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Abstract

A new method is proposed for checking the equivalence
of two irredundant logic implementations of a combina-
tional Boolean function. The procedure consists of gen-
eration of complete checkpoint fault test sets for both cir-
cuits. The two test sets are concatenated and both cir-
cuits are simulated to obtain the response to the combined
test set. If the responses of the two circuits match for all
vectors, then they are declared to be equivalent. We ex-
amine a case where this heuristic fails. In such cases,
the use of fault simulation is shown to discover non-
equivalence even when the two circuits produce the same
output. We prove that if the two circuits were different,
then some faults on the primary inputs of a composite
equivalence checking circuit must be detectable. Using
the simulation of single stuck-at faults at the primary
inputs of that circuit, the new heuristic recommends the
use of a vector set in which the Hamming distance be-
tween any two vectors does not exceed 3.

1. Introduction

The problem of establishing equivalence of two logic
circuits frequently occurs in digital design. In a typical
scenario, a circuit may undergo changes due to technol-
ogy mapping or optimization, and must retain equiva-
lence to some previously verified version. Theoretically,
this problem can posed as a Boolean satisfiability prob-
lem, which is known to be NP-complete. Effective solu-
tions using binary decision diagrams (BDD) and other
mathematical formulations often work but cannot always
guarantee results. Many heuristics have been suggested
in the literature some of which are quite efficient. Still
the search for alternative solutions continues. An inter-
ested reader will find useful reviews of the current meth-
ods in books by Huang and Cheng [6] and Kunz and
Stoffel [7].

Alternative procedures, known as formal verification,
rely on mathematical models of the system and prove
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that the model has the required attributes. The gen-
eral application of formal verification is in checking the
correctness of an implementation against the specifica-
tion. Although it is a difficult problem and the pro-
cedures are often complex, significant progress has oc-
curred in formal verification methods. Some commercial
tools have also become available. The reader is referred
to the recent book by Kurshan [8]. The focus of the
present, contribution is the traditional practice of indus-
try where simulation or other forms of verification pro-
vides no guarantee like the formal verification. Our at-
tempt is toward deriving some formal conclusions from
simulation. However, as the reader will note in the end
that our success, at this time at least, is only partial.

The origin of this work is in the author’s experience
in designing circuits, as described in this paragraph. For
some time, I have used a heuristic to verify the equiv-
alence of combinational circuits. Typical situations are
where circuits are synthesized by different procedures,
or a circuit is modified to remove redundant faults or
untestable paths or to speed up paths. I am interested in
determining that no error was committed to change the
function of the circuit. As a “quick” check, I separately
derive tests for all stuck-at faults for the two circuits
and if both tests produce the same response from the
two circuits, I presume that they are probably equiv-
alent. When the responses differ on some inputs, the
faults detected by those inputs usually help in finding
the error. Initially, I started using this heuristics only
as a rough check. T also verified several small cases by
exhaustive simulation, which provided some confidence.
Yet, attempts to prove sufficiency did not succeed.

In this article, we give examples to show that the sim-
ulation strategy is not sufficient for establishing equiva-
lence. We then propose, perhaps for the first time, the
use of fault simulation. It is shown that fault simula-
tion can uncover differences in two circuits even when
all applied vectors produce identical outputs.
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Figure 1: Equivalence checking circuit.

1.1. Statement of the Problem

Consider two combinational logic circuits, C'1 and C2,
with an identical set of input variables. For simplicity,
only single output functions are considered, though the
results can be easily generalized for multiple outputs.
Figure 1 shows an equivalence checking setup which is
usually analyzed by a logic simulator. If the two circuits
are identical, then the output z of the exclusive-OR gate
should be 0 for all input vectors. On the other hand, the
existence of an input vector that satisfies the Boolean
variable z (i.e., sets it to 1) immediately proves the non-
equivalence of C'1 and C2.

Other approaches involve the use of a test generation
algorithm to find a test for the stuck-at-O fault on z,
or use of a redundancy identification algorithm to prove
that the fault is untestable. In either case, a completely
reliable procedure will have an exponential complexity.

The present approach relies on test generation but
tests are generated for C'1 and C'2 separately, and never
together. Tests are derived for all faults in each circuit.
In general, it is required that the implementations be
irredundant. The necessity of this requirement stems
from the fact that the effectiveness of the derived tests
may become questionable in the presence of redundant
faults [1].

2. A Heuristic Examined

Suppose T'(C1) is a set of vectors that detects single
stuck-at faults on all checkpoints in C'l. Checkpoints are
the primary inputs (PI) and all fanout branches. The
following is an important result in digital testing [1]:

Theorem 2.1 In a combinational circuit any test set
that detects all single stuck-at faults at checkpoints also
detects all single stuck-at faults in that circuit.

Thus, T(C'1) will detect all single stuck-at faults in C1.
There are many efficient automatic test pattern gener-
ation (ATPG) programs available for obtaining such a
test set.
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Figure 2: Dominance fault collapsing.

Next, we obtain a similar test set T'(C2) for the cir-
cuit C2. The equivalence checking set up of Figure 1 is
simulated with the combined (concatenated) vector set,
T(C1)+T(C2). If no output from the two circuits differs,
i.e., z = 0 for all vectors, then we heuristically conclude
that the circuits are probably equivalent.

The above conclusion is based on a conjecture, i.e., if
the tests for all checkpoint faults in both circuits cannot
produce a different output from the two circuits, then no
other vector will. Because of the internal fanout struc-
ture within the exclusive-OR gate, we cannot directly
conclude the redundancy of the “z stuck-at-0” fault.
However, the following discussion builds up arguments
to support the heuristic and points to its limitations.

Suppose we apply the combined test set T'(C1)+T(C2)
to the circuit of Figure 1 and observe that the simulated
output z is 0 for all vectors in the set. We would like
to conclude that the stuck-at-0 fault on z is untestable
for all possible inputs. Notice that only true-value sim-
ulation is done here. However, our conclusion will be
derived from the known fault detection characteristics of
the test set.

In Figure 2, the exclusive-OR function (enclosed in
the dotted line box) has been expanded in terms of
Boolean primitives. Notice that the target fault z s-
a-0 dominates' the two stuck-at-0 faults on z1 and z2.
More specifically, z1 s-a-0 can be detected only if a 10
pattern is applied to the exclusive-OR gate. Similarly,
z2 s-a-0 is detectable only by a 01 pattern applied to
the exclusive-OR gate. Together, the tests for these two
faults represent all patterns that would detect our target
fault, z s-a-0.

Our objective is to use simulation-based verification
and we will not try to prove the fault z s-a-0 as redun-
dant either via test generation or by some redundancy
identification technique. If we can show that the tests
T(C1) + T(C2) detect all checkpoint faults of the entire
circuit in Figure 2, then z = 0 for the entire test will
prove the redundancy of z s-a-0. The status of those
checkpoint faults is discussed below:

1. Checkpoints of C1.

LA fault f1 is said to dominate the fault f2 when all tests of
f2 also detect f1 [1].

All single stuck-at faults on
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these are detected when T'(C1) is applied. A sin-
gle fault in C'1 means C'2 must be fault-free and
any fault effect appearing at the output of C'1 is al-
ways passed on to z. Notice that the output z =0
is constantly expected during simulation. Because
any deviation from that output immediately proves
the non-equivalence of the circuits.

2. Checkpoints of C2. By an argument similar to the
above, faults on these are detected at z by T'(C2).

3. Checkpoints z1, 2, . . . xn at primary inputs of
the equivalence checking circuit. T'(C1) and T(C2),
contain vectors that activate faults on zi to the out-
puts of C1 and C2, respectively. If C1 and C2 were
equivalent, then these faults will not be detected.
Because, any vector that activates a fault on xi
through C'1 will also activate the same fault through
C2. Thus, the fault effects will simultaneously ar-
rive at the two inputs of the exclusive-OR gate and
cancel each other. If C'1 and C2 are not equivalent,
then some faults on zi’s may be detected, but not
all are guaranteed to be detected. In fact, any vec-
tor that activates a fault on zi through one circuit
without activating it through the other will prove
that the two circuits are not equivalent.

4. Four checkpoints (fanout branches) in the exclusive-
OR function. Since s-a-0 faults around an AND gate
can be collapsed together, the relevant set contains
six faults: 4 s-a-1 faults at the inputs of AND gates
and 2 s-a-0 faults on z1 and 2z2. When the two
circuits are equivalent, only 00 and 11 inputs will be
applied to the exclusive-OR. These will detect the
four s-a-1 faults and leave two s-a-0 faults (shown
in Figure 2) undetected. When C'1 and C2 are non-
equivalent and the vectors T'(C1) + T(C2) produce
differentiating outputs, 01 and 10, applied to the
exclusive-OR function, only then the two s-a-0 faults
will be detected.

Because of the uncovered checkpoint faults at primary
inputs and the four s-a-0 faults in the exclusive-OR func-
tion, we cannot guarantee a redundant status for the
s-a-0 fault on z. We make following observations:

e Observation A: The uncovered primary input (PI)
checkpoint stuck-at faults in Figure 1 or 2 are re-
sponsible for the incompleteness of our equivalence
heuristic.

e Observation B: Only those PI checkpoint faults that
produce different outputs from C1 and C'2 can be
detected in the circuit of Figure 2.

We will return to these observations in subsequent sec-
tions.
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Figure 3: A multi-level implementation C1 for x1x3z4 +
273 + 1274
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Figure 4: An exclusive-OR transform implementation
C2 for xlx3z4 + 2223 + x2x4

We have successfully used the checkpoint test simu-
lation for debugging implementations of 8 and 16 bit
adders and many other combinational circuits of varying
complexity. As is well known, simulation with properly
selected inputs can effectively detect errors, but it is not
sufficient for proving equivalence. The following exam-
ples show some pitfalls of the method.

3. Examples

We consider two circuits that implement the same
Boolean function of four variables:

C1=C2 = rla3rd + 2223 + 2224 (1)
These are shown in Figures 3 and 4. The circuit C1
is a minimal multi-level implementation and C2 was
obtained by a specialized exclusive-OR, transform tech-
nique [3].

Complete checkpoint fault tests were generated for the
two circuits by the gate-level test generation program,
Gentest [2]. The two test sets, expressed in Figure 5 by
the shaded minterms, were quite different. When the two
test sets were concatenated for simulating the setup of
Figure 2, the output z was always 0 as expected. Many
modifications of C2 were attempted in which the func-
tion was changed. All of those, except one, changed the
output z to 1 for one or more vectors. The exceptional
circuit C'2' is shown in Figure 6. The circuit C2' was ob-
tained by replacing the first exclusive-OR gate by an OR,
gate. Its checkpoint tests are shown in Figure 7. When
the circuit of Figure 2 is simulated for C'1 and C2', we
find a failure of our heuristic. The output z remains 0 for
all vectors. although the two circuits functionally differ
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Figure 5: Checkpoint test sets for C1 and C2. Shaded
minterms are tests.
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Figure 6: Circuit C2' with first exclusive-OR in C2 re-
placed by OR

in the minterm zlz2x3x4. This minterm, marked with
a cross in Figure 7, was included neither in the test set
for C'1 nor in that for C2'.

4. Use of Fault Simulation

Fault simulation is normally not used in logic verifica-
tion or equivalence checking. Invoking the Observation
B of Section 2, we find that fault simulation can be use-
ful. The observation is formally stated as follows:

Theorem 4.1 In the equivalence checking circuit of
Figure 1, if circuits C1 and C2 are equivalent, then no
single or multiple stuck-at fault on primary input lines
is testable.

Proof: Suppose C1 and C2 are equivalent. Then their
truth tables must be identical. Any single or multiple
stuck-at fault on PI lines converts the input vector V/
into V', where V' is obtained by changing some bits of
V according to the fault. Since the fault is assumed to
occur before PI’s fanout to C'1 and C2, the same vector
V' is applied to both circuits. Having the same truth ta-
ble, both circuits will produce an identical output, which
can be either same as or different from that for V. The
output of the exclusive-OR gate will therefore remain 0,
as will be the case if no fault were present. Thus, the
fault cannot be detected. ]

This result was observed in fault simulation of several
circuits including those of examples in Section 3. Fault
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Figure 7: Checkpoint tests for C'1 and C2'

simulations were run for the collapsed set of single stuck-
at faults in the circuit of Figure 2. For all cases where
C1 and C2 were equivalent circuits, 11 faults were not
detected: 8 faults on four PI’s, s-a-0 faults on z1 and 22,
and s-a-0 on z.

When the circuits of Figures 3 and 6 were simulated
for comparison, even though a constant output of z =0
was observed and s-a-0 faults at z1, 22 and z were not
detected, three faults, s-a-1 at z1, 2 and x3 were de-
tected. This shows how Theorem 4.1 allows us to decide
the non-equivalence of the two circuits.

The last example illustrates the strength of the fault
simulation method. Notice that logic verification based
on true-value simulation can only prove the two circuits
to be non-equivalent if at least one vector in the input
set produces different outputs. Search for such vectors,
when the two circuits are almost identical, can be very
difficult. Fault simulation can establish non-equivalence
even when the vector that produces different outputs
is not available. In fact, it is only necessary to simu-
late faults on primary inputs of the circuit in Figure 1.
The effect of fault simulation is that besides checking
the equivalence for the simulated vectors, we also check
equivalence for all vectors that are at unit Hamming dis-
tance from the simulated vectors. Unit distance is used
because we assume single stuck-at faults. Multiple faults
will correspond to larger Hamming distance. In checking
for equivalence between the circuits of Figures 3 and 6,
the PI s-a-1 faults on z1, 22 and 3 were detected by
three test vectors (grey shaded up, down and left neigh-
bors of the error minterm marked with cross) in Figure 7.

4.1. Target Faults

The four-point analysis of Section 2 indicates that when
we simulate the equivalence checking circuit of Figure 1
or 2, all internal faults of C'1 and C'2 must be detectable,
irrespective of whether the two circuits are equivalent or
different. Thus, fault simulation of internal faults pro-
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vides no information about equivalence. Nevertheless,
the use of vectors that can detect all internal faults is a
good, though incomplete, heuristic.

Simulation of faults on primary inputs of the equiv-
alence checking circuit provides additional information
about equivalence. This is because the simulation of a
fault requires an implicit simulation of two vectors. If we
restrict to the simulation of single stuck-at faults, since
that is easily done by the available fault simulators, non-
equivalence can be effectively uncovered in many cases.

4.2. Fault Simulation Vectors

Consider fault simulation of the equivalence checking cir-
cuit (Figure 1 or 2). The circuit has n primary inputs
and only 2n single stuck-at faults on these are simulated.
For a given vector V'1, we effectively evaluate the output
for V1 and n other vectors that are at unit Hamming
distance from V1. An input fault is found detectable
(showing non-equivalence) only if the outputs of C'1 and
C?2 were to differ. Having evaluated the circuit for these
n+1 vectors, we should then select the next input vector
that is at a Hamming distance 3 from V1. Similarly, the
next vector V3 should be at Hamming distance 3 from
both V1 and V2.

In a different context, covering the n dimensional [0,1]
space with vectors that are a minimum Hamming dis-
tance 3 apart is similar to finding an n bit code with
single bit error correction (or double bit error detection)
capability. The number of code words in such a code is
given by [4]:

n

+1

Number of code words < (2)
where 2" is the total number of points in the n dimen-
sional binary code space. It is also the number of vec-
tors in our vector space. A code word (vector) and its n
unit-distance neighbors form a sphere of volume n+1. In
order to satisfy the minimum Hamming distance require-
ment, actual codes leave out some points when the space
is not fully covered by non-overlapping spheres of radius
1. In our case, the requirement is on mazimum Ham-
ming distance. Therefore, the number of vectors will be
generally larger than that given by the above relation.
Thus,

n

+1

3)

Number of vectors >
n

Example: For n = 4, we obtain a set of four vectors:
0000, 0111, 1011, 1100. These are shown in Figure 8 as
shaded minterms. Notice that some distances between
these vectors are less than 3. This is because n = 4 does
not permit a perfect code with distance 3. In a perfect

x3

X2

X1

X4

Figure 8: Four-bit vectors with Hamming distance < 3.

code all distance-3 neighbors of a code word will also be
acceptable code words [5] and the relation 2, known as
the Hamming bound becomes an equality. Perfect codes
exist for very few combinations of length n and distance
(3 here). In those cases where perfect codes exist, rela-
tion 3 will also be an equality. For the message coding
problem, the Hamming distance between codes must not
be less than 3 and one would use fewer codes, strictly fol-
lowing the relation 2. We have more vectors because we
must not allow a Hamming distance greater than 3, but
smaller distances are acceptable. Notice that every vec-
tor in the entire space is within the distance 1 from some
selected vector. Thus, simulation of single stuck-at faults
will actually examine the entire space. Several such sets
are possible. [ |

Fault simulation with these four vectors correctly
checks the equivalence for the circuits discussed in Sec-
tion 3. We can prove the following result:

Theorem 4.2 Consider the equivalence checking circuit
of Figure 1 being simulated with a vector set such that
every vector in the input space is within a unit Hamming
distance from some vector in the set. If the output z
remains 0 and no single stuck-at fault on primary inputs
is detected by the vector set, then the circuits C'1 and C2
are equivalent.

Proof: Simulation of primary input single stuck-at
faults with a vector V means that the output z must
be computed for V' and n other vectors at a unit Ham-
ming distance from V. It is given that z = 0 when V is
applied. That is, C'l and C2 agree on V. Each of the n
neighboring vectors represents the transformation of V'
by a single stuck-at fault on a PI. Only when a neigh-
boring vector produces identical response from C1 and
C2, will the corresponding fault remain undetected. If
V does not detect any PI stuck-at fault, then the equiva-
lence of C'1 and C2 is checked for V' and its unit distance
neighbors. Since the vectors in the set and their unit dis-
tance neighbors cover the entire vector space, after the
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simulation of the vector set if always z = 0 and no input
fault is detected, then the two circuits must have agreed
on all vectors in the space. [ |

An important contribution of Theorem 4.2 is that it
requires the true-value simulation of the circuit. Addi-
tionally, only the faults on primary input lines of the
circuit of Figure 1 need be simulated.

The use of maximum Hamming distance vectors for
random testing and methods of generating such vectors
have been proposed by Wu et al. [13]. In their appli-
cation, the main interest was the overall fault coverage,
which included the internal faults of the circuit. In the
present application, we are interested in covering the en-
tire vector space using the concurrent simulation capa-
bility of a fault simulator.

There are existing algorithms for finding codes with
given minimum Hamming distance. For our application,
however, the existing coding theory algorithms [10, 11]
will require modification because we need a set of vectors
with mazimum Hamming distance of 3 to cover the entire
vector space. The vectors in the preceding example were
manually obtained.

Recent methods provide efficient simulation of mul-
tiple stuck-at faults [9, 12]. If multiple stuck-at faults
on the PI’s of the equivalence checking circuit are sim-
ulated, then the number of vectors to be simulated can
be reduced. This is because multiple fault detection will
cover a larger distance around the vector being simu-
lated. Thus, vector complexity will be traded down with
with the increased complexity of multiple fault simula-
tion.

5. Summary of Contributions

This paper proposes the following procedures for logic
verification:

e Checkpoint tests. Tests that cover the checkpoint
faults in both circuits can uncover many differences
in the circuits. Although not investigated here,
these tests may allow diagnosis of observed differ-
ences. This is a good strategy but, as shown, can
fail.

o Fault simulation. Fault simulation, especially for
PT faults of the equivalence checking circuit can dis-
cover differences in circuits even when logic simula-
tion does not give different outputs.

o Vectors for fault simulation. Simulation of PI faults
of the equivalence checking circuit can prove the
logic equivalence of the two circuits when a complete
set of vectors with maximum Hamming distance of
3 is used.

6. Conclusion

A proper selection of vectors can improve the debug-
ging capability of simulation-based verification process.
The potential of checkpoint tests for diagnostics should
be explored. Algorithms for finding the minimal vector
sets with maximum Hamming distance 3 are needed. Fi-
nally, complexity trade-offs between reduced vector set
for larger Hamming distance and multiple fault simula-
tion may be examined.
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