generation for Digital Integrated Circuits 45

vii

6.1 Modus Operandi . 45

6.2 Experimental Results . 49

7 Principal Component Analysis in Machine Intelligence-Based Test Gen-

eration . 51

7.1 Modus Operandi . 52

7.2 Experimental Results . 60

8 Discussion and Future Work . 63

9 Conclusion . 68

Bibliography . 70

viii

List of Figures

2.1 The Schneider circuit [1]. 7

2.2 A combinational sample circuit comprises 3 PIs, 3 digital logic gates, and 1 PO. 10

2.3 A circuit graph comprises nodes to represent PIs, digital logic gates, and PO in

a circuit, shown in Fig. 2.2. 10

2.4 A good circuit. 11

2.5 A faulty circuit. 11

2.6 A search graph. 13

3.1 A traditional ANN consists of inputs (features), hidden layer neurons, and an

output neuron (label), connected through weighted edges. 22

4.1 Training patterns resulting from PODEM ATPG while generating the test 110X10X

for line 15 stuck-at-0 fault in Fig. 4.2. 28

4.2 ANN training patterns derived from a ATPG trial for line 15 stuck-at-0 fault in

Fig. 4.1. 29

4.3 Adding more training data decreases ANN error, but only to a certain point. The

point which minimized error in this study was 3,730,724 patterns. 31

4.4 As more hidden neurons are added to the ANN, error drops (ANN accuracy

improves), leveling off at 25 hidden neurons, only to increase again beyond 70

neurons. 31

ix

4.5 Percentage reduction in total backtracks by basic trained-ANN guidance (named

MAR) with respect to the conventional (distance or COP) heuristic guidance.

Backtracks are for all checkpoint single stuck-at faults tested by PODEM ATPG. 33

4.6 Percentage reduction in total CPU time by basic trained-ANN guidance (named

MAR) with respect to the conventional (distance or COP) heuristic guidance.

Backtracks are for all checkpoint single stuck-at faults tested by PODEM ATPG. 33

5.1 Backtracks in PODEM ATPG with various guidance mechanisms for 100 hard-

to-detect checkpoint stuck-at faults (including detected and redundant). 37

5.2 An example of ANN training data patterns with conflicts. Note the first three

patterns with identical inputs (features) and conflicting outputs (labels). 39

5.3 Example ANN training data patterns after resolving conflicts. The first pattern

here replaces the first three patterns of Fig. 5.4. 40

5.4 Flow chart of proposed training methodology, including sub-procedures, recursive

training by conventional heuristic-based PODEM, followed by “evolving” ANN. 41

5.5 Backtracks in PODEM ATPG with various guidance mechanisms for 100 hard-

to-detect checkpoint stuck-at faults (including detected and redundant). 43

5.6 Backtracks in PODEM ATPG with various guidance mechanisms for all check-

point stuck-at faults (including detected and redundant). 43

5.7 CPU times (ms) of PODEM ATPG guided by basic trained-ANN [2] and optimally-

trained-ANN [3] for all checkpoint single stuck-at faults (including detected and

redundant). 43

6.1 PCA for ISCAS’85 and ITC’99 benchmarks. Heuristic data are complemented

according to Table 6.2 assuming 0 output for all gates. The major PC, P0#1, is

shown in blue. 48

x

6.2 PCA for ISCAS’85 and ITC’99 benchmarks. Heuristic data are complemented

according to Table 6.2 assuming 1 output for all gates. The major PC, P1#1, is

shown in blue. 48

6.3 CPU time for detecting all faults with ATPG using conventional heuristic and

PCA-guidance. 49

6.4 Total backtracks for detecting all faults with ATPG using conventional heuristic

and PCA-guidance. Four circuits on the left required no backtracks and c880

required no backtracks only when PCA was used. 49

7.1 A two-dimensional scatter plot of “distance” and “COP CO” data for all signals in

training circuits c6288, c3540, and b05. A nearly circular concentration indicates

a weak correlation between two features. 55

7.2 A two-dimensional scatter plot of “SCOAP SC0” and “distance” data for all

signals in training circuits c6288, c3540, and b05. The elliptical concentration

indicates significant correlation between two features. 55

7.3 Backtracks required to find a test or verify redundancy for all checkpoint stuck-

at faults in benchmark circuits, arranged left to right in order of increasing logic

depth. 61

7.4 CPU time to find a test or verify redundancy for all checkpoint stuck-at faults

for circuits of Fig. 7.3. 61

7.5 CPU times (ms) of PODEM ATPG guided by four ML strategies for all check-

point single stuck-at faults (detected and redundant). 62

xi

List of Tables

4.1 Effect of input features on total backtracks in ANN-guided PODEM for 100
hard-to-detect faults. 32

4.2 Backtracks for 100 hard-to-detect faults by PODEM guided by conventional
heuristics and the trained ANN. 32

5.1 Performance of PODEM ATPG for all checkpoint faults in benchmark circuits,
guided by basic trained-ANN (chapter 4) [2] and optimally-trained-ANN (this
chapter). Boldface numbers show reduced backtracks by the latter. 44

6.1 Heuristic-based input selection criteria for backtracing through a gate to justify
output value. 47

6.2 Principal components (P0 and P1) for gate output = 0 and 1. Italicized decision
criterion (min or max) shows complemented heuristic data to achieve synchro-
nization. 48

7.1 Example of 8-dimensional feature (signal characteristic) data for first 5 signals of
training circuit c6288. 53

7.2 Example of features x = COP CO and y = distance in Table 7.1, and mean-
adjusted values for first 5 signals of c6288. Means < x > and < y > are computed
for all signals of training circuits c6288, c3540 and b05. 55

xii

List of Abbreviations

ANN Artificial neural network

ATPG Automatic test pattern generation

CNN Convolutional neural networks

COP Controllability and Observability Program

DT Decision tree

DUT Design under test

EST Equivalent State Hashing

FAN Fanout-oriented Test Generation

GRASP Generic Search Algorithm for Satisfiability Problem

HS-Trees Half-space trees

IC Integrated circuit

LR Linear regression

LSTM Long short-term memory

MARS Multivariate adaptive regression splines

MI Machine intelligence

ML Machine learning

mRMR Minimum redundancy maximum relevance

xiii

MSE Mean square error

OPTICS Ordering points to identify the clustering structure

PAM Partitioning around mediods

PC Principal components

PCA Principal component analysis

PCC Pearson correlation coefficient

PI Primary inputs

PO Primary outputs

PODEM Path-oriented decision making

RF Random forest

RNN Recurrent neural netowrks

s-a-0 Stuck-at-0

s-a-1 Stuck-at-1

SAF Stuck-at fault

SAT Satisfiability

SCOAP Sandia Controllability/Observability Analysis Program

SOCRATES Structure-oriented Cost-reducing Automatic Test Pattern Generation System

SOMs Self-organizing maps

SVD Singular value decomposition

SVM Support vector machine

xiv

TEGUS Test Generation Using Satisfiability

VLSI Very large scale integration

xv

Chapter 1

Introduction

Circuit testing is a critical part of the integrated circuit (IC) manufacturing process that

prevents the release of defective circuits, and it plays a pivotal role in maintaining trade-offs

between IC quality and manufacturing cost. An exemplary IC manufacturing test can avoid

shipment of bad ICs to the customer, and a poor IC manufacturing test can deteriorate the

quality and increase the manufacturing cost of the ICs. This increased IC manufacturing cost

must then be recovered from increased manufacturing and shipment costs of good ICs [4].

The central principle of testing is applying stimuli to manufactured ICs to excite and

detect defects created during silicon manufacturing. Binary patterns (or test vectors) are

applied to the circuit’s inputs, and then the response of the circuit is compared against

the expected response. If the response matches, one may say the circuit is free of any

defects. Therefore, the quality of testing can be measured by calculating the percentage of

the modeled defects detected by the test vectors. Therefore, a high quality test makes less

likely to ship a defective circuit.

The cost of testing circuits is a significant portion of IC manufacturing costs [5], and

as transistor density continues to scale upwards, circuit test costs are increasing and efforts

continue to keep these costs down. Testing costs are increasing for two reasons: test genera-

tion and test application. Test generation comprises computer programs that algorithmically

generate tests for the device under test (DUT), and this cost is incurred only once when de-

veloping the circuit. In contrast, test application costs are repeated for each manufactured

device, and the total cost is proportional to the number of circuits manufactured. The chal-

lenge of circuit test with regards to these two costs is to reduce costs while simultaneously

1) preventing the release of defective circuits and 2) not discarding good devices.

1

For the earliest generations of ICs, designers and test engineers resorted to functional

testing that was not fully automated, yet it was useful for exhaustively testing small to

medium-sized ICs. However, problems of functional testing became prolific when the logic

functions become large and complex. Let us illustrate this problem with the testing of a

ten-input AND function. Suppose an input pattern 0101010101 is applied and 0 is observed

at the output of the function. One may conclude that gate under test is neither a NAND

nor an OR function because it violates the function of NAND and OR functions. Again, an

input pattern 1111111111 is applied to ensure the gate under test is not a NOR function

because it violates the function of NOR. Still, one can not guarantee the given gate under

test will function correctly as an AND gate for all 210 = 1024 possible input patterns. But,

one can conclude that the gate with ten inputs under test is AND by checking each entry of

the truth table, and although it is possible with ten inputs, such a test will be too long and

impractical for an actual circuit with many input lines.

In 1959, Eldred [6], Galey et al. [7, 8], and several others established structural test-

ing built around the stuck-at fault model and developed automatic test pattern generation

(ATPG) algorithms to create test vectors. ATPG is a classic very large scale integration

(VLSI) testing problem. Typically, the problem can be formulated as, “a fault is given, find

a test.” Since the first digital circuit was created, several testing methods were developed to

test if the logic worked in an intended way. As digital circuits became complex following the

trend of Moore’s law [9], there was an impetus to research various ATPG algorithms that

can find efficient test vectors.

Several noteworthy theoretical studies [10–12] show that test generation for combina-

tional circuits belongs to the class of problems called NP-complete, suggesting that no test

generation algorithm with a polynomial computation time complexity is likely to exist. One

may have to try all possible circuit input vectors to find a test for a fault, but this is im-

practical for modern, large circuits, making ATPG difficult. In practice, the worst-case

time complexity of test generation for a circuit is non-polynomial (exponential), and test

2

generation algorithms can achieve slower time growth by using heuristic search techniques

or subroutines in ATPG. A sub-step in many ATPG algorithms is to trace backward (i.e.,

“backtrace”) from an interior location and select a circuit’s input to assign to remedy the

exponential complexity of test generation algorithms. This choice may or may not lead to

a test, and in the latter case, one may have to backtrack to undo the circuit’s input as-

signment. To reduce the possibility of backtracking, heuristics based on designer’s intuition

choose tracing directions when backtracing.

Creating an effective heuristic for all situations in ATPG may be difficult, but recent

advances in MI can create effective heuristics with minimal programmer effort. MI is a

category of algorithms that are automatically programmed based on past experience. It is

best applied to problems that cannot be solved by deterministic decisions or, more specif-

ically, where the designer’s deterministic decisions cannot be easily programmed. Recent

studies applying MI to circuit testing [13] have yielded improved algorithm output quality

and reduced algorithm CPU time, and I foresaw the same advantages for ATPG.

The novelty in this dissertation entails replacing conventional heuristics of an ATPG

algorithm with new heuristics based on circuit topology and testability measures combined

through MI. MI techniques – artificial neural network (ANN) and principal component anal-

ysis (PCA) – guide backtracing decisions in ATPG that traditionally relied on a human-

dictated heuristic. Results show fewer backtracks, reduced CPU time, and potential for

exploring and combining a greater variety of ATPG inputs.

This dissertation is divided into eight additional chapters. Chapter 2 introduces the

standard terms of ATPG, the key concepts behind generating tests, including the fault sen-

sitization and propagation process, and ATPG algorithms’ evolution. Chapter 3 introduces

the idea of MI, an introduction to ANNs and PCA, prior work in the application of MI to

testing, and how MI is currently applied to ATPG.

Chapter 4 examines MI’s ability to enhance ATPG by reducing backtracks. In lieu of

a conventional heuristic to decide backtracing directions, this chapter uses an ANN trained

3

through PODEM on hard-to-detect faults. Training data contains topological data, testa-

bility measures, and backtracking history, and when trained on this data, the ANN guides

backtracing in directions unlikely to backtrack. When trained with a single feature (e.g.,

Controllability and Observability Program (COP)), ATPG performance is comparable to

conventional PODEM, and using multiple features further reduces backtracks and ATPG

CPU time. This chapter establishes the feasibility of “basic trained-ANN guidance” capa-

bility for ATPG [2].

Chapter 5 presents a training method for ANNs for ATPG. Unlike in Chapter 4, ANNs

combine any number of known multiple ATPG inputs, such as input-output distance (logic

depths), gate type, and testability measures like COP, as heuristics and guide PODEM to find

tests with reduced backtracks in reasonable CPU time, but under ad-hoc training methods,

some circuits obtained degraded fault coverage; the unaddressed challenge was finding useful

data that improved ATPG performance for such circuits. The proposed training method

in this chapter recursively collected data on hard-to-detect faults and discarded data that

did not improve ANN quality; the method both optimized ANN hyperparameters, and the

resulting ANN reduced backtracks. This chapter develops the concept of “optimally-trained-

ANN guidance” for ATPG [3].

Chapter 6 introduces unsupervised learning that can combined any number of known

ATPG inputs, such as input-output distance (logic depths), and testability measures like

COP and Sandia Controllability/Observability Analysis Program (SCOAP) values through

PC analysis, and then the major PC can guide ATPG choices. Some ATPG inputs data were

re-calculated and two major PCs were obtained. These PCs guided backtrace directions in a

PODEM ATPG program, and for most circuits, the number of backtracks either matched the

best of the three heuristics or was lowered. This chapter introduces the principal component

analysis (PCA) to combine multiple heuristics for “PCA-guidance” in ATPG [14].

Chapter 7 introduces Chapter 5’s ANN feature reduction methodology to improve the

ANN complexity and guide decisions that otherwise rely on heuristics. The ANN analyzed

4

gate types, logic depths, fan-outs, and testability measures to choose backtracing directions

and to make circuit input assignments. When treating these values as a multivariate statistics

problem, extracting the PCs, and re-training the ANN with PC as features, the complexity of

the ANN is reduced and ATPG efficiency is enhanced. This chapter combines the techniques

investigated in the previous three chapters. Here, the ATPG relies on “PCA-trained-ANN

guidance”. The ANN is trained with sample ATPG data combined with several principal

components derived from the heuristic data of training circuits. The result, not surprisingly,

is the best achieved in this research so far [15].

Finally, Chapter 8 summarizes this dissertation and discusses open challenges yet to

be addressed by ML in testing. Chapter 9 concludes this dissertation with possible future

research directions that may explore the latest computing technologies–such as quantum

algorithms–to apply to test generation problems.

5

Chapter 2

Automatic Test Pattern Generation – History and Challenges

This chapter introduces standard terms used in ATPG research, the critical concepts

of ATPG, and ATPG algorithms’ evolution over the past six decades. Specifically, this

chapter informs the reader about the typical VLSI testing-related standard terms required

to understand the ATPG process. The following section gives a synopsis of the fault de-

tection processes in ATPG and the final sections explain the important ATPG algorithms,

their problems, solutions to fix them, and detail on using similar solutions in other ATPG

algorithms.

In the past, the design and test of digital ICs was classified as a tedious process, and a

significant part of this process was test generation, due to its manual nature. Various ATPG

algorithms played a critical role in amplifying the quality of manufactured ICs. These algo-

rithms primarily focused on different ways to reduce the number of test patterns needed to

test a digital circuit: these patterns are the combination of binary logical patterns assigned

to circuit inputs needed to detect faults in the circuit, also known as tests. Computers use

ATPG algorithms to find tests from all possible patterns by using various circuit-related

information to determine the circuit inputs’ values that form tests. These algorithms be-

came more efficient and robust with more research, and with more ways to use the circuit

information.

2.1 Standard Terms in ATPG

Before going into more detail, one must be familiar with the standard terms in ATPG

used frequently throughout this dissertation.

• 0: – A logic value 0 in both the faulty and fault-free circuits.

6

1

2

3

4

5

6

7

8

9

10

11

12

Stuck-at-0

Figure 2.1: The Schneider circuit [1].

• 1: – A logic value 1 in both the faulty and fault-free circuits.

• Fault: When a failure in a circuit causes a difference in its node’s logical value.

• D: – A logic value 1 in the properly functioning circuit, but a logic value 0 in the

faulty circuit.

• D: – A logic value 0 in the properly functioning circuit, a logic value 1 in the faulty

circuit.

• X: – Unassigned or unknown value.

• Schneider circuit: A circuit with reconverging fanout named after the engineer Peter

R. Schneider, as shown in Fig. 2.1. In 1967, J. P. Roth used this circuit to find tests

for those failures that are not detected by other old sensitized path algorithms.

• Circuit graph: A representation of circuit (e.g. see Fig. 2.2) comprising of nodes and

edges, as shown in Fig. 2.3.

• Primary inputs (PIs): The externally accessible input pins of a circuit-under-test

through which logical signals can be stimulated.

7

• Primary outputs (POs) : The externally accessible output pins of a circuit-under-

test through which logical signals can be observed.

• Goal: The node of interest in a circuit which can hold a desired value.

• Search space: A set of all possible input test patterns that may be assigned to primary

inputs of a circuit.

• Search graph: A tree structure (see Fig. 2.4) built using all possible choices for circuit

input patterns.

• Backtrace: Moving a goal backward from a goal until a PI is reached and a logical

value is assigned to the primary input.

• Backtrack: In the search graph of a circuit, when a conflict occurs because a goal

cannot not be satisfied, and it must be resolved by alternatively assigning previously

assigned PIs.

• D-Frontier [16]: The set of digital gates that have one or more stuck-at values (D or

D) on their inputs and an X (or unknown) value on their output.

• Fanout: A circuit node that drives inputs of multiple digital gates.

• Fault coverage: The number of faults detected by a set of test patterns, expressed

in percentage of all faults.

• Reconvergent fanout: When branches of two or more fanout nodes reconverge as

inputs to a gate. The gate is called the reconvergence point, while the fanout node is

called the reconvergent fanout.

• Free line: A circuit node that has no reconvergent fanout nodes among its predecessors

(i.e., any path from gate inputs to any PI).

8

• Headline: A free line that drives a reconvergent fanout node. In other words, the

root of a tree of free lines in the circuit.

• Implication: The process of determining the values implied by already assigned values

in a circuit.

• Implication Stack: A data structure that keeps track of all the implied signals and

also records assigned PIs that have possible alternative values [16].

• Justification: The process of assigning PI values to fulfill a goal; essentially similar

to backtrace with conflict resolution.

• X-path-check: Verifying whether at least one D-frontier gate can have its D/U input

reach a PO. Otherwise, the algorithm will backtrack.

• Single-path sensitization: Choosing/sensitizing a path from the origin of a fault to

the circuit output by assigning values to gates’ inputs along the path such that the

effect of the fault must propagate to the output.

• Single fault assumption: One and only one fault is present in a circuit at a time.

• Stuck-at fault: A fault model in which a fault site has a permanent binary value

(0/1) due to the presence of a fault.

• Heuristics: Any approach to solving a problem using experiences to develop solutions

that may not be optimal.

• Backward implications: Determination of a logic gate’s possible inputs for given

desired output value.

• Forward implications: When a logic gate’s inputs’ are significantly labeled so that

logic gate’s output can be determined.

9

A

B

C

D

E

F G

I

N

P

U

T

S

O

U

T

P

U

T

S

Figure 2.2: A combinational sample circuit
comprises 3 PIs, 3 digital logic gates, and 1
PO.

A

B

C

D

E

GF

Figure 2.3: A circuit graph comprises nodes
to represent PIs, digital logic gates, and PO
in a circuit, shown in Fig. 2.2.

• Branching operation: An algorithm to determine which input variable will be set

to what value (0 or 1) at each level of the binary decision tree.

• Bounding operation: An algorithm to avoid exploring large portions of a binary

decision tree by restricting the search decision choices due to unnecessary exploration

of the tree.

2.2 Critical Concepts of ATPG

A digital circuit model is used to illustrate the generation of circuit tests using fault

sensitization and propagation methods. Consider the sample circuit as shown in Fig. 2.2,

also illustrated by the graph in Fig. 2.3. The nodes in the graph represent digital gates, and

graph edges represent interconnects/wires. The inputs and outputs to and from the circuit

are represented by PIs and POs, respectively. PIs are the only places where test patterns

can be applied, and POs are the only places where the effects of the test patterns can be

observed.

Test pattern generation is the process of finding an input test pattern set that thoroughly

tests the circuit. These test patterns are known as a test set, and the set causes all faulty

circuits to respond differently from good ones at the POs. In other words, a failure (i.e.,

a difference between a node’s expected value and a node’s actual value) is present when at

least one PO’s logical value is different from its expected value. A test set must consist of

10

A

B

C

D

E

F Z

Figure 2.4: A good circuit.

A

B

C

D

E

F Z

S-a-0

Figure 2.5: A faulty circuit.

binary patterns that generate difference at a fault location’s logic value, also known as fault

sensitization. This difference in fault location’s logic value must also be propagated/revealed

to one or more POs, also known as fault propagation. During sensitization and propagation,

the internal signal assignments are justified by assigning binary logical values to PIs to

generate the test set.

Test pattern generation time is the biggest challenge for larger circuits, and therefore

testing introduces a few simple assumptions about the type and frequency of faults. Test

generation assumes stuck-at faults (SAF) are the only failures present in a circuit. This type

of fault considers itself a node in the circuit that permanently assumes 0 or 1. Depending

upon the node’s value, i.e., if it is 0, known as stuck-at 0 (s-a-0) and if it is 1, known as

stuck-at 1 (s-a-1). It is assumed thay only one SAF is present in a faulty circuit. This single

SAF in a circuit may be impractical in reality, but it has been useful in practice because

detecting a large amount of single SAFs will eventually result in a test set that detects a

high percentage of all defects [17,18]. Therefore, test pattern generation can be redefined as

the task of generating a test set that detects all detectable single SAFs.

Consider an example of a good circuit, shown in Fig. 2.4, having no fault on the gate E’s

output, and the same circuit having a s-a-0 fault on the gate E’s output, shown in Fig. 2.5,

which is known as a faulty circuit. A test pattern can be found for the good circuit that

produces 1 at gate E’s output. In the faulty circuit, gate E’s output is s-a-0, which is opposite

to the good circuit value. To set 1 at the gate E’s output, B and C must be set to 1 to

11

sensitize the fault since the faulty and fault-free circuits have different values at the fault

location. The fault sensitization procedure can be summarized as:

• Set B to 1.

• Set C to 1.

The next step is to propagate and observe the difference produced by the fault sensiti-

zation process to the PO. Since the output of gate F is connected to a PO, the input from

gate D must be set to 0 to allow the s-a-0 fault on the input of gate F to propagate through

it. To produce a 0 at the output of gate D, one of its inputs must be set to 0, and since B

is already set to 1, this means A must be set to 1. The fault propagation procedure can be

summarized as:

• Set D to 0.

• Set A to 0.

2.3 ATPG and its Evolution

As the fault sensitization and the fault propagation processes are familiar, the next step

is to automate them, and ATPG algorithm achieves this automation. ATPG is a set of tasks

performed to generate test patterns to test a circuit [4]. The problem of ATPG complexity

can vary from pseudo-random PI assignments to complicated searching techniques, but most

algorithms have the following steps in common:

1. Pick a not-yet detected fault.

2. Develop a search graph for a circuit with the picked fault.

3. Search the search space until one of the following conditions is met:

(a) a test is found.

12

E B C D

A

1

0

1

0

1

0

1

0

1

0

Primary

input

Figure 2.6: A search graph.

(b) the search space is exhausted.

If the algorithm stops at step 3(a), the test is obtained with the target fault and expected

output. If the algorithm stops at step 3(b), then no test exists and the corresponding fault

is undetectable or redundant.

In this dissertation, I have considered two ATPG algorithms for discussion: the D

algorithm and Path-Oriented Decision Making (PODEM) algorithm. The representative

algorithms differ in the following ways: 1) the size of the search space, 2) their search

strategy, and 3) heuristics used to guide the search. The size of the search space and the

search order are essential since they determine the upper bound on the search time and the

impact on the search time, respectively. Therefore, the search strategy and heuristics used

to guide the search are equally important to the search space size.

2.3.1 The D Algorithm

Roth’s D algorithm [1] was the revolutionary algorithm that conceptualized ATPG by

defining the five values in D algebra (see Section 2.1) and by giving a complete search

algorithm (i.e., it finds all possible tests). Earlier work on ATPG by [19] failed to generate

tests for the Schneider circuit [1] using the single-path sensitization process. Later, the

work of [20] was successful and gave a textual background of the testing aspects of the D

algorithm, while Roth gave a detailed mathematical analysis in his first paper [1] and also

showed the generation of a test for the Schneider circuit [1]. The D algorithm assigns values

13

to nodes that depend on their locations in the search space, and the search order depends

on the implementation since the strategy was ad hoc for searching order.

In the D algorithm, a fault cone is found by forward tracing the circuit topology from

the fault location to the POs of a circuit. These POs form an inward cone towards the PIs

that are responsible for activating and propagating the fault. The fault detection sequence

is illustrated by taking the steps below:

1. The algorithm initializes all nodes in a circuit to X after constructing the search graph

of the circuit.

2. A target fault is chosen and a value D or D is assigned to the fault location for a s-a-0

or s-a-1 fault, respectively.

3. To activate the fault, the algorithm finds a non-conflicting set of PI assignments, then

one can say the fault is sensitized.

4. The activated fault is propagated to at least one of the POs so that the fault site’s value

i.e., D or D can be observed. To do this fault propagation, the algorithm preserves a

list of gates also known as D-frontier and gates are chosen to drive the fault effect to

one of the POs.

5. The implications of the above assigned values are propagated forward and backward

in the circuit.

6. After this process, the algorithm checks to determine whether a test is generated. If so,

the algorithm terminates, otherwise the pursuit of search continues until the algorithm

assigns all probable values to every node in the search graph of the circuit.

If a conflict is encountered while assigning values at the circuit’s nodes, one may have to

backtrack [1]. A backtrack [16] is performed when either one of the two conditions occurs: 1)

D-Frontier set becomes empty, implying that there is no way for the fault to propagate to any

14

PO, or 2) a conflict occurs, meaning that if the objective for a signal is 0 or 1, instead it is set

to 1 or 0, respectively. A backtrack is performed by checking if there is any alternative value

possible for the gate’s inputs and, if so, assign an alternative value and push the assigned

gate’s input into the implication stack. If there are no more alternatives left, the assigned

gate’s input is popped off the implication stack and is assigned to X. If the search graph is

exhausted, then the fault is redundant and no test exists.

D algorithm is a complete ATPG algorithm, i.e., it finds tests for all possible faults in a

circuit. However, this algorithm has downsides. First, it is long, difficult to program, and has

high algorithmic complexity (2n where n is the number of nodes in a circuit) for large circuits

as it does forward implications on all internal signals as a part of fault sensitization and

propagation processes. Therefore, one may conclude ATPG is an NP-complete problem [10–

12], as the search algorithm’s complexity increases exponentially with circuit size. Second,

it is inefficient for circuits containing XOR gates and re-convergent fanouts [21] as the D

algorithm’s search is too directionless.

2.3.2 PODEM

Goel observed that the search graph of D algorithm consists of every node in a combi-

national circuit, and improved the search efficiency by focusing on PIs since all nodes are a

function of PI nodes [21]. The main steps of PODEM are as follows:

1. Find a fault cone followed by establishing a D-frontier in the same way as in the D

algorithm.

2. Set a line value objective that establishes or advances the D-frontier toward a PO.

3. Backtrace from the objective followed by backward implications in a stack until a PI

is reached and assigned a logic value.

4. Perform forward implication.

15

5. If there is conflict in meeting the objective (expect 1 but get 0, or vice-versa), the D-

frontier becomes null, or X-path-check fails, then perform a backtrack on the assigned

PIs.

6. Repeat until the D-Frontier reaches a PO, i.e., a test is found, or if backtracking finds

that no test is possible, i.e., the fault is redundant.

The computational barrier of the D algorithm was solved by reducing the total search

space of a circuit. Suppose there is already a set of PI assignments and another PI is assigned

a value to cause conflict. To resolve this issue, one would have to try the complement of

the current PI value and determine whether PI assignment will ever meet the goal. If the

complementary value also conflicts, then the goal can never be achieved by the existing PI

assignment, and one may need to backtrack. One can reduce the search space if such conflicts

arise, since there are no other PI assignments left at this point. Overall, the search space

is reduced from 2n, where n is the total number of signals (gates and PI) in the circuit, to

2#PI where #PI signifies number of PIs.

PODEM allows the use of various heuristics to speed up the search for a test and checks

to prevent unproductive searches through the following characteristics. First, the concept

of X-path-check was introduced. D algorithm may try to find a test even when the entire

D-frontier is blocked, but PODEM’s X-path-check verifies that there is at least one D-

frontier gate with access to a PO. Otherwise, it will backtrack. Second, PODEM originally

proposed a heuristic that uses the distance between the PIs and signal sites to identify easy

or hard to control inputs of logic gates while backtracing, as opposed to D algorithm which

chose a random gate input. Likewise, several other heuristics based on circuit topology were

proposed later.

2.3.3 Heuristic Guidance for ATPG

Combinational ATPG algorithms use branch and bound searches to find tests for a fault

in a circuit by traversing the entire search graph. In a search graph (also known as binary

16

decision tree), each vertex i.e., a “branch” represents a line (represented by a graph node)

in the circuit to binary logic value 0 or 1, which is known as branching. As the size of the

circuit increases, the height and width of the search graph can also increase. Therefore,

exploring the entire search graph may be impractical for larger circuits and creates trouble

when making decisions on what to assign circuit values. The bound operation restricts

the search decision space (i.e., length and height of the search graph) by applying suitable

heuristics. Several other ATPG algorithms summarized in Section 2.3.4 have a search graph

of size 2#PI , but they attempt to find tests faster by inserting subroutines to filter the search

graph or by using heuristics to more quickly find a test. It is this second aspect of ATPG

that I focus on in this dissertation.

2.3.4 Other ATPG Algorithms

The Fanout-oriented Test Generation (FAN) algorithm [22] proposed improvements over

PODEM by introducing additional heuristics: immediate implications of signal assignments,

unique sensitization, headlines, and multiple backtraces to restrict the search space. Their

main contribution is a breadth-first backtrace as opposed to depth-first strategy in PODEM.

Dominator ATPG programs [23] provided further improvement. A dominator is a signal

through which a fault’s effect must pass to reach a PO. Signals controlling dominators within

the fault effect cone must be assigned non-controlling values to allow the fault’s effect to

propagate. These assignments are compulsory and can be determined by circuit topology

without search.

The Structure-oriented Cost-reducing Automatic Test Pattern Generation System (SOC

RATES) [24–26] program used static and dynamic learning to generate tests. Static learning,

a form of preprocessing, assigns all signals with 0/1 and saves implications. The same

procedure is used dynamically at each step in the search algorithm to find a test. Dynamically

learned ATPG is costly but provides more scope to identify the implied signals that further

help to find a test quickly.

17

Equivalent State Hashing (EST) [27–29] used a form of dynamic programming. This is

the only ATPG algorithm that finds a test for a target fault by taking help from the tests of

previously detected faults. EST introduced E-frontier, which signifies a sub-set between the

circuit lines being already assigned and not assigned, i.e., X (also includes the D-Frontier).

E-frontiers are generated at each decision step of ATPG and stored. ATPG continues by

comparing the current E-frontiers and prior-learned E-frontiers by a circuit decomposition

process. EST also uses multiple parallel backtraces of the ATPG, which eventually speeds

up the process.

A recursive learning [30] program was introduced to improve the FAN algorithm by

applying SOCRATES-style learning recursively to signals as a part of implications. It has an

advantage over SOCRATES due to it’s recursive (i.e., repetitive) nature. The test generation

time for recursive learning may grow exponentially, but the memory grows linearly with

recursion depth.

TRAN [31, 32] formulated ATPG as a Boolean satisfiability (SAT) problem. It uses

implication graphs and transitive closure for faster signal assignments and fewer backtracks

than other ATPG algorithms. Several other authors have also used satisfiability (SAT) in

their ATPG algorithms [33–35]. Larrabee [33, 34] used path variables to find the solution

efficiently. Other SAT-based ATPG programs include Generic Search Algorithm for Satisfia-

bility Problem (GRASP) [36], Test Generation Using Satisfiability (TEGUS) [37], and those

reported by Henftling et al. [38], Larrabee et al. [34], and Tafertshofer et al. [39].

18

Chapter 3

Machine Intelligence –

General Theory and its Application in State-of-the-Art ATPG

This chapter discusses the general theory of the advance technology of MI (or ML),

followed by a listing of a wide variety of computational models of MI. Afterward, I chose

two specific models, i.e., ANNs and PCA, to use in my dissertation, thus I present a brief

reason behind selecting these MI models in this chapter. The following sections talk briefly

about the basic theory of ANNs and PCA, followed by a brief mention of the application

of MI in VLSI testing. Finally, this chapter presents an illustration of how MI was used in

ATPG a few decades back followed by an overview of the application of ANNs and PCA in

my dissertation.

MI describes a broad category of algorithms that automatically program themselves

through experience. This experience can come from unclassified data in which the program

finds patterns, which is unsupervised learning; or the experience can come from a database

of training problems with desired outcomes, which is supervised learning; or the experience

can come from iterative re-evaluation and adjustment, which is reinforced learning.

Supervised learning models are trained with inputs where the desired outputs are known.

Supervised learning uses patterns to predict labels on unlabeled data and is used in applica-

tions where the history of data predicts likely future events. A supervised learning algorithm

receives inputs along with corresponding correct outputs; the algorithm learns by compar-

ing its outputs against and correct outputs to find errors and modifies the learning model

accordingly to minimize the errors. Popular learning models like support vector machines

(SVMs), one-class SVMs and one-class neural networks, decision trees (DTs), random forests

19

(RFs), linear regressions (LRs), multivariate adaptive regression splines (MARS), logistic re-

gressions, adaboosts, ANNs, convolutional neural networks (CNNs), autoencoders, recurrent

neural networks (RNNs), long short-term memories (LSTMs), half-space trees (HS-Trees).

Unsupervised learning models are used when the training data has no history of cor-

rect outputs (labels). The goal of the learning algorithm is to explore the data and find

some structure or patterns within it. Popular learning models include K-means clustering,

partitioning around medoids (PAMs), ordering points to identify the clustering structure

(OPTICS), PCA, minimum redundancy maximum relevance (mRMR), self-organizing maps

(SOMs). These methods are typically used to segment text topics, classify items, and identify

data outliers.

The crux of reinforcement learning is to capture the critical aspects of the real prob-

lem that involves a learning agent interacting with its environment to achieve a final goal.

Reinforcement learning problems are closed-loop problems because the learning system’s in-

teraction with the environment decides its later inputs. However, the learner system is not

told about the actions taken in any form of ML but instead must discover actions that give

the most reward by trying them out. The characteristics such as being closed-loop effec-

tively, no direct instructions as to what actions to take and their consequences, including

reward signals to play out over extended periods,are the three most essential features of a

reinforcement learning problem. In a nutshell, reinforcement learning problems pertain to

what to do and map situations to corresponding actions to maximize a numerical reward

signal.

In this dissertation, ANNs (the supervised learning model) and PCA (the unsupervised

learning model) are the learning models that act as ATPG heuristics. ANNs have been

demonstrated to be an effective and possible means to solve past unsolvable problems. With

time, ANNs have become resilient with the availability of data. These days, ANNs are

widely used to solve problems where one may not need an optimal answer, but existing

methods to solve the problems are inaccurate or unmanageable to calculate. On the other

20

hand, PCA became popular as the storage of data become expensive. Data mining and

pruning techniques are sought to meet the challenges of storage and computation. Despite

the discovery of the PCA almost a century ago [40,41], its demand burgeoned when computer-

based applications spread across multiple disciplines.

3.1 Artificial Neural Network (ANN)

In 1943, neuroscientists studied how to mimic biological neurons, and ten years later,

psychologist Frank Rosenblatt further improved the idea by developing a single-layer neural

network for supervised learning called the perceptron. The end result of this research is

ANNs [42], which are MI architectures modeled after the human brain. One of the most

common forms of ANN is the “feed forward neural network.” It is a popular structure used for

solving scientific and engineering problems in which a neural network starts calculating from

inputs and works its way to outputs without any loops or other convolutions [43]. The basic

process of training an ANN consists of selecting an ANN structure, generating training data

by solving sample problems using a known method, and training the ANN with this data.

After this, the ANN will be ready to handle problems of a similar nature. In this dissertation,

I used an ANN consisting of an input layer, a single hidden neuron layer, and an output

neuron in the [0,1] range. This is illustrated in Fig. 3.1. The values of the inputs, referred

to as features, X0, X1, · · · , XM , were normalized to [0,1] to facilitate the ANN training. X0

is fixed at 1.0 and is a neuron called the bias input. Bias inputs can shift the activation

function by adding a constant to the inputs. This bias can be thought as analogous to the

role of a constant in a linear function where constant value effectively transposes the line.

Hidden neurons Y1, Y2, · · · , YN and an output neuron Z, called the “label”, evaluate their

outputs using respective inputs. The output value of a neuron is denoted as xi, yi or z. The

directed edge from any neuron A to another neuron B, denoted by w(A,B), carries a signed

floating point value. The output of any neuron Yj is calculated as

21

Figure 3.1: A traditional ANN consists of inputs (features), hidden layer neurons, and an
output neuron (label), connected through weighted edges.

yj = f(
M∑
i=1

xi × w(Xi, Yj)) (3.1)

where f is the activation function [44] for which a sigmoid function [45] (see equation 3.2)

was used.

f(v) = 1− 1

1 + e−v
(3.2)

A training data pattern consists of inputs (features) and expected output (label) values.

During training, the output label is computed for the given input features and compared

to the expected value of output. The square of the difference between the computed and

expected values of output neurons averaged over all training patterns is the mean square

error (MSE). Weights are adjusted in successive training “epochs” (i.e., one cycle through

the entire training data set) to minimize this MSE. This error can be further minimized by

tuning hyper parameters (i.e., any parameter in the ANN configuration that is not directly

learnable by training) like the number of hidden layers, number of hidden neurons per hidden

layers, learning rates, activation functions, etc. Adam [46] is a typical optimizer prominently

22

used for feed-forward ANN structures. Subsequent chapters will describe the process of

training data generation and applications.

3.2 Principal Component Analysis (PCA)

PCA is a statistical technique that drastically reduces data dimensionality through

new variables known as principal components (PCs). Each PC is a linear function of the

original data that maximizes the variance of uncorrelated data while preserving statistical

information. Evaluating PCs instead of original data narrows down decision making to an

eigenvalue/eigenvector (also known as eigen decomposition method) or singular value decom-

position (SVD) [47]. PCs can be chosen based on either a covariance matrix or correlation

matrix, and the choices are independent of any pre-defined functions [47]. PCs represent

the same amount of information as the original data, i.e., the original data can be restored

from the PCs. Eigen decomposition method is a primitive method (used by [41]). It is fairly

simple to understand the mathematical background, but it is complex to code in python.

Conversely, SVD is an advanced technique, fairly simple to code, but it is complex to un-

derstand its detailed mathematics. SVD avoids potentially serious numerical issues of eigen

decomposition methods and therefore is the preferred method. This dissertation uses SVD

and the eigen decomposition method to obtain PCs based on a parameter known as explained

variance [48] and eigen values [47], respectively, to gain the first-hand experience of both the

methods.

3.3 Machine Intelligence (MI) Applied to Test

The work in [49–51] showed that MI has been quite popular in the field of research

and development of IC testing and provides enough motivation to apply MI to solve the

problem specific to this dissertation. These surveys studied ML-based analog and RF circuits

testing [52–56], digital circuit testing [2, 3, 13–15, 57–81], memory testing [82–84], recent

applications of ML to hardware security, IC counterfeiting, and devices based on emerging

23

technologies [85–105]. This dissertation discusses about specific ML models (ANN and PCA)

used to guide ATPG algorithmic decisions to generate tests for digital circuits.

ANN was used to model a digital circuit where a bi-directional binary neuron represents

the state of a signal [81]. In the study [81], the stable state of the network is the minimum

energy state, and this energy state was modified with a fault. Thus, finding the minimum

energy state gave a test in the form of the states of input neurons of the neural network.

This application to ATPG requires either a physical neural network or a software model. In

either case, the network energy function depends on many variables, and the function has

many local minima, which makes the search for a test (i.e., finding the optimal criterion

of the network energy function finds a test) for some faults is rather difficult. Another

application of MI was related to the heuristic part of ATPG algorithms that use different

heuristics, such as the distance between the PIs and outputs to signal sites, testability

measures, voting of digital logic values on fanout stems depending on its branches, and

other learning techniques using implication graphs, etc. to speed up the search process.

In 1985, Patel and associate [106, 107] conducted experiments to study the effectiveness of

different testability measures as heuristics for PODEM and developed a new strategy for test

generation. They suggested that rather than using a single testability measure with a high

backtrack limit, it is more efficient to use multiple testability measures successively with a

lower backtrack limit.

In this dissertation, my approach is entirely different than previous works [106, 107]: I

use ANNs and PCA as MI models, I rely on the conventional digital circuit model and I use a

search algorithm that–given unlimited computing resources–guarantees a test in significantly

reduced CPU time by reducing the number of backtracks. The ANNs and PCA allow me

to combine multiple circuit topological information and testability measures, create a novel

heuristic, and guide the search toward a test without a backtrack limit as a stopping criterion

while avoiding unproductive decisions. To my knowledge, such an approach has never been

24

investigated. My research uses PODEM as an ATPG algorithm to explore a novel MI-

based heuristic for finding the direction of backtrace from a desired objective. ANN-guided

PODEM [2, 3] or PCA-trained-ANN guided PODEM [15] can learn from ATPG with any

or no fixed set of rules to guide tracing backward and develop an intelligent system to use

topological circuit information; this circuit information includes the type of a gate that drives

a signal node on which a backtrace is to be performed, the existence of fanouts, and testability

measures such as distance [21], COP [108], SCOAP [109]. PCA-guided PODEM [14] can

combine any number of known circuit information to develop unsupervised learning-based

test generation system. The measure of success of these experiments will be fewer backtracks

and reduced CPU time compared to conventional heuristics-based PODEM ATPG.

25

Chapter 4

Machine Intelligence for Efficient Test Pattern Generation

This chapter proposes replacing conventional backtracing heuristics in ATPG with

ANNs. I developed procedures for collecting training data, training an ANN, and inte-

grating an ANN-based heuristic into the ATPG algorithm. My training data contained

topological and functional features used by several existing ATPG heuristics and used them

to train an ANN that then guided an ATPG to outperform any conventional heuristic. Al-

though I restricted myself to the PODEM [21] ATPG algorithm to demonstrate the efficacy

of the ANN-based heuristic, my technique can be applied to any ATPG algorithm that traces

through a circuit. The specific contributions of this chapter are:

• A description of ATPG trials to obtain training data and then train an ANN.

• An evaluation of ANN-based ATPG’s ability to reduce backtracks and a comparison

against conventional heuristics.

• A comparison against the CPU time of ANN-based ATPG against conventional heuris-

tics, which was reduced despite increased tracing complexity.

The remainder of this chapter is organized as follows. Section 4.1 discusses my approach

to train an ANN to guide backtracing in ATPG. Section 4.2 gives experimental results on

ANNs trained by several sets of training data, selecting one that produced the best PODEM

ATPG result, and also evaluates the performance of the selected ANN-based PODEM on

benchmark circuits against PODEM using conventional heuristics.

Major portions of this chapter are taken verbatim from my previously published research

work [2].

26

4.1 Modus Operandi

I selected an ANN configuration as discussed in Section 3.1, generated training data

by applying a PODEM program that did not use any specific heuristic to a set of circuit

inputs, and trained the ANN. The training data contained patterns of input neuron values

and the expected output values. Initial part of training determined the appropriate number

of neurons for the ANN and the required number of training patterns that minimized the

training error.

4.1.1 ANN input features and output label

For a circuit line, the input features of the ANN contained the following:

• The type of gate driven by the line represented as one-hot encoded format, e.g., AND

= 000000001, NAND = 000000010, OR = 000000100, etc. If necessary, the number of

code bits can be expanded.

• The COP controllability, CC (i.e., probability of line being logic-1), and observabil-

ity, CO (i.e., probability that line value is observed at PO). A one-time computation

through the circuit found approximated probabilities for all lines [108], and recalcula-

tion was not required during ATPG.

• The circuit level of line being traced, i.e., the shortest distance to any PI from the line.

This value was normalized in the range [0,1] by the maximum depth of the circuit.

During backtrace, the ANN returned the probability of backtracing on a given line will

result in a test (i.e., not be undone by a backtrack). When backtracing through a gate with

multiple inputs, the ANN was evaluated at each circuit input, and the input which was most

likely to result in a test was chosen. This was akin to COP-based or level-based easy-hard

heuristic [4] that selected the line with the largest/smallest value depending on the desired

characteristics.

27

1

2

3

4

5

6

7

8

9

11

10

12

13

14

16

Stuck-at-0

15

Figure 4.1: Training patterns resulting from PODEM ATPG while generating the test
110X10X for line 15 stuck-at-0 fault in Fig. 4.2.

4.1.2 ANN training data generation

Training data was obtained from successful (test found) and unsuccessful (backtracked)

backtraces from ATPG trials. All backtraces to a PI assignment that generated a test for

the target fault were labeled as “success” (z = 1) and backtraces that were undone by

backtracks were labeled as “failure” (z = 0). Training data was generated using a random

tracing heuristic (i.e., no set of rules was followed while backtracing). During this ATPG,

the history of backtraces was recorded: when a backtrack was performed, backtraces that

lead to undone PI assignments were labeled as failures; when the ATPG found a test, all

remaining backtraces were labeled as success.

As an illustrative example, the following steps produced the training data of Fig. 4.2 to

detect the line 15 stuck-at-0 fault in the circuit of Fig. 4.1:

• To excite the fault, an objective of “1” on line 15 was set. Backtracing through 14-5

assigned “1” to PI 5. Logic simulation showed that the objective was yet to be met.

• Another backtrace through 14-10-6 assigned “0” to PI 6, but still the objective was

not met.

• Backtracing through 13-12-8-1 assigned “0” to PI 1. Simulation verified that the

objective of “1” on line 15 was met, but a “1” on line 11 blocked the fault effect from

being propagated to the PO. Therefore, a backtrack assigned the alternative value

28

Input Features Output label

 Gate type COP(CC) COP(CO) Distance Success/Failure

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 z

Line 5 0 0 0 0 0 0 0 0 1 0.500 0.012 0.1 1

Line 14 0 0 0 0 0 0 0 0 1 0.375 0.016 0.3 1

Line 6 0 0 0 0 0 0 0 1 0 0.500 0.004 0.1 1

Line 10 0 0 0 0 0 0 0 0 1 0.750 0.008 0.3 1

Line 14 0 0 0 0 0 0 0 0 1 0.375 0.016 0.3 1

Line 1 0 0 0 0 0 0 0 1 0 0.500 0.489 0.1 1

Line 8 0 0 0 0 0 0 1 0 0 0.750 0.977 0.3 1

Line 12 0 0 0 0 0 0 1 0 0 0.750 0.023 0.4 1

Line 13 0 0 0 0 0 0 0 0 1 0.063 0.094 0.5 1

Line 1 0 0 0 0 0 0 0 1 0 0.500 0.489 0.1 0

Line 8 0 0 0 0 0 0 1 0 0 0.750 0.977 0.3 0

Line 12 0 0 0 0 0 0 1 0 0 0.750 0.023 0.4 0

Line 13 0 0 0 0 0 0 0 0 1 0.063 0.094 0.5 0

Line 3 0 0 0 0 0 0 0 1 0 0.500 0.012 0.1 1

Line 9 0 0 0 0 0 0 1 0 0 0.750 0.023 0.3 1

Line 13 0 0 0 0 0 0 0 0 1 0.063 0.094 0.5 1

Line 2 0 0 0 0 0 0 0 1 0 0.500 0.489 0.1 1

Line 8 0 0 0 0 0 0 1 0 0 0.750 0.977 0.3 1

Figure 4.2: ANN training patterns derived from a ATPG trial for line 15 stuck-at-0 fault in
Fig. 4.1.

“1” to PI 1. Thus, the choices used in the previous backtrace through 13-12-8-1 were

“failure” patterns with z = 0.

• After the backtrack, line 15 became “X”, or unknown. To achieve the objective of 1 on

line 15, backtracing through 13-9-3 assigned “0” to PI 3. On simulation, the objective

of “1” on line 15 was met. The state of line 15 was denoted with D, where D means

fault-free state as 1 and faulty state as 0.

• To propagate line 15 value D to the PO, line 11 was now given an objective value

“0”. A backtracing through 8-2 assigned PI 2 to “1” and a test 110X10X was found.

Therefore, all backtracing history without a label were assigned “success” labels with

z = 1.

4.2 Experimental Results

In this chapter, a workstation containing an Intel i7-8700 processor and 8 GB of RAM

performed all experiments. Tools were implemented in C++ using the MSVC++ 14.15

29

compiler with maximum performance optimization, and all ANN activity was executed in

Python. PODEM ATPG [21] was reproduced along with event-driven fault simulation [4]

such that any heuristic (distance [21], or COP [108]) can be applied across ISCAS’85 [110] and

ITC’99 [111] benchmark circuits without favoring a single heuristic. This chapter will surely

polarize EDA vendor mindset to deploy MI in their ATPG software. However, EDA vendors

hesitate to divulge their program source code, and it is impossible to conduct research-based

experiments using the executable. Therefore, I prefer to run the experiments using the

in-house EDA tools.

Training

To generate training data, PODEM was run on 100 “hard-to-detect” faults of benchmark

circuits: c6288, b05, and c3540. This chapter calls these “training” circuits, while others

are called “evaluation” circuits. Because easy-to-detect faults may be detected without

backtracks, they might not produce useful training data. Therefore hard-to-detect faults

were selected using COP [108] testabilitity values: detection probabilities were calculated as

CC ×CO and (1−CC)×CO for stuck-at 0 and stuck-at 1 faults, respectively, and the 100

faults with the lowest detection probability from these circuits were used for ANN training

data generation.

Figure 4.3 illustrates the impact of training data volume on ANN accuracy (i.e., average

training error). As more training patterns were used, the accuracy of the trained ANN

increased until a certain point, which indicated that too much training data could negatively

impact the accuracy. Following this observation, a set of 3,730,724 training patterns was

used.

Figure 4.4 illustrates the impact of the number of hidden layer neurons on ANN accuracy

when 3,730,724 training patterns were used. The training error was minimized at 25 neurons.

Additionally, the error dramatically increased for more than 70 hidden neurons. From this,

25 neurons was used for this study’s ANN.

30

0.001

0.010

0.100

1.000

1 2 3 4 5

A
v

e
ra

g
e

 t
ra

in
in

g
 e

rr
o

r

Training data size (in millions of pattern)

HN=1 HN=10-69

Figure 4.3: Adding more training data de-
creases ANN error, but only to a certain
point. The point which minimized error in
this study was 3,730,724 patterns.

0.010

0.100

1 10 100

A
v

e
ra

g
e

 t
ra

in
in

g

e

rr
o

r

Number of hidden neurons

1.0

Figure 4.4: As more hidden neurons are
added to the ANN, error drops (ANN accu-
racy improves), leveling off at 25 hidden neu-
rons, only to increase again beyond 70 neu-
rons.

The 3,730,724 training patterns were collected in 4.8 minutes, and ANN training required

5.1 minutes. Because training data generation and ANN training were one-time investments,

they were not considered relevant costs while assessing the computational effectiveness of

ANN-based ATPG, whose time is significantly more than this training (data collection) time

and is a one-time investment.

ATPG

Before evaluating a trained ANN against conventional backtracing heuristics, this sec-

tion examines the effect of using different sets of input features, i.e., gate types, COP testa-

bility measures [108], and shortest distances to PIs (see Section 4.1.1). This experiment ran

ATPG on the 100 hardest-to-detect faults in a subset of ISCAS’85 [110] and ITC’99 [111]

benchmark circuits, namely, c6288, b04, c432, b08, b03, and b01: this restricted choice in

faults and circuits was created by limited computational resources. The results of random-

guided PODEM and of ANN-guided PODEM trained with various combinations of input

features (and with no training) are given in Table 4.1.

31

Table 4.1: Effect of input features on total backtracks in ANN-guided PODEM for 100
hard-to-detect faults.

Circuit PODEM with PODEM with machine intelligence (MI), ANN trained with features listed in subheading
name random heuristic Untrained Gate type Dist. COP Dist. + COP Gate type + Dist. Gate type + COP Gate type + COP + Dist.

c6288 12,157 10,831 10,414 12,013 11,929 10,334 8,481 10,612 5,062
b04 46,061 43,053 46,061 46,061 46,061 45,683 46,061 46,061 16,973
c432 84,080 80,725 73,352 81,041 73,440 76,956 71,918 81,365 24,898
b08 164 164 164 164 164 164 164 164 118
b03 27 27 27 50 27 50 14 47 3
b01 1 1 1 1 1 1 1 1 0

Table 4.2: Backtracks for 100 hard-to-detect faults by PODEM guided by conventional
heuristics and the trained ANN.

Circuit Distance heuristic COP heuristic MAR (ANN trained for Gate type, COP, Dist.)

name CPU time (ms) #backtraces #backtracks CPU time (ms) #backtraces #backtracks CPU time (ms) #backtraces #backtracks

c6288 81,915 19,478 17,914 52,547 13,633 119,74 35,391 6,950 5,062
b04 45,577 24,151 22,631 32,687 19,207 17,581 39,656 18,555 16,973
c432 21,416 42,290 40,979 40,010 87,131 85,041 17,714 26,940 24,898
b08 2,655 1,414 210 1,651 2,487 1,306 562 1,327 118
b03 262 603 38 397 662 42 222 606 3
b01 120 408 1 101 389 1 266 413 0

4.2.1 Evaluating ANN Input Features

The results of these ATPG runs showed several trends. First, using an “untrained”

ANN was comparable to random backtracing, which indicated training an ANN was an ab-

solute requirement. Second, ANNs trained with a subset of features did improve backtracing

quality compared to random backtracing, but there was no clear indication of one subset of

features outperforming the others. Third, using all input features outperforms all other con-

figurations, often substantially: this implied that there was a way to combine features into

a backtracing heuristic to obtain superior results, but combining them might be impossible

without the assistance of MI.

4.2.2 ATPG performance for hard-to-detect faults

This second experiment showed the performance of the ANN with all input features

compared to conventional COP-based and distance-based heuristics when used in PODEM,

on the same 100 hard-to-detect faults. Table 4.2 shows these results in terms of CPU

time, the number of backtraces, and the number of backtracks. “MAR” (after the authors

32

-50

50

150

250

350

450

550

650

750

850

c
1
7

b
0
2

b
0
6

b
0
1

b
0
9

b
0
3

c
4
9
9

b
1
0

b
0
8

c
4
3
2

b
1
2

b
1
3

c
8
8
0

c
1
3
5
5

b
0
4

b
0
7

c
2
6
7
0

b
1
1

c
1
9
0
8

c
7
5
5
2

c
5
3
1
5

c
3
5
4
0

b
0
5

c
6
2
8
8

b
a

ck
tr

a
ck

s[
(h

e
u

ri
st

ic
 -

M
A

R
)/

M
A

R
]*

1
0

0

Benchmark Circuits

Dist. COP

1
3
0
1
7

2
8
3
3

1
8
9
1

7
3
5
0

1
7
4
9

Figure 4.5: Percentage reduction in total
backtracks by basic trained-ANN guidance
(named MAR) with respect to the conven-
tional (distance or COP) heuristic guidance.
Backtracks are for all checkpoint single stuck-
at faults tested by PODEM ATPG.

-50

0

50

100

150

200

250

300

350

c
1
7

b
0
2

b
0
6

b
0
1

b
0
9

b
0
3

c
4
9
9

b
1
0

b
0
8

c
4
3
2

b
1
2

b
1
3

c
8
8
0

c
1
3
5
5

b
0
4

b
0
7

c
2
6
7
0

b
1
1

c
1
9
0
8

c
7
5
5
2

c
5
3
1
5

c
3
5
4
0

b
0
5

c
6
2
8
8

C
P

U
 t

im
e

[(
h

e
u

ri
st

ic
 -

M
A

R
)/

M
A

R
]*

1
0

0

Benchmark Circuits

Dist. COP 1
9
2
6

1
9
0
1

Figure 4.6: Percentage reduction in total
CPU time by basic trained-ANN guidance
(named MAR) with respect to the conven-
tional (distance or COP) heuristic guidance.
Backtracks are for all checkpoint single stuck-
at faults tested by PODEM ATPG.

Millican-Agrawal-Roy) which is an ANN-guided heuristic, showed substantial improvements

for several benchmarks, and when it did not perform the best, its detriments were marginal.

4.2.3 ATPG performance for all faults

This third experiment performed ATPG on all checkpoint stuck-at faults in 21 evalua-

tion circuits and 3 training circuits from the ISCAS’85 [110] and ITC’99 [111] benchmarks.

Because PODEM took exorbitant time to run exhaustively, some faults might be aborted.

A suitable per-fault time limit was used to produce similar fault coverage with all heuristics.

Figures 4.5 and 4.6 plot the backtracks and CPU times of PODEM using the distance

(Dist.) heuristic, the COP heuristic, and ANN-guided heuristic, respectively. Results are

shown as percentage increase compared to the MAR heuristic ([(heuristic−MAR)/MAR]∗

100), where heuristic represents conventional heuristic and MAR represent ANN-guided

heuristic, i.e., positive results favor MAR. Circuits are ordered by increasing depth.

From these figures, one can conclude that ANN-based backtracing consistently decreases

backtracks, often substantially, but one can potentially see a drawback of ANN-based back-

tracing worth addressing. First, a reduction in backtracks did not consistently translate to

33

a reduction in backtraces. Given that fewer backtraces can also reduce ATPG time (i.e., by

finding a test in fewer PI assignments), training the ANN to reduce backtraces may be ben-

eficial. Second, the impact on CPU time for MAR in Fig. 4.6, although frequently positive,

is not as positive as the impact on backtracks, which implies that CPU time of evaluating

the ANN is significant.

In the subsequent discussion, the technique of this chapter will be referred to as “basic

trained-ANN guidance”.

34

Chapter 5

Training Neural Network for Machine Intelligence in Automatic Test Pattern

Generator

Choosing the best path during backtrace is a vital problem in ATPG, and Chapter 4

showed that MI in the form of an ANN can replace any heuristic in PODEM [21] and speed

up ATPG. However, some circuits did not exhibit any noticeable improvement in the back-

tracking performance. The “basic” ANN training of Chapter 4 was ad hoc and rudimentary,

thus formulated training may elevate ANN-guided PODEM’s performance. This chapter

examines such a training method: the training recursively used ATPG data generated from

hard-to-detect as well as easily tested faults, resolved conflicts in data patterns (e.g., when

different ANN outputs come from similar inputs), and discarded data that did not improve

the guidance of ANN. The specific contributions of this chapter are as follows:

• A technique to resolve conflicts among ANN training data. The main benefit of conflict

resolution was improved ANN accuracy as evident from reductions in the MSE during

training.

• A technique for selecting faults using a recursive training method that dynamically

trained an “evolving” ANN as opposed to training with a pre-selected set of faults.

ATPG data from a fault was retained only if the trained ANN guidance continued to

further reduce backtracks compared to conventional heuristics (distance and COP).

Both hard-to-detect and easy-to-test faults were sampled as opposed to only the for-

mer [2]. This prevented the training data from being overwhelmingly “failure oriented.”

• An improved assessment of the quality of the ANN guidance by modifying the back-

track count procedure. I counted backtracks only for faults that were detected or

35

found redundant; earlier work [2] also included backtracks from aborted faults, which

distorted the count.

The remainder of this chapter is organized as follows. Section 5.1 outlines the motivation

leading to the present work, summarizes the objectives, and describes the proposed training

techniques. Section 5.2 provides experimental exploration of the proposed training technique

using benchmark circuits.

Major portions of this chapter are taken verbatim from my previously published research

work [3].

5.1 Modus Operandi

Improvement in ATPG performance was reported [2] for many benchmark circuits, but

several circuits, including some large benchmarks (c3540, c7552, c2670, and c432), did not

perform well. I will discuss these results in the next section, since they serve as the motivation

for the work in this chapter.

To motivate this work, I repeated previous work [2] with minor changes. Training

patterns were generated using PODEM applied to 100 hard-to-detect faults in the three

highest depth circuits: c6288, c3540, and b05. The trained ANN was used to guide a PODEM

applied to the 100 hardest-to-detect faults in each of the previously used 24 benchmark

circuits [2]. Figure 5.1 compares the total backtracks with those from conventional PODEM

using distance [21] and COP [108] heuristics. One difference in my evaluation procedure is

that I did not include backtracks from aborted faults. I referred to this ANN as the “basic

trained-ANN” to distinguish it from the ANN developed in this chapter, identified as the

“optimally-trained-ANN”.

I made several observations from Fig. 5.1. Circuit size increased from left to right, and

the first four small circuits and c2670 had no backtracks by any method. Also, for circuits

b09, b10 and c2670, the ANN required no backtracks. Although ANN guidance satisfied the

expectation of fewer backtracks than both conventional heuristics for several circuits, there

36

1

10

100

1000

10000

100000

1000000

c1
7

b
0

2

b
0

6

b
0

1

b
0

9

b
0

3

c4
9

9

b
1

0

b
0

8

c4
3

2

b
1

2

b
1

3

c8
8

0

c1
3

5
5

b
0

4

b
0

7

c2
6

7
0

b
1

1

c1
9

0
8

c7
5

5
2

c5
3

1
5

c3
5

4
0

b
0

5

c6
2

8
8

N
u

m
b

e
r

o
f

b
a

ck
tr

a
ck

s

Benchmark Circuits

Distance COP Basic trained-ANN [2]

Figure 5.1: Backtracks in PODEM ATPG with various guidance mechanisms for 100 hard-
to-detect checkpoint stuck-at faults (including detected and redundant).

were exceptions, especially among larger benchmarks. Notable among these were c7552,

c5315 and c3540. For example, c3540 shows 32,008 (distance), 32,978 (COP), and 58,852

(ANN) backtracks used, which is similar to previous observations made in [2].

I believe remedying these outliers required addressing several aspects of the ANN train-

ing procedure. My investigation led to the following observations:

1. Selection of training circuits. In Chapter 4, the ANN was trained with ATPG data

from high depth circuits: c6288, c3540 and b05. Since the Chapter 4’s ANN-guided

ATPG performance on c3540 did not show improvement, I retrained the ANN with

just c3540, but still the ATPG performance of this circuit did not improve. Therefore,

I retained the three high depth circuits for training.

2. Resolution of conflicts among training data patterns. These data patterns

might lead to an increase in training error of the ANN and thus degraded its guiding

ability. This is explained in Section 5.1.1.

37

3. Selection of faults. All faults do not provide useful training information, and pre-

selection of faults for training may unnecessarily increase the training data volume

without benefit. Section 5.1.2 gives a novel method of training the ANN considering

three aspects, i.e., the training error of ANN must be kept low by adjusting the number

of hidden neurons, training data from a fault must be accepted only if guidance from

the resulting ANN reduces backtracks, and the faults used for training data generation

should not be restricted to hard-to-detect faults. In fact, any fault provides useful

training data as long as training with it reduces backtracks.

4. Forgetfulness of the ANN. The ANN may enter a zone called “catastrophic for-

getting” [112] when it forgets information contained in a large training data volume.

Such consideration in training improvement is worth exploring in the future.

In this chapter, I discuss new training strategies addressing the above observations (ex-

cept item 4) to improve the backtracking performance of ANN-guided PODEM. In Chapter 4,

the number of hidden neurons in the ANN was preselected, but a static ANN was incapable

of absorbing increasing amounts of training data. The new training technique progressively

added training data after resolving conflicts in data patterns to further reduce backtracks

while discarding data that did not accomplish this objective, and the ANN evolved through

adding hidden neurons to further reduce MSE during training.

5.1.1 Resolving conflicts in training data

Each training data pattern “i” consisted of an input vector {xi} of features and an

output label zi. The label and all features range in [0,1]. Two patterns, i and j, formed a

conflicting pair if {xi} ≡ {xj} and zi 6= zi. This was because the ANN could not be trained

to produce different outputs for the same input. The presence of conflicting patterns in

training data influenced the training as indicated by non-decreasing MSE during training.

To remedy this, I collected patterns with identical features into groups and then replaced

each group by a single representative pattern with common features. Since these patterns

38

Input Features Output label

Gate type COP(CC) COP(CO) Distance Success/Failure

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 z

0 0 0 0 0 0 0 0 1 0.76 0.84 0.12 1

0 0 0 0 0 0 0 0 1 0.76 0.84 0.12 1

0 0 0 0 0 0 0 0 1 0.76 0.84 0.12 0

0 0 0 0 0 0 0 1 0 0.95 0.95 0.95 1

0 0 0 0 0 0 0 1 0 0.95 0.95 0.95 1

0 0 0 0 0 0 1 0 0 0.5 0.5 0.5 0

0 0 0 0 0 0 1 0 0 0.5 0.5 0.5 0

0 0 0 0 1 0 0 0 0 0.37 0.63 0.25 1

0 0 0 0 0 1 0 0 0 0.36 0.43 0.75 0

0 0 0 0 0 0 0 0 1 0.63 0.34 0.8 1

Figure 5.2: An example of ANN training data patterns with conflicts. Note the first three
patterns with identical inputs (features) and conflicting outputs (labels).

were derived from actual ATPG runs, the label of a pattern was either 1 (indicating success)

if it belonged in a backtrace leading to a test or 0 (indicating failure) if it resulted in a

backtrack. I counted the number of 1 and 0 labels in the group, and the representative

pattern was given the label count(1)
count(0)+count(1)

.

A conflict is illustrated by the sample training patterns in Fig. 5.2, where the first three

patterns have a conflict. This is resolved in Fig. 5.3, where the three patterns were replaced

by a single representative pattern with a label 2
2+1

= 0.67.

I collected training data from conventional heuristic-based PODEM applied to the train-

ing circuits (c6288, c3540 and b05), resolved all conflicts among training data patterns,

trained the ANN, and integrated the ANN guidance into PODEM. I observed that pre- and

post-conflict resolution MSE were 3% and 1%, respectively. Additionally, training patterns

were compacted in this manner allowed more faults to be included during training.

5.1.2 Recursive training and evolving ANN

In the Chapter 4, PODEM with random heuristic generated the ANN training data.

This could be time-consuming, difficult, and non-repeatable. Experimental results of Fig. 5.1

39

Input Features Output label

Gate type COP(CC) COP(CO) Distance Success/Failure

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 z

0 0 0 0 0 0 0 0 1 0.76 0.84 0.12 0.67

0 0 0 0 0 0 0 1 0 0.95 0.95 0.95 1

0 0 0 0 0 0 0 1 0 0.95 0.95 0.95 1

0 0 0 0 0 0 1 0 0 0.5 0.5 0.5 0

0 0 0 0 0 0 1 0 0 0.5 0.5 0.5 0

0 0 0 0 1 0 0 0 0 0.37 0.63 0.25 1

0 0 0 0 0 1 0 0 0 0.36 0.43 0.75 0

0 0 0 0 0 0 0 0 1 0.63 0.34 0.8 1

Figure 5.3: Example ANN training data patterns after resolving conflicts. The first pattern
here replaces the first three patterns of Fig. 5.4.

show that COP [108] heuristic can provide reasonable ATPG performance (i.e., fewer back-

tracks or in the same ballpark regime) for the training circuits. Therefore, PODEM guided

by COP was used for training data generation in this chapter.

Since ANN training quality largely depends on its structure and complexity, this chapter

examined the interrelation between the number of hidden neurons and MSE of the ANN to

find a “sweet-spot” that guaranteed efficient ANN training. This “sweet-spot” was found

during a new ANN training step by either adding hidden neurons or restoring the previous

optimal hidden neurons with corresponding training data, making the ANN effective with

minimal MSE. Training data from PODEM using COP was obtained from a small set of

faults and applied recursively to train the ANN. This training continued to minimize MSE

by adding small batches of faults to the training as long as they continued to improve the

ANN quality. This made my ANN dynamic in terms of hidden neurons.

The algorithm to develop an “evolving” ANN-guided ATPG is illustrated in Fig. 5.4. I

selected large depth circuits, c6288, b05, and c3540, from the ISCAS’85 and ITC’99 bench-

marks [110,111]. The ANN structure was same as in the Chapter 3 (Fig. 3.1) and parameters

were initialized as “hidden neurons (HN) = 10” and “MSE = 1.0”. COP-based PODEM

was applied to a set of 100 hard-to-detect faults, and the number of backtracks was recorded

40

Start

Init. HN=10; MSE=1.0

Pick a large depth

circuit

#b = 50 ?

Or

HN = 100 ?

First

Circuit?

Run COP-based PODEM.

Add Training Data for 50

HTD & ETT faults

Train ANN

Update HN_UPD and

MSE_UPD

Do ANN-guided ATPG on

100 target HTD & ETT

faults

Update *b

HN= HN_PREV

MSE=MSE_PREV

#b=*b

Discard training data

MSE

Reduced?

*b < #b ?

STOP

Run COP -based PODEM

on target 100 HTD & ETT

faults and initialize #b

HN=HN+10
Y

N

Y

N

Y

N

HN = 100 ?
YY

HTD & ETT =

100 ?

HN_PREV= HN_UPD

MSE_PREV=MSE_UPD

#b=*b

Add 10 more target HTD

& ETT faults

HN = HN_UPD

MSE =

MSE_UPD

#b =*b

Y

N

N

N

Figure 5.4: Flow chart of proposed training methodology, including sub-procedures, recursive
training by conventional heuristic-based PODEM, followed by “evolving” ANN.

“#b” to be minimized through recursive training. The training started by using 50 hard-to-

detect faults to generate a training database, followed by ANN training to check MSE and

record the corresponding number of hidden neurons, simultaneously. This process continued

until MSE started saturating, and the corresponding MSE “MSE UPD” and the number of

hidden neurons “HN UPD” were recorded and the ANN was re-trained. A similar process

was continued for 100 easy-to-test faults. To evaluate the training, the ANN-guided ATPG

was applied to 100 hard-to-detect faults of the same training circuits. If the backtrack count

was decreased, then 10 more hard-to-detect faults were added to the training of the ANN, else

41

the hidden neurons “HN PREV” and MSE “MSE PREV” were restored, the corresponding

training patterns from training database were discarded, and another circuit was selected to

re-iterate the same process until one of the following conditions was satisfied: 1) the number

of backtracks was reduced to 50; 2) 100 hard-to-detect faults were used for training; or 3)

the ANN contained 100 hidden neurons.

5.2 Experimental Results

In this chapter, a workstation containing an Intel i7-8700 processor and 8 GB of RAM

performed all experiments. Tools were implemented in C++ using the MSVC++ 14.15

compiler with maximum performance optimization, and all ANN activity was executed in

Python. PODEM ATPG [21] was reproduced along with event-driven fault simulation [4]

such that any heuristic (distance [21], or COP [108]) can be applied across ISCAS’85 [110] and

ITC’99 [111] benchmark circuits without favoring a single heuristic. This chapter will surely

polarize EDA vendor mindset to deploy MI in their ATPG software. However, EDA vendors

hesitate to divulge their program source code, and it is impossible to conduct research-based

experiments using the executable. Therefore, I prefer to run the experiments using the

in-house EDA tools.

Figure 5.5 shows how this chapter’s optimally-trained-ANN performed on 100 hard-

to-detect faults across benchmarks as compared to the basic trained-ANN [2]. In terms

of backtracks, with few exceptions, the optimally-trained-ANN did the same or better in

reducing backtracks compared to the basic trained-ANN [2], especially for larger circuits.

My next experiment used all (testable and redundant) faults to show the efficacy of

guidance by the new ANN using the proposed training technique. Table 5.1 shows the

computation time of ATPG “CPU Time (ms)”, “Backtrace count”, and “Backtrack count”.

Clearly, the new ANN performs better (with fewer backtracks and less ATPG computation

time (see Fig. 5.7) than the basic trained-ANN [2], reaffirming the value of the proposed

training technique of this chapter. The backtrack counts for all faults are shown in Fig. 5.6.

42

1

10

100

1000

10000

100000

c1
7

b
0

2

b
0

6

b
0

1

b
0

9

b
0

3

c4
9

9

b
1

0

b
0

8

c4
3

2

b
1

2

b
1

3

c8
8

0

c1
3

5
5

b
0

4

b
0

7

c2
6

7
0

b
1

1

c1
9

0
8

c7
5

5
2

c5
3

1
5

c3
5

4
0

b
0

5

c6
2

8
8

N
u

m
b

e
r

o
f

b
a

ck
tr

a
ck

s

Benchmark Circuits

Basic trained-ANN [2]

Optimally-trained-ANN [3]

Figure 5.5: Backtracks in PODEM ATPG
with various guidance mechanisms for 100
hard-to-detect checkpoint stuck-at faults (in-
cluding detected and redundant).

1

10

100

1000

10000

100000

c1
7

b
0

2

b
0

6

b
0

1

b
0

9

b
0

3

c4
9

9

b
1

0

b
0

8

c4
3

2

b
1

2

b
1

3

c8
8

0

c1
3

5
5

b
0

4

b
0

7

c2
6

7
0

b
1

1

c1
9

0
8

c7
5

5
2

c5
3

1
5

c3
5

4
0

b
0

5

c6
2

8
8

N
u

m
b

e
r

o
f

b
a

ck
tr

a
ck

s

Benchmark Circuits

Basic trained-ANN [2]

Optimally-trained-ANN [3]

Figure 5.6: Backtracks in PODEM ATPG
with various guidance mechanisms for all
checkpoint stuck-at faults (including detected
and redundant).

1

10

100

1000

10000

100000

1000000

10000000

0 50 100 150 200 250 300 350

C
P

U
 t

im
e

 (
m

s)

Logic depths of the benchmark circuits

Basic trained-ANN [2]

Optimally-trained-ANN [3]

Figure 5.7: CPU times (ms) of PODEM ATPG guided by basic trained-ANN [2] and
optimally-trained-ANN [3] for all checkpoint single stuck-at faults (including detected and
redundant).

Table 5.1 has some notable observations. First, c17, b02, and b01 had no reconvergent

fanouts and therefore had no backtracks. Of course, there was no scope for reducing back-

tracks by new ANN guidance. I observed that the number of backtraces was either constant

or reduced in these reconvergent fanout-free circuits by the optimally-trained-ANN over the

basic trained-ANN [2]. Second, except for c1908, c432, c499, b12, and b05, the new ANN

exceeded expectations in terms of performance based on reductions in backtracks. Third,

the new ANN was able to reduce backtracks and backtraces for b09, but the CPU time

increased. Possibly more time per backtrace was used to reduce backtracks by expensive

43

Table 5.1: Performance of PODEM ATPG for all checkpoint faults in benchmark circuits,
guided by basic trained-ANN (chapter 4) [2] and optimally-trained-ANN (this chapter).
Boldface numbers show reduced backtracks by the latter.

Circuit Basic trained-ANN [2] Optimally-trained-ANN [3]

name
CPU Time

(ms)
Backtrace

count
Backtrack

count
CPU Time

(ms)
Backtrace

count
Backtrack

count

c17 7 64 0 7 64 0

b02 41 236 0 41 236 0

b06 128 514 1 130 506 0

b01 121 514 0 117 498 0

b09 984 3293 23 1250 3239 4

b03 662 2166 78 605 1901 8

c499 7097 22418 933 6828 22888 965

b10 1784 3718 361 1448 3225 181

b08 1683 4420 804 1665 4205 481

c432 12610 26253 19840 13626 30150 21441

b12 24877 33814 7161 24496 33945 7482

b13 1720 5481 1063 1453 4871 570

c880 4014 11889 7 3481 10459 0

c1355 40231 58658 1498 35825 57788 934

b04 67329 66182 46423 43855 47139 27110

b07 14660 18851 10810 12741 16420 7476

c2670 48296 72347 29924 38816 65159 18355

b11 17397 21008 5673 14601 18242 3641

c1908 30616 39150 549 27685 35982 779

c7552 291393 297572 57874 214372 222395 11183

c5315 85702 105072 21782 69560 86429 7321

c3540 126861 82609 41842 100468 71492 30529

b05 56152 43078 21260 48830 39892 21540

c6288 457206 212968 29982 390805 180588 16525

evaluation of weights and biases of ANN edges that involved matrix multiplication and com-

putation of the sigmoid [45] function. Forth, the optimally-trained-ANN heuristic did not

perform as well on a few circuits compared to the basic trained-ANN [2], but it outperformed

the conventional heuristics (like Distance [21] and COP [108]), except in case of c432. Fifth,

Fig. 5.7 illustrates no CPU time reduction for smaller circuits, and a reduction for high depth

circuits was observed, perhaps due to simultaneous reduction in backtracks and backtraces.

In the subsequent discussion, the technique of this chapter will be referred to as “optimally-

trained-ANN guidance”.

44

Chapter 6

Unsupervised Learning in Test Generation for Digital Integrated Circuits

The exponential complexity of ATPG necessitates the use of heuristics in making choices

during test generation. However, in practice no single heuristic fits all situations. Unsuper-

vised learning can combine any number of known ATPG inputs, such as input-output dis-

tance (logic depths), gate type, fanout information, and testability measures like COP and

SCOAP as heuristics through PCA, and then the major PCs can guide ATPG choices. This

chapter combines three ATPG inputs–distance, COP, and SCOAP–into a single heuristic.

Some ATPG input data are complemented and two major PCs are obtained. These PCs

guide backtrace directions in a PODEM ATPG program. For most circuits, the number of

backtracks either matches the best of the three heuristics or is lower than all.

Major portions of this chapter are taken verbatim from my previously published research

work [14].

6.1 Modus Operandi

MI has two phases: learning from problem-specific data and then using that knowledge

to solve problems. In supervised learning, these phases may be ANN training and ANN

guidance. In contrast, unsupervised learning uses statistical tools such as PCA [40, 41] and

k-means clustering [47, 113–115]. In the first phase, the tool analyzes the problem-specific

data to extract relevant characteristics, which in the second phase directly helps solving

problems. I applied unsupervised learning to the ATPG problem using the PCA as discussed

in Section 3.2.

45

6.1.1 Dimensionality Reduction

This chapter uses SVD to obtain PCs based on a parameter known as explained vari-

ance [48]. PCs represent the same amount of information as the original data, i.e., the

original data can be restored from the PCs. Moreover, the total variances of the original and

transformed data are the same but are redistributed unequally among the PCs. The first

PC (also known as the major PC) has the highest variance. The standard quality measure

explained variance πj of the jth PC is the ratio of its variance λj to the total variance (sum

of variances of all PCs):

πj =
λj∑p
i=1 λi

(6.1)

where, p is the number of PCs and λi is the individual variance of ith PC. The progressive

nature of PCs means that a proportion of total explained variance for a subset of S PCs is

expressed as a percentage of the total variance:
∑

i∈S πi. It is a common practice to set a

threshold for this total variance to decide how many PCs to use; only first one, two, or three

PCs may be required. However, there are circumstances, such as outlier detection [47] or

image analysis, where the last few PCs may be of interest.

6.1.2 Multi-Heuristic Guidance for ATPG

This chapter combines a variety of ATPG inputs, such as, the shortest distance d to

primary inputs [21], COP controllabilities [108], and SCOAP testability measures [109]. From

all the signal probabilities of COP–CC0 and CC1–I only used CC1 because of their complete

dependence on each other: CC0 = 1 - CC1. SCOAP 0 and 1 combinational controllabilities

were denoted here as SC0 and SC1. For every node in the circuit four quantities, d, CC1,

SC1, and SC0, were computed using known linear-time algorithms [21, 108, 109]. Each

quantity was normalized to [0,1] range with respect to its maximum value over all nodes.

46

Table 6.1: Heuristic-based input selection criteria for backtracing through a gate to justify
output value.

Gate d CC1 SC1 SC0 P
Value→ 0 1 0 1 0 1 0 1 0 1

AND min max min min max max min min ? ?

NAND max min min min max max min min ? ?

OR max min max max min min max max ? ?

NOR min max max max min min max max ? ?

The same heuristic data were used in supervised learning-based PODEM ATPG [2, 3].

There, backtrace choices were directed by a trained ANN that computed relative metrics

for the available nodes. The highest metric implied best chance of finding a test without

a backtrack. For training the ANN, the information about how each heuristic influences

success was derived from ATPG runs on sample circuits. In the unsupervised learning

system, however, no ANN was used. Instead, multiple circuit data were combined through

PCA for directly guiding the backtrace.

6.1.3 Principal Component Analysis (PCA)

In combining multiple ATPG inputs, it was necessary that they worked cooperatively

without contradicting each other in comparing the effectiveness of inputs of a logic gate

while justifying the output value. Table 6.1 shows how individual heuristics worked. For

example, consider a backtrace through an AND gate with two or more inputs being guided

by d. To justify the output value 0, the backtrace must take the input closest to PIs [21].

In Table 6.1, this is indicated by “min” under d for AND gate and value = 0. To justify a 1

at the output, the backtrace followed the input with highest d, shown as “max”. I observed

that the four heuristics do not agree for any of the gates. Hence, if combined by PCA, the

major component (P) cannot be given guidance criteria.

Table 6.2 takes a two-step approach to overcome the above difficulty. First, some circuit

data were complemented. For example, when an AND gate output was 1, its inputs–CC1

was replaced with 1 - CC1 and SC0 with 1 - SC0. Also, when the AND gate output was

47

Table 6.2: Principal components (P0 and P1) for gate output = 0 and 1. Italicized decision
criterion (min or max) shows complemented heuristic data to achieve synchronization.

Gate d CC1 SC1 SC0 P0 P1
Value→ 0 1 0 1 0 1 0 1 0 1

AND min max min max min max min max min max

NAND max min max min max min max min max min

OR max min max min max min max min max min

NOR min max min max min max min max min max

0

0.2

0.4

0.6

0.8

1

1.2

c
1
7

b
0
2

b
0
6

b
0
1

b
0
9

b
0
3

c
4
9
9

b
1
0

b
0
8

c
4
3
2

b
1
2

b
1
3

c
8
8
0

c
1
3
5
5

b
0
4

b
0
7

c
2
6
7
0

b
1
1

c
1
9
0
8

c
7
5
5
2

c
5
3
1
5

c
3
5
4
0

b
0
5

c
6
2
8
8

E
x

p
la

in
e

d
 V

a
ri

a
n

ce

Benchmark Circuits

P0#1 P0#2 P0#3 P0#4

Figure 6.1: PCA for ISCAS’85 and ITC’99
benchmarks. Heuristic data are comple-
mented according to Table 6.2 assuming 0
output for all gates. The major PC, P0#1, is
shown in blue.

0

0.2

0.4

0.6

0.8

1

1.2

c
1
7

b
0
2

b
0
6

b
0
1

b
0
9

b
0
3

c
4
9
9

b
1
0

b
0
8

c
4
3
2

b
1
2

b
1
3

c
8
8
0

c
1
3
5
5

b
0
4

b
0
7

c
2
6
7
0

b
1
1

c
1
9
0
8

c
7
5
5
2

c
5
3
1
5

c
3
5
4
0

b
0
5

c
6
2
8
8

E
x

p
la

in
e

d
 v

a
ri

a
n

ce

Benchmark Circuits

P1#1 P1#2 P1#3 P1#4

Figure 6.2: PCA for ISCAS’85 and ITC’99
benchmarks. Heuristic data are comple-
mented according to Table 6.2 assuming 1
output for all gates. The major PC, P1#1, is
shown in blue.

0, SC1 was replaced by 1 - SC1. This reversed the corresponding backtrace criteria now

shown in italics. Similar changes were made for NAND, OR, and NOR gates, giving complete

synchronization of the choice criteria for all conventional heuristics and a way for PCA to

interpret the circuit data. However, it necessitated separate PCs for gate outputs 0 and 1,

respectively, requiring two major PCs, P0 and P1, with corresponding backtrace criteria

(see Table 6.2).

6.1.4 Preprocessing and ATPG

To run the ATPG, circuit netlist was preprocessed to compute four values for each signal

node, namely, D [21], CC1 [108], and SCOAP combinational measures SC0 and SC1 [109].

Complemented values were computed according to Table 6.2 and P0 and P1 were from PC

48

0.1

1

10

100

1000

10000

100000

1000000

10000000

0 50 100 150 200 250 300 350

C
P

U
 t

im
e

 (
m

s)

Logic depths of the benchmark circuits

Distance COP SCOAP PCA

Figure 6.3: CPU time for detecting all faults
with ATPG using conventional heuristic and
PCA-guidance.

1

10

100

1000

10000

100000

1000000

c
1
7

b
0
2

b
0
6

b
0
1

b
0
9

b
0
3

c
4
9
9

b
1
0

b
0
8

c
4
3
2

b
1
2

b
1
3

c
8
8
0

c
1
3
5
5

b
0
4

b
0
7

c
2
6
7
0

b
1
1

c
1
9
0
8

c
7
5
5
2

c
5
3
1
5

c
3
5
4
0

b
0
5

c
6
2
8
8

N
u

m
b

e
r

o
f

b
a

ck
tr

a
ck

s

Benchmark Circuits

Distance

COP

SCOAP

PCA

Figure 6.4: Total backtracks for detecting all
faults with ATPG using conventional heuris-
tic and PCA-guidance. Four circuits on the
left required no backtracks and c880 required
no backtracks only when PCA was used.

analyses for all gate outputs assumed as 0 and 1, respectively. PCA results for ISCAS’85 [110]

and ITC’99 [111] benchmarks were shown in Figures 6.1 and 6.2. The blue bars show the

major PCs, P0 and P1.

6.2 Experimental Results

In this chapter, a workstation containing an Intel i7-8700 processor and 8 GB of RAM

performed all experiments. Tools were implemented in C++ using the MSVC++ 14.15

compiler with maximum performance optimization, and all PCA activity was executed in

Python. PODEM ATPG [21] was reproduced along with event-driven fault simulation [4]

such that any heuristic (distance [21], COP [108], SCOAP [109], or PC) can be applied across

ISCAS’85 [110] and ITC’99 [111] benchmark circuits without favoring a single heuristic.

This chapter will surely polarize EDA vendor mindset to deploy MI in their ATPG software.

However, EDA vendors hesitate to divulge their program source code, and it is impossible

to conduct research-based experiments using the executable. Therefore, I prefer to run the

experiments using the in-house EDA tools.

Experiments used testable and redundant faults to prove the efficacy of guidance pro-

vided by PCA to PODEM ATPG [21]. Figures 6.3 (circuits are arranged according to

49

increasing logic depths) and 6.4 show relevant findings on ATPG CPU time (ms) and the

number of backtracks with respect to distance [21], COP [108], SCOAP [109], and PCA (P0

and P1 guidance).

This experiment demonstrated how combining multiple ATPG inputs as heuristics into a

linear combination through PCA can achieve better ATPG CPU time and fewer backtracks

compared to conventional single heuristics. Circuits c1355, c2670, c3540, b04, b11, b08,

c499 and c6288 showed improvement of reduced backtracks, but these circuits needed more

backtraces, thus CPU time increased. Most frequently, PCA was the best guidance for

ATPG, but when it was not it was never the worst performing. Circuits c17, b02, b01, and

b06 had no reconvergent fanouts, and therefore had no scope for reducing backtracks. Circuit

c880 was the good example of zero backtracks in PCA-based PODEM ATPG compared to

other conventional heuristics, which was significant in terms of the ability to achieve no

backtracks.

The technique of this chapter is referred to as “PCA-guidance”. I observe that PCA

can provide guidance to ATPG without using ANN. Seemingly, an advantage might be that

the PCA-guidance is now customized to the circuit under test (CUT). In contrast, the ANN

must be pre-trained using data from training circuits, which are different from the CUT.

However, the trained ANN contains more information than the heuristics; it is also trained

with sample ATPG data. In the next chapter, I incorporate PCA in the training of ANN,

which will then guide the ATPG.

50

Chapter 7

Principal Component Analysis in Machine Intelligence-Based Test Generation

Human clairvoyance in the form of heuristics was successfully used in ATPG programs,

but it has been reported that no single heuristic works optimally for all instances, and the

use of multiple heuristics can be computationally expensive [106,107]. Although MI is not a

new technique, considerable performance impact of ANN was found in test point insertion

(TPI) [13, 76, 116–118]. Recent advances in MI-based ATPG demonstrated that heuristics

can be easily incorporated in ATPG through MI [2,3]. Thus, MI could harness the benefits of

multiple heuristics. However, as the volume of heuristic data increases, the workhorse of MI,

i.e., the ANN, tends to be overloaded to the extent that its efficiency suffers. PCA [40, 41]

can amalgamate training features to enhance supervised learning of ANN. Although the

application of PCA-trained-ANN is not new, this chapter demonstrates its novel application

to ATPG.

This chapter improves ANN training quality and efficiency by pre-processing training

data with PCA [40, 41] that extracts relevant features from a list of many features to train

an ANN [119–121] and offers a viable pre-processing step [122] to decrease ANN complexity.

The heuristics in ATPG were built around topological data of the circuit, and this chapter

used correlation among data to achieve compaction [40, 41] and extracted the PCs of the

circuit data. Thus the ANN complexity was reduced as it was now trained only with a few

selected PCs. Additionally, the ATPG CPU time was reduced since the trained ANN was

now less complex, and evaluating weights and biases of ANN edges required smaller matrix

multiplication and fewer computations of non-linear sigmoid functions [45].

This chapter is organized as follows. Section 7.1 outlines the contribution of this study

that explains the PC extraction with detailed mathematical backgrounds and technique to

51

choose major PCs. Section 7.2 evaluates the performance of PODEM guided by the PC-

trained ANN against that of PODEM guided by ANN without PCs [2, 3].

Major portions of this chapter are taken verbatim from my previously published research

work [15].

7.1 Modus Operandi

The performance of ANN-guided PODEM [2] was further improved by optimizing the

training methodology [3]. However, the addition of more features to the ANN would cause

problems of high volume of the training dataset and the ANN complexity to absorb and

retain the information. This leads to the storage crunch of such a high volume of training

data and leads to high ANN training time. Also, it may be possible that some training

features are irrelevant, and therefore extraction of useful training features is one such novel

contribution of this chapter, which enhances ATPG performance (both in terms of backtracks

and CPU time).

An increase in the training data set is prevalent and alarming. A multivariate statis-

tical method, popularly known as PCA [40, 41], reduces the data sets’ dimensionality and

increases interpretability with minimum information loss. PCA creates new uncorrelated

variables (also known as PCs) with maximum variances. Finding PCs reduces to solving an

eigenvalue/eigenvector problem; the new variables are not defined a priori, but by the data

set at hand, making PCA a pliant data analysis technique.

PCA is a technique to identify patterns in data and express the data to show the

similarities and dissimilarities. Any patterns in high-dimensional data are hard to find, but

PCA plays a vital role in analyzing these data where the luxury of graphical representation is

not available. PCA is also useful in compressing data by reducing the number of dimensions

without losing necessary information once patterns in the data are found [40, 41]. Before

this work, PCA found significant application in image processing and recently in the form

of unsupervised learning in ATPG [14], but this statistical tool has not been explored as

52

Table 7.1: Example of 8-dimensional feature (signal characteristic) data for first 5 signals of
training circuit c6288.

Fan-
out

Gate
type

COP
CC

COP
CO

SCOAP
SC0

SCOAP
SC1

SCOAP
SCO

Dist.

0.000 0.000 0.063 1.000 0.013 0.058 0.000 0.237
0.000 0.000 0.063 1.000 0.013 0.058 0.004 0.211
0.000 0.000 0.938 1.000 0.034 0.016 0.004 0.184
0.000 0.000 0.938 0.063 0.034 0.016 0.045 0.158
1.000 0.330 0.500 0.125 0.007 0.011 0.034 0.132

a pre-processing step of ANN training in ATPG or MI-based ATPG (also known as PCA-

trained-ANN guided ATPG).

This chapter demonstrates PCA-based pre-processing of training data obtained from

circuits, c6288, c3540, and b05, chosen due to their large logic depths. The use of deep

circuits in training ANN for ATPG was empirically found to be effective [3]. The ANN

training data was obtained from successful and failed backtraces in a COP-based ATPG, as

illustrated in Chapter 4. In this chapter, the ANN recognizes eight features (characteristics)

for each signal line (PI, gate output, or fanout branch). The feature values were normalized

in the range [0, 1]. They are specified below, with examples shown in Table 7.1:

1. Fanout - Its value is 0 for a signal (line) with single destination, and 1 for multiple

destinations.

2. Gate type - The type of a signal is specified numerically. PI, fanout branch, and

inverter output are type 0.0. A multiple-input gate output signal, which can be a

non-fanout signal or a fanout stem, is type 1 through 6 (without any significance to a

gate being any type) corresponding to AND, NAND, OR, NOR, XOR, or XNOR gate,

respectively. After normalization the gate-type becomes 0.0, 0.167, 0.33, 0.5, 0.67,

0.83, or 1.0.

3. COP CC - Combinational controllability computed by COP [108] as probability of

setting the signal to 1.

53

4. COP CO - Combinational observability computed by COP [108] as probability of

observing the signal at POs.

5. SCOAP SC0 - Effort of setting the signal to 0 as computed by SCOAP [109], nor-

malized with respect to the maximum SC0 of the circuit.

6. SCOAP SC1 - Effort of setting the signal to 1 as computed by SCOAP [109], nor-

malized with respect to the maximum SC1 of the circuit.

7. SCOAP SCO - Effort of observing the signal at POs as computed by SCOAP [109],

normalized with respect to the maximum SCO of the circuit.

8. Distance - Number of lines on the shortest path between the signal and PIs, normal-

ized with respect to the maximum PI to PO depth of the circuit.

7.1.1 Mathematical Background of PCA

This section explains how PCA is performed on a set of data and also attempted to

provide elementary mathematical background required to understand PCA’s mechanisms,

such as calculating mean, covariance matrix, eigenvectors, and eigenvalues of a covariance

matrix, choosing the components that formed a feature vector, and finally deriving a new

data set based on feature vectors.

Step 1: Getting data

Examples of 8 input features of the ANN are given in Table 7.1. For simplicity, 2-

dimensional data for “COP CO” and “Dist.” are illustrated in Table 7.2. Figures 7.1

and 7.2 show the combined training data from circuits c6288, c3540, and b05 for two pairs of

features. These are scatter plots of raw data and show how some features can have stronger

correlation. The circular or elliptical concentration with minimum outliers indicates either

uncorrelated or correlated data, respectively. Although not empirically proven here, this

issue will be revisited in later sections.

54

Table 7.2: Example of features x = COP CO and y = distance in Table 7.1, and mean-
adjusted values for first 5 signals of c6288. Means < x > and < y > are computed for all
signals of training circuits c6288, c3540 and b05.

COP (CO)
x

Distance
y

xadjust = x− < x > yadjust = y− < y >

1 0.237 0.795 -0.021
1 0.211 0.795 -0.048
1 0.184 0.795 -0.074

0.063 0.158 -0.143 0.100
0.125 0.132 -0.080 -0.127

0

0.5

1

0 0.2 0.4 0.6 0.8 1

D
is

ta
n

ce

COP (CO)

0.2

Figure 7.1: A two-dimensional scatter plot of
“distance” and “COP CO” data for all signals
in training circuits c6288, c3540, and b05. A
nearly circular concentration indicates a weak
correlation between two features.

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
C

O
A

P
 (

S
C

0
)

Distance

Figure 7.2: A two-dimensional scatter plot
of “SCOAP SC0” and “distance” data for all
signals in training circuits c6288, c3540, and
b05. The elliptical concentration indicates
significant correlation between two features.

Step 2: Subtracting mean

The mean of each data type in Table 7.1 was calculated and subtracted from the re-

spective data as shown in Table 7.2. The well known procedure for computation of mean

is [123]:

< a >=
1

N

N∑
i=1

ai =
a1 + a2 + · · ·+ aN

N
(7.1)

where a is data sample, and N is the total number of samples.

55

Step 3: Calculating the covariance matrix

Data sets can be either single or multi-dimensional, and depending on which statistical

tools are used. Standard deviation and variance are such statistical tools that can be used

for one-dimensional data sets to calculate the standard deviation for each dimension of the

data, independent of the other dimensions. However, it was essential to have an evaluation

metric to find how much the dimensions vary from the mean concerning each other, known

as covariance. The mathematical formula for covariance is similar to variance [123]:

V arx =
1

N − 1

N∑
i=1

(xi− < x >)2 (7.2)

Covx,y =

∑N
i=1(xi− < x >)(yi− < y >)

N − 1
(7.3)

The total number of covariances for 2 or more data dimensions is n2−n
2

, where n is the

dimension of the data set. As this chapter deals with 8-dimensional data sets, n = 8, and

the total number of covariances (i.e., the number of elements in either the lower triangle or

the upper triangle of a symmetric matrix) is 28.

For a simple illustration, let us consider 2-dimensional data of Fig. 7.1 that produced

only one covariance. The higher the covariance, the stronger is correlation between features.

In this case, covariance was extremely low, suggesting that these features were almost un-

correlated. The covariance matrix was computed using equation 7.2 as:

C =

0.057 0.008

0.008 0.026

 (7.4)

56

Step 4: Calculating eigenvectors and eigenvalues

Eigenvectors and eigenvalues [123] are calculated from the covariance matrix C. These

signify the relative strengths of data components, which help identify significant PCs. Eigen-

vectors are orthogonal to each other and provide useful reorganization of data. Eigenvectors

represent a rotation matrix, and the eigenvalues corresponded to the square of the scaling

factor in each dimension.

eigenvectors =

0.973 −0.232

0.232 0.973

 (7.5)

eigenvalues =

(
0.059 0.024

)
(7.6)

Step 5: Forming a feature vector

This step illustrates compressing and reducing dimensionality of a data set. All eigen-

vectors are different and have different eigenvalues. The eigenvector with highest eigenvalue

is the major PC of the data set. It carries maximum significance among data dimensions.

Eigenvectors are obtained from the covariance matrix and ordered according to decreasing

eigenvalues. One may choose the significant eigenvectors based on their high eigenvalues

and discard the rest of the eigenvectors without losing much information, as shown below.

In the present situation, the two variables had rather low correlation and hence none were

dropped. However, just for illustration, one can drop the second variable:

selected eigenvector =

0.973

0.232

 (7.7)

Finally, n dimensional data may produce at most n eigenvectors and corresponding

eigenvalues. A subset of p eigenvectors may be chosen by eliminating those with relatively

small eigenvalues. Finally, a data set of dimension p (p ≤ n) is created in the next step.

57

Step 6: Reconstructing a new data set

A transform T is an n × n square matrix containing eigenvectors as rows. The mean-

adjusted feature data for each line is an n-dimensional vector. This vector, when multiplied

by T–produces a new n-dimensional vector of PCs.

7.1.2 Selecting Major Principal Components

This section highlights details on generation of six major PCs for each line, as discussed

in Section 7.1.1. There were various avenues to fix the number of significant PCs, but the

Pearson correlation coefficient (PCC)-based technique was chosen to compress/extract the

final dimensions of PC-based data [124]. However, datasets contained a mix of correlated

and uncorrelated items. The neural network training became more efficient when all its input

features are strictly orthogonal or, in other words, un-correlated. Therefore, PCC is a handy

technique by which one can compress unnecessary correlated data, keeping the uncorrelated

data intact. The well-known equation for PCC [123] is as follows:

r =

∑N
i=1(xi− < x >)(yi− < y >)√∑N

i=1(xi− < x >)2
√∑N

i=1(yi− < y >)2
(7.8)

where r is PCC, x and y are data samples of a two-dimensional dataset, < x > and < y >

are computed mean of data samples, and N is number of samples.

The entire data set from the three training circuits, of which only a sample is shown

in Table 7.1, was analyzed to compute correlation coefficients as shown by the 8× 8 matrix

below. I observed that diagonal elements are self correlated. Because they are highly corre-

lated, the PCC is 1 (highlighted in bold). Pair-wise correlation coefficients are off-diagonal

elements and, as pointed out earlier, considering the diagonal symmetry there are 28 of them.

58



1.000 0.246 −0.099 −0.086 −0.145 −0.005 0.031 −0.029

0.246 1.000 −0.107 −0.100 −0.142 0.025 −0.049 −0.091

−0.099 −0.107 1.000 0.064 0.322 −0.164 0.039 0.212

−0.086 −0.100 0.064 1.000 0.130 0.214 −0.364 0.201

−0.145 −0.142 0.322 0.130 1.000 0.408 0.286 0.622

−0.005 0.025 −0.164 0.214 0.408 1.000 0.175 0.559

0.031 −0.049 0.039 −0.364 0.286 0.175 1.000 0.258

−0.029 −0.091 0.212 0.201 0.622 0.559 0.258 1.000


Items 5, 6, and 8, i.e., SCOAP SC0, SCOAP SC1, and distance as shown in Table 7.1,

displayed strong correlation as highlighted in bold-green color in the PCC matrix. The

correlation of SCOAP SC0 and distance was also observed in Fig. 7.2. Six major PCs in

this study were based on PCC, as five were weakly correlated and were assumed uncorrelated,

and of the remaining three, two can be dropped. Thus, only six PCs were used to train the

ANN, and to facilitate algorithmic decisions in ATPG.

7.1.3 Preprocessing and ATPG

I recorded 8 features listed at the beginning of this section for all signal lines in the three

training circuits, c6288, c3540, and b05, in a L × 8 matrix, where L was total number of

lines in the three circuits. Next, PCA created the 8×8 matrix appearing above. COP-based

ATPG was run on the training circuits to record training data along with major PCs for

all backtraced lines. Each backtrace was also labeled either as success if it leads to a test,

or failure if it was undone by a backtrack. An ANN was then trained and replaced the

conventional heuristics-based sub-routine of PODEM ATPG. When backtracing through a

gate with multiple inputs, the ANN rated the chance for success for each input, and the

input with highest rating was chosen. To prepare a circuit under test for ATPG, first, all six

features were computed for each line, and the values were transformed into PCs in a similar

way as was done for training circuits.

59

7.2 Experimental Results

In this chapter, a workstation containing an Intel i7-8700 processor and 8 GB of RAM

performed all experiments. Tools were implemented in C++ using the MSVC++ 14.15

compiler with maximum performance optimization, and all PCA and ANN activities were

executed in Python. PODEM ATPG [21] was reproduced along with event-driven fault

simulation [4] such that any heuristic (distance [21], COP [108], SCOAP [109], or PC) can

be applied across ISCAS’85 [110] and ITC’99 [111] benchmark circuits without favoring a

single heuristic. This chapter will surely polarize EDA vendor mindset to deploy MI in their

ATPG software. However, EDA vendors hesitate to divulge their program source code, and

it is impossible to conduct research-based experiments using the executable. Therefore, I

prefer to run the experiments using the in-house EDA tools.

ATPG was applied to all testable and redundant single stuck-at faults in each circuit.

Figures 7.3 and 7.4 show the total number of backtracks and ATPG CPU times (ms) for

three ANN-based guidances: basic trained-ANN of Chapter 4 [2], optimally-trained-ANN

guidance of Chapter 5 [3], and PCA-trained-ANN guidance [15] of this chapter. The circuits

are arranged left to right in terms of increasing logic depth. For each circuit, three bars record

total backtracks in Fig. 7.3 and three points show CPU times in Fig. 7.4, corresponding to

the three versions of PODEM. Curves in Fig. 7.4 are MATLAB power-law curve fits (y = cxb)

for the three PODEM versions. For circuits b10, b12, c880, b04, b11, c1908, c7552, c5315,

and c3540 the new ANN outperformed the other two ANN-based heuristics [2,3] in terms of

backtracks and ATPG CPU time. Circuits c2670, b07, and c3540 show reduced backtracks

but required more backtraces, alleviating the CPU time benefit. Circuits c432, c2670, b07,

b13, c6288, b09, b03, c499, b08, b13, and c1355 show that quite often the PCA-trained-ANN

guided PODEM ATPG gave the best guidance, but when did not it was never the worst

performing. Circuits c17, b02, b01, and b06 had zero reconvergent fanouts and provided

60

1

10

100

1000

10000

100000

1000000

c1
7

b
0

2

b
0

6

b
0

1

b
0

9

b
0

3

c4
9

9

b
1

0

b
0

8

c4
3

2

b
1

2

b
1

3

c8
8

0

c1
3

5
5

b
0

4

b
0

7

c2
6

7
0

b
1

1

c1
9

0
8

c7
5

5
2

c5
3

1
5

c3
5

4
0

b
0

5

c6
2

8
8

N
u

m
b

e
r

o
f

b
a

ck
tr

a
ck

s

Benchmark Circuits

Basic trained-ANN [2] Optimally-trained-ANN [3] PCA-trained ANN [15]

Figure 7.3: Backtracks required to find a test
or verify redundancy for all checkpoint stuck-
at faults in benchmark circuits, arranged left
to right in order of increasing logic depth.

1

10

100

1000

10000

100000

1000000

10000000

0 50 100 150 200 250 300 350

C
P

U
 t

im
e

 (
m

s)

Logic depths of the benchmark circuits

Basic trained-ANN [2] Optimally-trained-ANN [3] PCA-trained ANN [15]

Figure 7.4: CPU time to find a test or verify
redundancy for all checkpoint stuck-at faults
for circuits of Fig. 7.3.

no scope for reducing backtracks through the new ANN. Circuit b05 had no reduction in

backtracks but a significant reduction in CPU time.

The result of circuit b05 is significant in terms of the ability to achieve the so-called

“sweet-spot” [2, 3]. In extreme cases, MI-based ATPG can reduce several backtracks to

one backtrack in an enormous amount of time, which is infeasible. However, if MI-based

ATPG can generate test vectors using the most effective backtraces irrespective of several

backtracks in a lesser amount of time than conventional heuristic-based ATPG–it can be

worthwhile exploring. The point at which MI-based ATPG may consume backtracks in the

lowest possible time is known as “sweet-spot”–effective for detecting hard-to-detect faults in

a circuit.

Finally, Fig. 7.5 compares CPU times (ms) of PODEM ATPG guided by the four ML

strategies developed, respectively, in Chapter 4 (basic trained-ANN-guidance) [2], Chapter 5

(optimally-trained-ANN guidance) [3], Chapter 6 (PCA-guidance) [14], and this chapter

(PCA-trained-ANN guidance) [15]. Once again, benchmarks are arranged by logic depth in-

creasing from left to right. The test generation time of optimally-trained-ANN guidance was

reduced a little bit for high depth benchmarks compared to that of the basic trained-ANN

guidance. However, it can be observed that the test generation time of PCA-guidance was

reduced substantially for low depth benchmarks but increased for high depth benchmarks.

61

1

10

100

1000

10000

100000

1000000

10000000

0 50 100 150 200 250 300 350

C
P

U
 t

im
e

 (
m

s)

Logic depths of the benchmark circuits

Basic trained-ANN guidance [2] Optimally-trained-ANN guidance [3]

PCA-guidance [14] PCA-trained-ANN guidance [15]

Power (Basic trained-ANN guidance [2]) Power (Optimally-trained-ANN guidance [3])

Power (PCA-guidance [14]) Power (PCA-trained-ANN guidance [15])

Figure 7.5: CPU times (ms) of PODEM ATPG guided by four ML strategies for all check-
point single stuck-at faults (detected and redundant).

In contrast, the test generation time of PCA-trained-ANN guidance was reduced uniformly

across all the benchmarks. Therefore, it can be concluded that the PCA-trained-ANN guid-

ance of this chapter is the best of the present research.

The preceding evaluation is based on a combined ATPG performance (backtracks and

CPU time) for all faults. However, in practical applications a more important criteria is

the performance with respect to the hardest-to-detect or even redundant faults. Thus, a

fault-by-fault micro-evaluation of the ATPG guidance techniques is recommended for the

future.

62

Chapter 8

Discussion and Future Work

MI, big data, and data mining are hot-topics with ample media coverage, upcoming

start-up companies, and outstanding mergers and acquisitions. In the past few decades,

MI allowed the extraction and use of domain-specific knowledge to solve computationally

hard problems. VLSI design and test have benefited too: MI has been in use for analog,

digital, and memory testing, along with emerging technology-based device test and hardware

security [51].

This thesis discovered that one can solve the test generation problem using MI. Assuming

that fewer backtracks represent higher ATPG performance, I made an interesting observation

from Fig. 4.5. For the normalized data, the height of a bar above the 0 line indicates how

much worse a heuristic performs compared to MAR. Also, the relative heights of other bars

for the same circuit give a comparison between the Distance and COP heuristics. A shorter

bar, such as for b09, shows Distance is better than COP. On the other hand, a shorter orange

bar for b07 shows a better performance by the COP heuristic. This indicates that there is no

single best heuristic for all circuits [106,107]. It is not surprising that MAR, with capability

to use data from both heuristics, does well on both circuits.

I conjectured that any ATPG algorithm that performs backtracing will improve with the

MAR heuristic. The ANNs of Chapter 4 and Chapter 5 [2,3] do not need to be retrained for

different ATPG algorithms as long as the goal of the backtrace guidance is to prevent future

backtracks and the backtracing subroutine inputs are solely circuit topology. Given that

ATPG algorithms beyond PODEM [21], like SOCRATES [24–26] and FAN [22], substantially

decrease CPU time through advanced ATPG subroutines but still require backtracking, I

hope to see MAR used in these algorithms and provide similar benefits as seen in this

63

dissertation. I also found that training with just hard-to-detect faults was not sufficient for

obtaining a more useful ANN [3]. Therefore, I had to include some easy-to-test faults in the

training process. A possible reason is that hard-to-detect faults may cover only some parts

of the circuit topology while ignoring others.

Nevertheless, the proposed MI techniques [2,3] were supervised and needed ANNs that

are trained and used in place of heuristics. The result is fewer erroneous backtraces (i.e.,

fewer backtracks) and more efficient ATPG. But, the increase in the volume of heuristic

data may overburden the ANN, making it more complex and leading to increased training

time. Chapter 6 used no ANN, and instead opted for a statistical data analysis technique,

i.e., PCA, which can be used with minimal cost to implement PODEM ATPG. This PCA-

guided ATPG [14] outperforms conventional heuristics in terms of backtracks and CPU

time, and circuit c880 (although small) shows the possibility of no backtracks using a linear

combination of multiple features. Though previous work [106,107] has reported that no single

heuristic performs well in all cases, results of Chapter 6 showed that the major PC combined

multiple circuit data effectively and either outperforms or matches the best heuristics on

most circuits, with few exceptions, as shown in Figures 6.3 and 6.4.

Chapter 7 attempted to improve upon the previous MI-based test generation system’s

detriments by introducing PCA [40, 41]. I think that the ANN of MI-based test genera-

tion systems may have incorporated too many features, and their large number could have

been a detriment in previous research. PCA has a powerful ability to combine even larger-

dimensional correlated data, reduce the data volume, and continue to improve the ANN

training efficiency. Chapter 7 went beyond expectation by showing an order of magnitude

reduction in test generation time (except for c6288) through effectively combining multiple

circuit data.

Chapters 4, 5, 6, and 7 provided several avenues to be explored by future researchers [2,

3, 14,15]:

64

1. My focus was on reducing backtracks, but the performance of backtraces, particularly

in reconvergent fanout-free circuits, can also be improved.

2. My exploration for eliminating backtracks had a cost in CPU time. Thus, a “sweet-

spot” may be found where the reduction of backtracks would be optimum for minimiz-

ing CPU time.

3. Finding untestable/redundant faults earlier can make ATPG for the entire circuit

faster.

4. Recent work [76] demonstrated that arbitrary random circuits can generate limitless

training data.

5. This dissertation’s experiments were demonstrated on academic benchmark circuits

and not on larger industrial circuits. I believe that the MI-guided ATPG performance

trends are quite promising (which is important) and likely to scale on a wider variety

and larger set of designs to show broader capabilities in the future.

6. MI was used in backtracing guidance of PODEM ATPG, but never used for D-Frontier

drive selection in PODEM ATPG to witness more ATPG performance improvement.

7. Using k-means clustering or other unsupervised learning models may give some inter-

esting observations compared to PCA-based ATPG.

8. MI-based PODEM ATPG detected some faults in a circuit with many backtracks

compared to conventional heuristic based PODEM ATPG. I think further investigation

is needed regarding the characteristics of those faults that did not favor MI-based

PODEM ATPG.

9. PCA can combine multiple circuit topological data and testability measures to create

a novel testability measure.

65

10. Although performance improvements diminish for larger circuits, further improvement

may be possible with more ANN features, such as reconverging signal characteristics,

fanout information, etc., that can add to the capability of the ANN.

11. Yet another area is to examine ANN structures beyond the single hidden layer [43].

Finally, the efficacy of PCs, as illustrated in Chapters 6 and 7, can always be improved

by maximizing the explained variance. The usual practice of PCA is to keep only the first

k < p principal components, where k is the dimension of transformed subspace that comprises

PCs and p is the dimension of the original space. PCA is an orthogonal transformation that

projects data from a p-dimensional space to a k-dimensional subspace, and the remaining

p − k dimensions vanish in this kind of projection. It is rational to minimize variability in

those p−k directions and maximize the variance of the first k variables as the total variance

of both p and k dimensional spaces is constant. Figure 6.1 shows that the major PC (or

the first PC) of some circuits do not reach close to 1, which signifies that there is room to

maximize the explained variance of such circuits by adding more isomorphic features to the

original dataset. In the future, one will make choices in PCA based on specific objectives:

1) PCA is an orthogonal transformation and will need maximum variance in the first k

components and minimum variance in p−k components; 2) choosing the first k components

for maximum variability; and 3) choosing large k to reduce information loss and variance of

p− k components.

Researchers are limited in their imagination to find solutions for NP-complete problems.

Therefore, all ATPG algorithms use various heuristics to achieve a lower test generation

runtime, but achieving lower ATPG run-time is still an open problem. This dissertation

attempts to bank upon MI to combine various ATPG inputs as heuristics, narrow down

the search space, and achieve speed-up in ATPG runtime as illustrated in Chapters 4, 5, 6,

and 7 [2, 3, 14, 15]. However, with the dramatic rise in research on quantum computing, it

is only natural to use those ideas to break the VLSI Testing area out of its plateau. The

discovery of quantum-based test generation algorithms may break the computational barrier

66

and achieve the theoretical run-time complexity of
√
N . Until or unless it is proven that a

given solution is the most optimal, there is always a ray of hope that paradigms will continue

to shift. Attempts have been reported but the field is still open [125,126].

Finally, practical ATPG systems may combine a simple program (e.g., random vector

ATPG) for easy faults and a complex program (e.g., MI-based or quantum-based ATPG)

for hard-to-detect faults. This system-level experiment is yet to be explored in the future.

67

Chapter 9

Conclusion

In this dissertation, a thorough study was conducted to quantitatively and qualitatively

analyze the effectiveness of various MI-based heuristics in ATPG. A major benefit of the

MI approach is the ability to combine the benefits of multiple heuristics, which may be

difficult otherwise. Minimizing test generation time has been the sole motive for many

IC test researchers in the past decades. As the time to generate tests depends on the

anatomy of the ATPG algorithm, innovations can improve the algorithm’s efficacy. The use

of heuristics in backtrace is one such technique that attempts to find a test with minimal bad

decisions or “backtracks” and more successful “backtraces .” These two ATPG activities

play significant roles in the way the search space is explored for finding tests while trying to

minimize the CPU time. The search for a test is terminated as soon as a suitable vector is

found, making the exploration of the remaining space unnecessary. Conventional heuristics

attempt to enhance ATPG performance, but with the introduction of MI, this attempt can

be further improved to an extent a single conventional heuristic can never achieve [106,107].

Chapter 4 concluded using ANN-based backtracing, “MAR”, most often reduced back-

tracks and CPU time compared to other conventional heuristics, which suggests ANNs can

assist complex EDA problems like ATPG with few drawbacks.

Chapter 5 concluded that the methodical training of an ANN for guiding ATPG as

presented here has benefits. Although many cases showed significant improvements, there

were circuits that demand more. Finding the most suitable training circuits remains an open

problem. ANN training is only a one-time cost, after which the MI imparted to the ATPG

can have long-term benefits.

68

For the first time, Chapter 6 attempted to integrate unsupervised learning of MI with

PODEM ATPG to demonstrate the effectiveness of ATPG in terms of reduction of back-

tracks and ATPG CPU time. This chapter used PCA to combine multiple features, and

a linear transformation projects conventional ATPG backtracing features into a new major

PC (the first PC), which is considered to be the carrier of maximum variance and replaces

the traditional single-heuristic guidance of ATPG.

To be successful, an ATPG algorithm must backtrack when necessary and then move

forward again and it’s efficiency is derived by minimizing backtracks. Chapter 7 concluded

that PCA effectively increased the amount of useful information fed into an ANN during

ATPG. It brings ATPG closer to the elusive goal of zero backtrack. This chapter showed that

PCA reduced the dimension of the training dataset and effectively trained the ANN. This is

known as PCA-assisted supervised learning in contrast with the supervised learning [2, 3].

69

Bibliography

[1] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed Algorithms to Com-
pute Tests to Detect and Distinguish Between Failures in Logic Circuits,” IEEE Trans.
on Electronic Comp., vol. EC-16, no. 5, pp. 567–580, Oct. 1967.

[2] S. Roy, S. K. Millican, and V. D. Agrawal, “Machine Intelligence for Efficient Test
Pattern Generation,” in Proc. IEEE Int’l Test Conf., Washington D.C, Nov. 2020.

[3] S. Roy, S. K. Millican, and V. D. Agrawal, “Training Neural Network for Machine
Intelligence in Automatic Test Pattern Generator,” in Proc. 34th Int’l Conf. on VLSI
Design & 20th Int’l Conf. on Embedded Systems, India, February 2021.

[4] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Springer Publishing Company, Incorporated, 2013.

[5] P. K. Nag, A. Gattiker, S. Wei, R. D. Blanton, and W. Maly, “Modeling the Economics
of Testing: A DFT Perspective,” IEEE Design & Test of Comp., vol. 19, no. 1, pp.
29–41, Jan/Feb 2002.

[6] R. D. Eldred, “Test Routines Based on Symbolic Logical Statements,” J. ACM, vol. 6,
no. 1, pp. 33–37, Jan. 1959.

[7] J. M. Galey, R. E. Norby, and J. P. Roth, “Techniques for the Diagnosis of Switching
Circuit Failures,” in Proc. 2nd Annual Symp. on Switching Circuit Theory and Logical
Design (SWCT), 1961, pp. 152–160.

[8] J. M. Galey, R. E. Norby, and J. P. Roth, “Techniques for the Diagnosis of Switching
Circuit Failures,” IEEE Trans. on Communication and Electronics, vol. 83, no. 74, pp.
509–514, Sep. 1964.

[9] G. E. Moore, “Cramming More Components onto Integrated Circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff.” IEEE Solid-State Circuits
Society Newsletter, vol. 11, no. 3, pp. 33–35, 2006.

[10] O. H. Ibarra and S. K. Sahni, “Polynomially Complete Fault Detection Problems,”
IEEE Trans. on Comp., vol. C-24, no. 3, pp. 242–249, Mar. 1975.

[11] H. Fujiwara and S. Toida, “The Complexity of Fault Detection Problems for Com-
binational Logic Circuits,” IEEE Trans. on Comp., vol. 31, no. 6, pp. 555–560, Jun.
1982.

70

[12] G. Seroussi and N. H. Bshouty, “Vector Sets for Exhaustive Testing of Logic Circuits,”
IEEE Trans. Information Theory, vol. 34, no. 3, pp. 513–522, May 1988.

[13] Y. Sun and S. K. Millican, “Test Point Insertion Using Artificial Neural Networks,” in
Proc. IEEE Computer Society Annual Symp. on VLSI (ISVLSI), USA, July 2019, pp.
253–258.

[14] S. Roy, S. K. Millican, and V. D. Agrawal, “Unsupervised Learning in Test Generation
for Digital Integrated Circuits,” in Proc. IEEE European Test Symp., Belgium, May
2021.

[15] S. Roy, S. K. Millican, and V. D. Agrawal, “Principal Component Analysis in Machine
Intelligence-Based Test Generation,” in Proc. IEEE Microelectronics Design and Test
Symp. (MDTS’21), USA, May 2021.

[16] J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method,” IBM J. Res.
Dev., vol. 10, no. 4, pp. 278–291, Jul. 1966.

[17] T. Williams and N. Brown, “Defect Level as a Function of Fault Coverage,” IEEE
Trans. on Comp., vol. C-30, no. 12, pp. 987–988, Dec. 1981.

[18] M. Turner, “Testing CMOS VLSI: Tools Concepts, and Experimental Results,” in
Proc. Int’l Test Conf., 1985, pp. 322–328.

[19] D. B. Armstrong, “On Finding a Nearly Minimal Set of Fault Detection Tests for
Combinational Logic Nets,” IEEE Trans. on Electronic Comp., vol. EC-15, no. 1, pp.
66–73, Feb. 1966.

[20] M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of Digital Systems.
Computer Science Press, 1976.

[21] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits,” IEEE Trans. on Comp., vol. C-30, no. 3, pp. 215–222, Mar. 1981.

[22] H. Fujiwara and T. Shimono, “On the Acceleration of Test Generation Algorithms,”
IEEE Trans. on Comp., vol. C-32, no. 12, pp. 1137–1144, Dec. 1983.

[23] T. Kirkland and M. R. Mercer, “A Topological Search Algorithm for ATPG,” in Proc.
24th ACM/IEEE Design Automation Conf., Jun. 1987, pp. 502–508.

[24] M. H. Schulz and E. Auth, “Advanced Automatic Test Pattern Generation and Re-
dundancy Identification Techniques,” Proc. Eighteenth Int’l Symp. on Fault-Tolerant
Computing. Digest of Papers, pp. 30–35, June 1988.

[25] M. H. Schulz and E. Auth, “Improved Deterministic Test Pattern Generation With
Applications to Redundancy Identification,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 8, no. 7, pp. 811–816, Jul. 1989.

71

[26] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly Efficient Auto-
matic Test Pattern Generation System,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 7, no. 1, pp. 126–137, Jan. 1988.

[27] M. L. Bushnell and J. Giraldi, “A Functional Decomposition Method for Redundancy
Identification and Test Generation,” J. Electronic Testing, vol. 10, no. 3, pp. 175–195,
Jun. 1997.

[28] K.-T. Cheng, “On Removing Redundancy in Sequential Circuits,” in Proc. 28th
ACM/IEEE Design Automation Conf. (DAC), June 1991, pp. 164–169.

[29] K.-T. Cheng and V. D. Agrawal, Unified Methods for VLSI Simulation and Test Gen-
eration. Springer, 1989.

[30] W. Kunz and D. K. Pradhan, “Recursive Learning: An Attractive Alternative to the
Decision Tree for Test Generation in Digital Circuits,” in Proc. IEEE Int’l Test Conf.,
USA, Sept. 1992, pp. 816–825.

[31] S. T. Chakradhar and V. D. Agrawal, “A Transitive Closure Based Algorithm for
Test Generation,” in Proc. 28th ACM/IEEE Design Automation Conf., ser. DAC ’91.
USA: Association for Computing Machinery, June 1991, pp. 353–358.

[32] S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler, “A Transitive Closure Al-
gorithm for Test Generation,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 12, no. 7, pp. 1015–1028, Jul. 1993.

[33] T. Larrabee, “Efficient Generation of Test Patterns Using Boolean Difference,” in
Proc.Int’l Test Conf., USA, Aug. 1989, pp. 795–801.

[34] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,” IEEE Trans. on
CAD, vol. 11, no. 1, pp. 4–15, Jan. 1992.

[35] S. T. Chakradhar, “Neural network models and optimization methods for digital test-
ing,” Ph.D. dissertation, Rutgers University, USA, 1991.

[36] J. P. Marques Silva and K. A. Sakallah, “GRASP - A New Search Algorithm for
Satisfiability,” in Proc. Int’l Conf. on Computer Aided Design, USA, Apr. 1996, pp.
220–227.

[37] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Combinational Test
Generation Using Satisfiability,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, pp. 1167–1176, 1996.

[38] M. Henftling, H. Wittmann, and K. J. Antreich, “A Formal Non-Heuristic ATPG Ap-
proach,” in Proc. Conf. on European Design Automation, ser. EURO-DAC ’95/EURO-
VHDL ’95. England: IEEE Computer Society Press, Sept. 1995, pp. 248–253.

[39] P. Tafertshofer, A. Ganz, and M. Henftling, “A SAT-based Implication Engine for
Efficient ATPG, Equivalence Checking, and Optimization of Netlists,” in Proc. IEEE
Int’l Conf. on Computer Aided Design (ICCAD), USA, Nov. 1997, pp. 648–655.

72

[40] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2,
no. 11, pp. 559–572, 1901.

[41] H. Hotelling, “Analysis of a Complex of Statistical Variables into Principal Compo-
nents,” Journal of Educational Psychology,, vol. 24, no. 6, pp. 417–441, 1933.

[42] S. S. Haykin, Neural Networks and Learning Machines, 3rd ed. Upper Saddle River,
NJ: Pearson Education, 2009.

[43] D. K. Hunter, H. Yu, M. S. P. III, J. Kolbusz, and B. M. Wilamowski, “Selection of
Proper Neural Network Sizes and Architectures - A Comparative Study,” IEEE Trans.
Industrial Informatics, vol. 8, no. 2, pp. 228–240, 2012.

[44] Y. Lecun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature Cell Biology, vol. 521,
pp. 436–444, 2015.

[45] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:
Comparison of trends in Practice and Research for Deep Learning,” ArXiv, vol.
abs/1811.03378, 2018.

[46] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[47] I. Jolliffe, Principal Component Analysis. New York: Springer-Verlag New York, 2002.

[48] J. Guo, G. James, E. Levina, G. Michailidis, and J. Zhu, “Principal Component Anal-
ysis With Sparse Fused Loadings,” Journal of Computational and Graphical Statistics,
vol. 19, no. 4, pp. 930–946, 2010.

[49] H. Stratigopoulos, “Machine Learning Applications in IC Testing,” in Proc. IEEE 23rd
European Test Symp. (ETS), Germany, May 2018, pp. 1–10.

[50] M. Pradhan and B. B. Bhattacharya, “A Survey of Digital Circuit Testing in the Light
of Machine Learning,” WIREs Data Mining Knowl. Discov., pp. 1–18, 2020.

[51] S. Roy, S. K. Millican, and V. D. Agrawal, “Special Session – Machine Learning in
Test: A Survey of Analog, Digital, Memory, and RF Integrated Circuits,” in Proc.
IEEE VLSI Test Symp. (VTS’21), USA, Apr. 2021, pp. 1–10.

[52] H. Stratigopoulos and S. Mir, “Adaptive Alternate Analog Test,” IEEE Design Test
of Comp., vol. 29, no. 4, pp. 71–79, 2012.

[53] H. Stratigopoulos and S. Sunter, “Fast Monte Carlo-Based Estimation of Analog Para-
metric Test Metrics,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 33, no. 12, pp. 1977–1990, 2014.

[54] H. Stratigopoulos, “Test Metrics Model for Analog Test Development,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp.
1116–1128, 2012.

73

[55] D. Maliuk, H.-G. Stratigopoulos, H. Huang, and Y. Makris, “Analog Neural Network
Design for RF Built-In Self-Test,” in Proc. Int’l Test Conf. (ITC), USA, Nov. 2010,
pp. 23.2.1–23.2.10.

[56] D. Banerjee, S. K. Devarakond, X. Wang, S. Sen, and A. Chatterjee, “Real-Time
Use-Aware Adaptive RF Transceiver Systems for Energy Efficiency Under BER Con-
straints,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 8, pp. 1209–1222, 2015.

[57] C. Xanthopoulos, P. Sarson, H. Reiter, and Y. Makris, “Automated Die Inking: A
Pattern Recognition-based Approach,” in Proc. IEEE Int’l Test Conf. (ITC), USA,
Oct. 2017, pp. 1–6.

[58] J. Tikkanen, S. Siatkowski, N. Sumikawa, L. Wang, and M. S. Abadir, “Yield Opti-
mization using Advanced Statistical Correlation Methods,” in Proc. Int’l Test Conf.,
USA, Oct. 2014, pp. 1–10.

[59] N. Sumikawa, M. Nero, and L. Wang, “Kernel Based Clustering for Quality Improve-
ment and Excursion Detection,” in Proc. IEEE Int’l Test Conf. (ITC), USA, Oct.
2017, pp. 1–10.

[60] Y. Huang, R. Guo, W. Cheng, and J. C. Li, “Survey of Scan Chain Diagnosis,” IEEE
Design Test of Comp., vol. 25, no. 3, pp. 240–248, 2008.

[61] M. Chern, S.-W. Lee, S.-Y. Huang, Y. Huang, G. Veda, K.-H. H. Tsai, and W.-
T. Cheng, “Improving Scan Chain Diagnostic Accuracy Using Multi-Stage Artificial
Neural Networks,” in Proc. 24th Asia and South Pacific Design Automation Conf.
(ASP-DAC), Tokyo, Japan, Jan. 2019, pp. 341–346.

[62] H. Wang, O. Poku, X. Yu, S. Liu, I. Komara, and R. D. Blanton, “Test-Data Volume
Optimization for Diagnosis,” in Proc. Design Automation Conf., USA, June 2012, pp.
567–572.

[63] L. R. Gómez and H. Wunderlich, “A Neural-Network-Based Fault Classifier,” in Proc.
IEEE 25th Asian Test Symp. (ATS), Japan, Nov. 2016, pp. 144–149.

[64] J. E. Nelson, W. C. Tam, and R. D. Blanton, “Automatic Classification of Bridge
Defects,” in Proc. IEEE Int’l Test Conf., USA, Nov. 2010, pp. 1–10.

[65] L. R. Gómez, A. Cook, T. Indlekofer, S. Hellebrand, and H.-J. Wunderlich, “Adaptive
Bayesian Diagnosis of Intermittent Faults,” J. Electron. Test., vol. 30, no. 5, p. 527–540,
Oct. 2014.

[66] Y. Xue, O. Poku, X. Li, and R. D. Blanton, “PADRE: Physically-Aware Diagnostic
Resolution Enhancement,” in Proc. IEEE Int’l Test Conf. (ITC), USA, Sept. 2013,
pp. 1–10.

74

[67] Z. Sun, L. Jiang, Q. Xu, Z. Zhang, Z. Wang, and X. Gu, “AgentDiag: An Agent-
Assisted Diagnostic Framework for Board-level Functional Failures,” in Proc. IEEE
Int’l Test Conf. (ITC), USA, Sept. 2013, pp. 1–8.

[68] Z. Sun, L. Jiang, Q. Xu, Z. Zhang, Z. Wang, and X. Gu, “On Test Syndrome Merging
for Reasoning-based Board-level Functional Fault Diagnosis,” in Proc. 20th Asia and
South Pacific Design Automation Conf., Japan, Sept. 2015, pp. 737–742.

[69] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu, “Board-Level Functional Fault Diagnosis
Using Artificial Neural Networks, Support-Vector Machines, and Weighted-Majority
Voting,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, no. 5, pp. 723–736, 2013.

[70] S. Wang and W. Wei, “Machine Learning-Based Volume Diagnosis,” in Proc. Design,
Automation & Test in Europe Conf. & Exhibition, France, Apr. 2009, pp. 902–905.

[71] L. M. Huisman, M. Kassab, and L. Pastel, “Data Mining Integrated Circuit Fails with
fail Commonalities,” in Proc. Int’l Test Conf., USA, Oct. 2004, pp. 661–668.

[72] W. Cheng, Yue Tian, and S. M. Reddy, “Volume Diagnosis Data Mining,” in Proc.
22nd IEEE European Test Symp. (ETS), Cyprus, May 2017, pp. 1–10.

[73] Z. Li, J. E. Colburn, V. Pagalone, K. Narayanun, and K. Chakrabarty, “Test-Cost
Optimization in a Scan-Compression Architecture Using Support-Vector Regression,”
in Proc. IEEE 35th VLSI Test Symp. (VTS), USA, Apr. 2017, pp. 1–6.

[74] J. Immanuel and S. K. Millican, “Calculating signal controllability using neural net-
works: Improvements to testability analysis and test point insertion,” in Proc. IEEE
29th North Atlantic Test Workshop (NATW), USA, May 2020, pp. 1–6.

[75] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu, “High Per-
formance Graph Convolutional Networks with Applications in Testability Analysis,”
in Proc. 56th ACM/IEEE Design Automation Conf. (DAC), USA, June 2019, pp. 1–6.

[76] S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “Applying Neural Networks to
Delay Fault Testing: Test Point Insertion and Random Circuit Training,” in Proc.
IEEE 28th Asian Test Symp. (ATS), India, Dec. 2019, pp. 13–18.

[77] M. Pradhan, B. B. Bhattacharya, K. Chakrabarty, and B. B. Bhattacharya, “Predict-
ing X-Sensitivity of Circuit-Inputs on Test-Coverage: A Machine-Learning Approach,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 12, pp. 2343–2356, 2019.

[78] Y. Liu, C. Han, S. Lin, and J. C. Li, “PSN-Aware Circuit Test Timing Prediction
Using Machine Learning,” IET Comp. Digital Techniques, vol. 11, no. 2, pp. 60–67,
2017.

[79] C. FAGOT, P. GIRARD, and C. LANDRAULT, “On using machine learning for logic
bist,” in Proc. IEEE Int’l Test Conf. USA: IEEE Computer Society, 1997, p. 338.

75

[80] M. Sadi, G. K. Contreras, J. Chen, L. Winemberg, and M. Tehranipoor, “Design of
Reliable SoCs With BIST Hardware and Machine Learning,” IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 11, pp. 3237–3250, 2017.

[81] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell, Neural Models and Algorithms
for Digital Testing. Springer, 1991.

[82] A. Manzini, P. Inglese, L. Caldi, R. Cantero, G. Carnevale, M. Coppetta, M. Giltrelli,
N. Mautone, F. Irrera, R. Ullmann, and P. Bernardi, “A Machine Learning-Based
Approach to Optimize Repair and Increase Yield of Embedded Flash Memories in
Automotive Systems-on-Chip,” in Proc. IEEE European Test Symp. (ETS), Germany,
May 2019, pp. 1–6.

[83] P. Mazumder and Y.-S. Jih, “A New Built-In Self-Repair Approach to VLSI Memory
Yield Enhancement by Using Neural-Type Circuits,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 12, no. 1, pp. 124–136, Jan. 1993.

[84] A. Singhee and R. A. Rutenbar, “Statistical Blockade: Very Fast Statistical Simulation
and Modeling of Rare Circuit Events and Its Application to Memory Design,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 8,
pp. 1176–1189, 2009.

[85] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support Vector
Machines,” IEEE Intelligent Systems and Their Applications, vol. 13, no. 4, pp. 18–28,
1998.

[86] A. Heuser and M. Zohner, “Intelligent Machine Homicide,” in Proc. Third Int’l Conf.
on Constructive Side-Channel Analysis and Secure Design, ser. COSADE’12. Ger-
many: Springer-Verlag, May 2012, p. 249–264.

[87] G. Hospodar, B. Gierlichs, E. Mulder, I. Verbauwhede, and J. Vandewalle, “Machine
learning in side-channel analysis: A first study,” J. Cryptographic Engineering, vol. 1,
pp. 293–302, 12 2011.

[88] K. Huang, J. M. Carulli, and Y. Makris, “Parametric counterfeit IC detection via
Support Vector Machines,” in Proc. IEEE Int’l Symp. on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), USA, Oct. 2012, pp. 7–12.

[89] T. Iwase, Y. Nozaki, M. Yoshikawa, and T. Kumaki, “Detection technique for hardware
Trojans using machine learning in frequency domain,” in Proc. IEEE 4th Global Conf.
on Consumer Electronics (GCCE), 2015, pp. 185–186.

[90] D. Jap, M. Stöttinger, and S. Bhasin, “Support Vector Regression: Exploiting Machine
Learning Techniques for Leakage Modeling,” in Proc. Fourth Workshop on Hardware
and Architectural Support for Security and Privacy, ser. HASP ’15. New York, NY,
USA: Association for Computing Machinery, 2015.

76

[91] Y. Jin, D. Maliuk, and Y. Makris, “Post-deployment trust evaluation in wireless cryp-
tographic ICs,” in Proc. Design, Automation & Test in Europe Conf. & Exhibition
(DATE), Germany, Mar. 2012, pp. 965–970.

[92] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection,” in Proc. 14th Int’l Joint Conf. on Artificial Intelligence - Volume 2,
ser. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, p.
1137–1143.

[93] N. Asadizanjani, M. Tehranipoor, and D. Forte, “Counterfeit Electronics Detection
Using Image Processing and Machine Learning,” Journal of Physics: Conf. Series,
vol. 787, p. 012023, Jan. 2017.

[94] H. Dogan, D. Forte, and M. M. Tehranipoor, “Aging analysis for recycled FPGA
detection,” in Proc. IEEE Int’l Symp. on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), Netherlands, Oct. 2014, pp. 171–176.

[95] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering Algo-
rithm.” Journal of the Royal Statistical Society, vol. 28, pp. 100–108, Nov. 1979.

[96] M. M. Alam, M. Tehranipoor, and D. Forte, “Recycled FPGA Detection Using Ex-
haustive LUT Path Delay Characterization,” in Proc. IEEE Int’l Test Conf. (ITC),
USA, Nov. 2016, pp. 1–10.

[97] C. Bao, D. Forte, and A. Srivastava, “On Application of One-Class SVM to Reverse
Engineering-Based Hardware Trojan Detection,” in Proc. 15th Int’l Symp. Quality
Electronic Design, USA, Mar. 2014, pp. 47–54.

[98] C. Bao, D. Forte, and A. Srivastava, “On Reverse Engineering-Based Hardware Trojan
Detection,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 1, pp. 49–57, 2016.

[99] J. Li, J. Cheng, J. Shi, and F. Huang, “Brief Introduction of Back Propagation (BP)
Neural Network Algorithm and Its Improvement,” in Advances in Computer Science
and Information Engineering, 2012, pp. 553–558.

[100] J. Li, L. Ni, J. Chen, and E. Zhou, “A Novel Hardware Trojan Detection Based on BP
Neural Network,” in Proc. 2nd IEEE Int’l Conf. on Computer and Communications
(ICCC), China, Jul. 2016, pp. 2790–2794.

[101] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon Demonstration of Hardware
Trojan Design and Detection in Wireless Cryptographic ICs,” IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1506–1519, Apr. 2017.

[102] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking Cryptographic Implementations
Using Deep Learning Techniques,” in IACR Cryptol., USA, Dec. 2016, p. 921.

[103] R. L. Rivest, “Learning Decision Lists,” in Mach. Learn., vol. 2, no. 3. USA: Kluwer
Academic Publishers, Nov. 1987, p. 229–246.

77

[104] H. Peng, F. Long, and C. Ding, “Feature Selection Based on Mutual Information
Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, Aug. 2005.

[105] H. Salmani, “COTD: Reference-Free Hardware Trojan Detection and Recovery Based
on Controllability and Observability in Gate-Level Netlist,” IEEE Trans. on Informa-
tion Forensics and Security, vol. 12, no. 2, pp. 338–350, Dec. 2017.

[106] J. H. Patel and S. Patel, “What Heuristics are Best for PODEM?” in Proc. First Int’l
Workshop on VLSI Design, Chennai, India, Dec. 1985, pp. 1–20.

[107] S. Patel and J. H. Patel, “Effectiveness of Heuristics Measures for Automatic Test
Pattern Generation,” in Proc. 23rd ACM/IEEE Design Automation Conf., ser. DAC
’86, USA, Jun. 1986, p. 547–552.

[108] F. Brglez, “On Testability Analysis of Combinational Circuits,” in Proc. Int’l Symp.
Circuits and Systems, Canada, June 1984, pp. 221–225.

[109] L. Goldstein, “Controllability/Observability Analysis of Digital Circuits,” IEEE Trans.
on Circuits and Systems, vol. 26, no. 9, pp. 685–693, Sep. 1979.

[110] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Circuits
and a Targeted Translator in FORTRAN,” in Proc. IEEE Int. Symp. on Circuits and
Systems (ISCAS), Japan, June 1985, pp. 677–692.

[111] F. Corno, M. S. Reorda, and G. Squillero, “RT-Level ITC’99 Benchmarks and First
ATPG Results,” IEEE Design & Test of Comp., vol. 17, pp. 44–53, Jul. 2000.

[112] R. Kemker, A. Abitino, M. McClure, and C. Kanan, “Measuring Catastrophic Forget-
ting in Neural Networks,” in AAAI, New York, 2018.

[113] J. E. Jackson, A User’s Guide to Principal Components. New York: Wiley, 1991.

[114] K. Diamantaras and S. Kung, Principal Component Neural Networks: Theory and
Applications. New York: Wiley, 1996.

[115] B. Flury, Common Principal Components and Related Models. New York: Wiley,
1988.

[116] Y. Sun, S. K. Millican, and V. D. Agrawal, “Special session: Survey of test point
insertion for logic built-in self-test,” in Proc. IEEE 38th VLSI Test Symp. (VTS),
USA, May 2020, pp. 1–6.

[117] S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Random Pattern
Delay Fault Coverage Using Inversion Test Points,” in Proc. IEEE 28th North Atlantic
Test Workshop (NATW), VT, May 2019, pp. 206–211.

[118] S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Pseudo-Random Fault
Coverage Through Inversions: A Study on Test Point Architectures,” J. Electron. Test,
vol. 36, no. 1, p. 123–133, Feb. 2020.

78

[119] J. Olsson, C. B. Uvo, K. Jinno, A. Kawamura, K. Nishiyama, N. Koreeda,
T. Nakashima, and O. Morita, “Neural Networks for Rainfall Forecasting by Atmo-
spheric Downscaling,” Journal of Hydrologic Engineering, vol. 9, no. 1, pp. 1–12, Jan.
2004.

[120] G. J. Bowden, “Forecasting Water Resources Variables using Artificial Neural Net-
works,” Ph.D. dissertation, University of Adelaide, Australia, 2003.

[121] M. Gibbs, N. Morgan, H. R. Maier, G. C. Dandy, J. B. Nixon, and M. Holmes, “Inves-
tigation into the Relationship Between Chlorine Decay and Water Distribution Param-
eters Using Data Driven Methods,” Mathematical and Computer Modelling, vol. 44,
no. 5, pp. 485–498, Sep. 2006.

[122] E. Ranaee, G. Porta, M. Riva, and A. Guadagnini, “Investigation of Saturation Depen-
dency of Oil Relative Permeability during WAG Process through Linear and Non-linear
PCA,” in Proc. European Conf. on the Mathematics of Oil Recovery, no. 1. Italy:
European Association of Geoscientists and Engineers, Sep. 2014, pp. 1–14.

[123] I. Jolliffe, Principal Component Analysis. Springer-Verlag New York, 2002.

[124] W. Kirch, Ed., Pearson’s Correlation Coefficient. Dordrecht: Springer Netherlands,
2008, pp. 1090–1091.

[125] M. Venkatasubramanian and V. D. Agrawal, “Quest for a Quantum Search Algorithm
for Testing Stuck-at Faults in Digital Circuits,” in Proc. IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS),
Amherst, MA, Oct. 2015, pp. 128–133.

[126] M. Venkatasubramanian, “Failure Evasion: Statistically Solving the NP Complete
Problem of Testing Difficult-to-Detect Faults,” Ph.D. dissertation, Auburn University,
Auburn, Alabama, USA, 2016.

79

Publications from this Dissertation

List of Conference Publications

1. S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Random Pattern

Delay Fault Coverage Using Inversion Test Points,” in Proceedings of IEEE 28th North

Atlantic Test Workshop (NATW), Burlington, VT, May 2019.

2. S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “Applying Neural Networks to De-

lay Fault Testing: Test Point Insertion and Random Circuit Training,” in Proceedings

of IEEE 28th Asian Test Symposium (ATS), India, Dec., 2019, pp. 13-18.

3. S. Roy, S. K. Millican, and V. D. Agrawal, “Machine Intelligence for Efficient Test

Pattern Generation,” in Proceedings of the IEEE International Test Conference (ITC),

Washington D.C, Nov. 2020.

4. S. Roy, S. K. Millican, and V. D. Agrawal, “Training Neural Network for Machine

Intelligence in Automatic Test Pattern Generator,” in Proceedings of the 34th Interna-

tional Conference on VLSI Design and the 20th International Conference on Embedded

Systems (VLSID), Virtual Event, Feb. 2021.

5. S. Roy, S. K. Millican, and V. D. Agrawal, “Special Session – Machine Learning in

Test: A Survey of Analog, Digital, Memory, and RF Integrated Circuits,” in Proceed-

ings of the IEEE VLSI Test Symposium (VTS), Virtual Event, Apr. 2021.

6. S. Roy, S. K. Millican, and V. D. Agrawal, “Unsupervised Learning in Test Generation

for Digital Integrated Circuits,” in Proceedings of the IEEE European Test Symposium

(ETS), Belgium, May 2021

80

7. S. Roy, S. K. Millican, and V. D. Agrawal, “Principal Component Analysis in Ma-

chine Intelligence-Based Test Generation,” in Proceedings of the IEEE Microelectronics

Design and Test Symposium (MDTS), Albany, NY, May 2021

List of Posters

1. S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “Applying Artificial Neural Net-

works to Test-point Insertion: Delay Fault Coverage and Training Circuit Generation,”

in Proceedings of International Test Conference (ITC), 2019.

2. S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Random Pattern

Delay Fault Coverage Using Inversion Test Points,” in Auburn Research Student Sym-

posium, Auburn, USA, 2019.

Journal Publication

1. S. Roy, B. Stiene, S. K. Millican, and V. D. Agrawal, “Improved Pseudo-Random

Fault Coverage Through Inversions: A Study on Test Point Architectures,” J. Electron.

Test., vol. 36, pp. 123–133, Feb. 2020.

List of US Patents

1. S. Roy, S. K. Millican, and V. D. Agrawal, “A Machine Intelligence for Automatic

Test Pattern Generation for Digital Logic Circuits,” 2020.

2. S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “System and Method for Optimiz-

ing Fault Coverage Based on Optimized Test Point Insertion Determinations for Logic

Circuits,” 2020.

81

Author’s Biography

Soham Roy received his Bachelor of Technology (B.Tech.) Degree in Electronics and

Instrumentation from West Bengal University of Technology, Kolkata, India, in 2011. He

was with Wipro Ltd., VLSI Division, Bangalore, India, as a design for test engineer from

2011–2015. He received his Master of Science (MS) degree from the Department of Electrical

and Computer Engineering, Technical University of Dresden, Dresden, Germany, in 2018. He

received his Doctor of Philosophy (Ph.D.) in Electrical and Computer Engineering from the

Auburn University, USA, in 2021. He has published several articles and has filed patents in

applying machine learning in test point insertion (TPI) and automatic test pattern generation

(ATPG). He will join Intel Corporation, Hillsboro, USA as a Product Development Engineer.

His research interest includes VLSI design and test and artificial intelligence.

82

