
Characteristic Polynomial Method for Verification and Test
of Combinational Circuits

Vishwani D. Agrawal
David Lee

AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract –– This paper gives a new and efficient method of
determining the equivalence of two given Boolean func-
tions. We define a characteristic polynomial directly from
the sum-of-product form of the logic function. The polyno-
mial contains a real variable corresponding to each
Boolean variable. Logical operations on the Boolean func-
tion correspond to arithmetic operations on the polyno-
mial. We show that if the characteristic polynomials of two
Boolean functions, when evaluated at the same randomly
sampled values of their variables, produce identical result
then the two corresponding Boolean functions are identical
with probability 1. In a typical application, one character-
istic function may be derived from the truth table specifica-
tion while the other is obtained from a logic implementa-
tion. The proposed method is very efficient as it allows to
prove correctness by just one evaluation of the two polyno-
mials. We further show that when the real variables in the
polynomial are restricted to the range [0 , 1], the value of
the polynomial is the same as the probability of the
Boolean function producing a true output. This result is
applied to testing of combinational circuits. We derive the
length of a random test sequence that will detect any fault
in the circuit with any given arbitrarily high probability.

1. INTRODUCTION

The subject of research reported here is closely
related to a recent paper by Jain et al [3]. In that paper, the
authors probabilistically establish the equivalence between
two given Boolean functions. They assign randomly
selected integers to the input variables and compute
integer-valued transform functions. If the evaluations give
the same value, the Boolean functions are shown to be
identical with a low probability of error. The error proba-
bility is reduced as the domain from which the integers are
obtained is enlarged. Also, for a fixed domain, the proba-
bility of error can be reduced by taking multiple samples
for inputs.

There are two main differences in the present work.
First, we assign randomly selected real numbers to the
input variables. We show that when the characteristic poly-
nomials of two Boolean functions, computed for a random

input, give the same value then the functions are identical
with probability 1. This result is valid for any finite real
domain from which inputs are randomly assigned. Second,
when the inputs are sampled from the real domain [0,1],
and are interpreted as probabilities of logic 1, then the cor-
responding value of the characteristic polynomial gives the
probability of output logic 1 of the Boolean function. This
observation provides a new look at random or syndrome
testing. Furthermore, it leads to a stopping criterion for
random testing with a confidence measure.

2. CHARACTERISTIC POLYNOMIALS AND
THEIR EVALUATION

2.1. Notation

We use small letters for Boolean variables with val-
ues in {0 , 1}: x i , i = 1 , . . . , n, and Boolean vectors
x→ = (x 1 , . . . , xn). Capital letters are used for real vari-
ables with values in R: X i , i = 1 , . . . , n, and real vectors
X
→

= (X 1 , . . . , X n). Similarly, small letters are for
Boolean functions f : {0 , 1} n → {0 , 1} and capital let-
ters for real functions F : R n → R.

2.2. Characteristic Polynomials

We consider Boolean functions (expressions) of n
variables x→ = (x 1 , . . . , xn). Two Boolean functions are
identical f ≡ g if and only if for all x→ ∈ {0 , 1} n

f (x→) = g(x→).

A Boolean function f can be uniquely represented by
a truth table. The standard sum of products (SOP) form of f
can be obtained from the given truth table by taking a min-
term for each combination of variables which produces a 1
in the function, and then taking the OR of all those min-
terms:

f = E 1 ∨ E 2 ∨ . . . ∨ E k (2.1)

where each minterm is

E j = α j , 1 ∧ α j , 2 ∧ . . . ∧ α j ,n , j = 1 , . . . , k ,

Proc. 13th AT&T Conf. on Electronic Testing 391 April 24-25, 1995

and

α j ,i = x i or x i ′

Note that x ′ and x
_

are interchangeably used in this paper to
denote the complement of x. If we replace each Boolean
variable x i by a real variable X i , x i ′ by 1 − X i , AND oper-
ation by product, and OR by summation, then we obtain a
real valued polynomial of n variables. Specifically, we
construct a real valued polynomial by substitutions:

∧ → .
∨ → +

x i ′ → 1 − X i

x i → X i

(2.2)

We obtain a real valued polynomial of n variables:
F(X

→
) = F(X 1 , . . . , X n).

For a Boolean function f, the corresponding polyno-
mial F is unique, and we call it the characteristic polyno-
mial of the given Boolean function. If g ≡ f then the two
Boolean functions f and g have the same truth table, stan-
dard form, and hence the same characteristic polynomial.
We denote this transformation from a Boolean function f to
its characteristic polynomial F by

F = τ(f) (2.3)

Proposition 2.1 below is a special case of the follow-
ing general result. For any finite field, there is a unique
embedding of Boolean functions into a polynomial ring
over the field such that they have the same value when all
the variables take values 0 or 1.

Proposition 2.1. Two Boolean functions f and g are identi-
cal f ≡ g if and only if their characteristic polynomials are
identical: τ(f) ≡ τ(g).

Sketch of Proof. Only if. If f ≡ g then τ(f) ≡ τ(g).

If. For a constant Boolean vector x*
→

, let X *
→

be a con-
stant integer valued vector from a substitution in (2.2). For
a Boolean function f, f (x*

→
) = 0 if and only if

F(X *
→

) = τ(f) (X *
→

) = 0. Therefore, if f ≠ g then
τ(f) ≠ τ(g).

2.3. Evaluation of Characteristic Polynomials — A
Greedy Method

We want to evaluate the characteristic polynomial of
a Boolean function f: F = τ(f); given a constant vector
X *
→

∈ R n , we want to compute F(X *
→

). A naive approach
is to derive the standard form of F explicitly from f (using
the truth table, for instance) and then evaluate F(X *

→
).

However, the number of terms in the standard form can be
exponential in n in the worst case.

In general, evaluation of F is hard. More specifi-
cally, the following problem is NP-complete [6]: Given a
Boolean function f of n variables and a constant real n-
vector X *

→
, whether F(X *) = 0? We can reduce the satisfi-

ability problem of Boolean expressions to this evaluation
problem by taking Xi

* = 0. 5, i = 1 , . . . , n. A given
Boolean expression f (x) is satisfiable if and only if
F(X *) ≠ 0.

We now propose a greedy method for an evaluation
of the characteristic polynomials without explicitly con-
structing them. Given a Boolean function f, its Shannon
expansion is:

f (x→) = (x 1 ∧ f x1 = 1 (x→)) ∨ (x 1 ′ ∧ f x1 = 0 (x→)) (2.4)

where f x1 = 1 (x→) is obtained from f (x→) by assigning x 1 = 1
and f x1 = 0 (x→) by assigning x 1 = 0. On the other hand, the
characteristic polynomial

F(X
→

) = τ(f) (X
→

)

= X 1
.F 1 (X 2 ,. . . ,X n) + (1 − X 1) .F 0 (X 2 ,. . . ,X n)

(2.5)

where F 1 is the characteristic polynomial of f x1 = 1 (x→) and
F 0 is the characteristic polynomial of f x1 = 0 (x→). For a con-

stant real vector X *
→

,

F(X *
→

) = X1
* .F 1 (X2

* , . . . ,Xn
*) + (1 − X1

*) .F 0 (X2
* , . . . ,Xn

*)

(2.6)

From (2.4) to (2.6), the evaluation of the characteris-
tic polynomial F of f is reduced to the evaluations of the
characteristic polynomials of f x1 = 1 and f x1 = 0. We then
evaluate the two polynomials of n − 1 variables, and con-
tinue recursively until we have one variable left. Based on
this observation, we propose the following method.

For a Boolean expression, we define its size as the
number of its literals. We recursively (m = n, n − 1,
. . . 1) use the Shannon expansion to reduce the evaluation
of a characteristic polynomial of m variables to evaluations
of two characteristic polynomials of m − 1 variables. At
each step we determine which variable to expand on. For
each variable x i , we compute the sum of the sizes of the
following two Boolean expressions: f xi = 1 and f xi = 0. We
choose for the expansion in (2.4)-(2.6) the variable x i with

392

a minimal sum of sizes of the two corresponding character-
istic polynomials of m − 1 variables. The rationale is: the
expansion of that variable results in the computation of two
Boolean expressions of a minimal total size.

It is often necessary to deal with logic networks
described as interconnection of Boolean gates. The Shan-
non expansion method, discussed here, can be applied to
such networks also. A good heuristic is to expand with
respect to the variables that fanout and then reconverge.
Also, in large circuits, partitioning may be necessary. Par-
titioning into supergates, as applied to signal probability
calculation, is applicable to the calculation of the character-
istic polynomial [5]. Other methods, as discussed by Jain
et al [3] and those based on binary decision diagrams [2],
can also be used.

2.4. Signal Probability Formulation

The following approach gives a different perception
and hence a different evaluation method. Assume that
0 ≤ Xi

* ≤ 1, i = 1 , . . . , n. Suppose that Xi
* is the proba-

bility that x i = 1. Then for each minterm in (2.1):

E j = α j , 1 ∧ α j , 2 ∧ . . . ∧ α j ,n , j = 1 , . . . , k ,

τ(E j) (X *
→

) is the probability that minterm takes Boolean
value 1. Taking the summation, F(X *

→
) = τ(f) (X *

→
) is the

probability that the Boolean function f takes value 1:

Proposition 2.2. Let 0 ≤ Xi
* ≤ 1 be the probability that

the Boolean variable x i takes value 1, i = 1 , . . . , n. Then
τ(f) (X *

→
) is the probability that the Boolean function f

takes value 1.

Therefore, an evaluation of the characteristic polyno-
mial is identical to computing the probability for f to take
value 1. When all inputs are made equiprobable, i.e., all
input variables are assigned the value 0.5, the output proba-
bility is simply the fraction of 1’s in the truth table. The
number of 1’s in the truth table is also known as the syn-
drome and has been used in testing [4]. The methods for
calculating the output 1 probability for any given input
probabilities have been discussed in the literature [5].

3. FUNCTIONAL TESTING (VERIFICATION)

Given two Boolean function f (x→) and g(x→), we want
to verify if f ≡ g. From Proposition 2.1, this is the case if
and only if their characteristic polynomials are identical:
τ(f) ≡ τ(g). For a constant real vector X *

→
, if τ(f) (X *

→
) ≠

τ(g) (X *
→

) then definitely the two polynomials are different
and consequently f ≠ g. However, if τ(f) (X *

→
) =

τ(g) (X *
→

) then the two polynomials (and hence the two

given Boolean functions) may or may not be identical. We
now show that it is ‘‘very likely’’ that they are identical if
we sample uniformly at random.

Example 3.1. Consider two Boolean functions:

f = a ∧ b

g = a ∨ b
_ ____

where a and b are Boolean variables. The functions are
AND and NOR, respectively. The corresponding charac-
teristic polynomials are:

τ(f) = F(A ,B) = AB

τ(g) = G(A ,B) = (1 − A) (1 − B)

where A and B are real numbers. Suppose we evaluate the
two polynomials at a randomly sampled point (A * ,B *) and
find that the two polynomials give different values, then we
correctly conclude: f and g are different. However, the two
polynomials will give the same value when:

A * B * = (1 − A *) (1 − B *) or A * + B * = 1

Given any continuous domain of real numbers, the proba-
bility of picking a sample that lies on the straight line
A * + B * = 1 is almost 0. The situation is illustrated in
Figure 1.

3

2

1

-3

-2

-1

0 -3 -2 -1 3 2 1

B *

A *

A * + B * = 1

..

..

..

..

..

..

. .

. .

. .

. .

. .

. .

Fig. 1. Sample space for Example 3.1.

Following the approach of [3], if we restrict the ran-
dom sampling to integers (grid points in Figure 1), we
make an error whenever a point on the line A * + B * = 1
is sampled. Thus, the error probability is determined by the
number of such points in the sample space. This is given in
Table 1.

393

Table 1 - Error probability for integer inputs in Example 3.1.

_ ______________________________________
Sample space for A * ,B * Error Probability_ ______________________________________

0,1
4
2_ _ = 0. 50

-1,0,1
9
2_ _ = 0. 22

-2,-1,0,1,2
25
4_ __ = 0. 16

-3,-2,-1,0,1,2,3
49
6_ __ = 0. 12

_ ______________________________________ ⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

This example illustrates the influence of the random
sampling procedure on the error probability. Sampling
from a continuous real domain gives a vanishingly small
error probability. On the other hand, if we sample in the
integer domain, the error probability reduces as the domain
is enlarged. As indicated in [3], the error probability can
also be reduced without increasing the domain but by tak-
ing multiple samples.

Proposition 3.1. Suppose that D is a compact set in R n

with a Lebesgue measure µ and µ(D) = 1. Given a poly-
nomial F(X

→
) of n variables that are not identically zero, the

algebraic variety of F is V = {X
→

: F(X
→

) = 0}. Then
µ(V) = 0.

Corollary 3.1. Suppose that D is a compact set in R n with
a Lebesgue measure µ and µ(D) = 1. Given two polyno-
mial F(X

→
) and G(X

→
) of n variables, if F ≠ G then they

have the same value on a subset of D of measure zero.

Corollary 3.1 has an interesting implication. We
want to determine whether two Boolean functions f and g
are identical. Suppose that we can sample uniformly at
random (according to the Lebesgue measure) in D and
obtain X *

→
∈ D. We compute τ(f) (X *

→
) and τ(g) (X *

→
). If

they are different then definitely f ≠ g. Otherwise, we
claim that they are identical. The only case our claim is
incorrect is that f ≠ g and the sample X *

→
is in the algebraic

variety of τ(f) − τ(g), which is of measure zero. There-
fore, the probability that we make an incorrect claim is
zero. We summarize:

Algorithm 3.1. (Verification)

input: two Boolean functions f and g of n variables;
output: whether they are identical.

begin
find a compact subset D ⊆ R n;
sample uniformly at random from D and obtain
X *
→

∈ D;
if (eval(f , X *

→
) ≠ eval(g , X *

→
))

then return ‘‘f ≠ g’’;
else return ‘‘f ≡ g’’;

end

Proposition 3.2. The probability that Algorithm 3.1
returns an incorrect answer is zero.

For an easy implementation, we can take an n-
cylinder for D: − ∞ < a i < b i < + ∞, i = 1 , . . . , n, or a
unit n-cube where a i = 0 and b i = 1. To sample uni-
formly at random from an n-cylinder, we can just sample
uniformly at random from each interval [a i , b i] indepen-
dently for Xi

* , i = 1 , . . . , n, and obtain a sample X *
→

.

Example 3.2. Consider the functions f and g shown in Fig-
ure 2. The function f is a logic AND function of variables
a, b and c. Its characteristic polynomial is F(A ,B ,C)
= ABC. The function g is a multiplexer function with char-
acteristic polynomial, G(A ,B ,C) = AB + (1 − B) C. In the
latter case, the polynomial is obtained by Shannon expan-
sion as explained in Section 2.3. It is advantageous to
expand about the fanout variables (input variable b in these
example circuits.)

b

g

a

c

b f

a

c

Fig. 2. Circuits of Example 3.2.

Consider a random sample of real numbers from
[− 1 , 1]: A * = 0. 75, B * = 0. 30 and C * = − 0. 65. We get,
F(A * ,B * ,C *) = − 0. 4625 and G(A * ,B * ,C *) = − 0. 23.
Although we have not checked all cases, it is unlikely that
any two or more of the 28 Boolean functions of three vari-
ables will have the same value for the characteristic

394

polynomial at this point. For inputs from the integer set
[0,1], the functions f and g will appear identical with proba-
bility 5/8 = 0. 625. For the increased range [− 1 , 0 , 1], the
error probability becomes 10/27 = 0. 370.

4. TESTING

We have a specification Boolean function f (x→) of n
variables and we know f explicitly. We have an implemen-
tation Boolean function g(x→) which is a ‘‘black box’’; for
an input Boolean n-vector x*

→
, it outputs a Boolean value

g(x*
→

) but we do not know its internal structure. The test-
ing problem is to determine whether g ≡ f.

A naive approach is to test on the implementation g
all possible 2n input vectors. If for every input vector x→

g(x→) = f (x→) then g ≡ f. Otherwise, there is a discrep-
ancy on at least one of them, and g ≠ f. However, for large
n, which is typical in practice, this is infeasible. Due to the
large number of inputs, there is a variety of techniques in
circuit testing relying on fault models that reduce the com-
plexity of testing [1].

4.1. Basic Idea

We sample uniformly at random from the unit n-cube
and obtain X *

→
where 0 ≤ Xi

* ≤ 1, i = 1 , . . . , n. For the
specification function f, we evaluate its characteristic poly-
nomial and obtain τ(f) (X *

→
). Suppose that we could also

compute τ(g) (X *
→

) then, from Corollary 3.1 and Proposi-
tion 3.2, we conclude the implementation g is correct if and
only if the two values are the same. Unfortunately, it is
impossible to evaluate τ(g) (X *

→
); we do not even know

g(x→). However, we can estimate τ(g) (X *
→

) and then deter-
mine whether g is faulty.

4.2. Estimation of τ(g) (X *
→

)

We take Xi
* as the probability that variable x i takes

value 1, i = 1 , . . . , n. Then τ(g) (X *
→

) is the probability
that g(x→) takes value 1. This observation leads to an esti-
mation of τ(g) (X *

→
). We run each test as follows: Take 1

for Boolean variable x i with probability Xi
* , i = 1 , . . . , n.

This can be easily done by sampling uniformly at random
from [0 , 1] to obtain q. If q ≥ Xi

* then x i = 1 and 0, oth-
erwise. For the chosen Boolean vector x→, we compute g(x→)
using logic simulation of the circuit. We repeat N tests and
suppose that for Q times g takes value 1. Then Q / N is an
estimate of the probability that g takes value 1, which is
τ(g) (X *

→
).

4.3. Confidence

Obviously, we do not know τ(g) (X *
→

) exactly; we
only have an estimation. Our confidence increases as N
becomes larger. Suppose that for N → ∞ Q / N → p

which is our estimation of τ(g) (X *
→

). We then compare it
with τ(f) (X *

→
) and compute

∆ = ⎪p − τ(f) (X *
→

)⎪ (4.1)

If ∆ is large then it is very likely that g is faulty. On the
other hand, if ∆ is small then it is very likely that g is cor-
rect. We need a threshold value for ∆; it should depend on
the number of variables n and the number of tests N.

4.4. Cross Checking with Specification

For a test, we generate a Boolean vector x→ for testing
on g and obtain g(x→). Naturally, we can compute f (x→) and
compare that with g(x→). If there is a discrepancy, definitely
g is faulty. On the other hand, if f = g for all N tests, we
need more information to conclude that g is not faulty.

Suppose that f takes value 1 Q ′ times. Then
p ′ = Q ′/ N is an estimate of τ(f) (X *

→
) which we can com-

pute. Therefore, when ∆ ′ = ⎪p ′ − τ(f) (X *
→

)⎪is small, we
are confident that we have run enough tests so that the esti-
mate p of τ(g) (X *

→
) is also accurate. This also serve as a

stopping criterion for N in Section 4.3.

4.5. Cross Checking of Samples

Since we can only have an estimation of τ(g) (X *
→

)
the following cross checking provides more information of
g. We sample uniformly at random from the unit n-cube a
few times and obtain samples X *

→ (1)
, X *

→ (2)
, We then

compute the corresponding values of τ(f) and have
p 1 , p 2 , Among them we take two, the smallest p l and
the largest p u , for testing as in Section 4.2. We have the
corresponding estimates in (4.1): ∆ l and ∆ u . If either one
is large, then we claim that g is faulty.

The reason we choose the two extreme probabilities
is that the two test sets are less ‘‘correlated’’. Suppose that
the probability that we make an incorrect claim is e i << 1
for the ith test set. Then the probability we have an incor-
rect conclusion for the two test sets is e 1 e 2. Of course,
more test sets could further increase our confidence.

4.6. Syndrome Testing

In syndrome testing [4], we count the occurrence of
logic 1 state at the output of combinational logic, while all
possible logic states are applied to inputs. For many types
of faults in the circuit, the syndrome (1-count) will change.
However, there are faults that can be masked and produce
the same syndrome as the fault free circuit.

Consider the Boolean functions in Example 3.1.
Both have the same number of 1’s in the truth table, and
hence have the same syndrome. Indeed, if we assign 0.5 to
the inputs, the two characteristic polynomials will give the

395

same value. It shows that randomly selected input proba-
bilities will reduce fault masking in the output probability.

5. CONCLUSION

The main idea in this paper is the definition of a
real-valued function that provides a unique representation
of a polynomial for a Boolean function. The probabilistic
interpretation of the evaluation of the polynomial further
points to new applications of signal probabilities in verifi-
cation and test. We find that the use of real numbers in this
context has a definite advantage over the use of integers
that has been proposed previously. We have outlined sev-
eral applications, namely, logic verification, random test-
ing, and syndrome testing. However, much work is
required in actually implementing these applications. Fur-
ther, the issue of efficient evaluation of the characteristic
polynomials for large combinational circuits remains to be
further explored.

Logic verification and testing are difficult problems.
We believe the new ideas given in this paper will have an
impact on the future solutions of these problems.

REFERENCES

[1] V.D. Agrawal and S.C. Seth, Test Generation for VLSI
Chips, IEEE Computer Society Press, Los Alamitos, CA,
1988.

[2] R.E. Bryant, ‘‘Graph-Based Algorithms for Boolean Func-
tion Manipulation,’’ IEEE Trans. Comput., Vol. C-35,
pp. 677-691, August 1986.

[3] J. Jain, J. Bitner, D.S. Fussell, and J.A. Abraham, ‘‘Proba-
bilistic Verification of Boolean Functions,’’ Formal Meth-
ods in System Design, Vol. 1, pp. 63-117, 1992.

[4] J. Savir, ‘‘Syndrome-Testable Design of Combinational
Circuits,’’ IEEE Trans. Comput., Vol. C-29, pp. 442-451,
June 1980, (Also see, pp. 1012-1013, November 1980).

[5] S.C. Seth and V.D. Agrawal, ‘‘A New Model for Compu-
tation of Probabilistic Testability in Combinational Cir-
cuits,’’ Integration, the VLSI Journal, Vol. 7, pp. 49-75,
1989.

[6] M. Yannakakis, Private Communication.

396

