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Abstract—Due to globalization of semiconductor manufactur-
ing, appearance of malicious circuitry known as hardware Trojan
is now a recognized security threat. A Trojan may be added to
the verified netlist without the knowledge of the designer or user
causing unexpected malfunction or data theft when the device
is in use. In this research we devise tests that would detect a
Trojan in a manufactured chip. We recognize that a Trojan
must escape manufacturing tests provided with the netlist by the
designer. Based on the two parts of a Trojan, namely, a trigger
derived as a Boolean function of any set of signals and a payload
(typically, an XOR gate) inserted on a signal line, we develop
a test generation model. A single-line trigger combined with a
single payload line gives a set of 2K × (K − 1) Trojans in this
model for a circuit with K signal lines. Tests for these are shown to
be vectors that detect “conditional stuck-at” faults, for which we
give a test generation algorithm using standard ATPG tools. The
model allows us to define and measure a Trojan coverage metric
for tests. Results show scalability of these tests, besides being
more effective in detecting real Trojans than N-detect stuck-at
test vectors or random vectors.

Index Terms—Hardware Trojans, modeling, logic testing, N-
detect ATPG, verification

I. INTRODUCTION

Ensuring the security of integrated circuits (ICs) becomes a
major challenge due to the globalization of the semiconductor
industry. Majority of system-on-chip (SoC) design companies
outsource their production across the world to fabrication units
(fabs or foundries) due to a massive cost (several billion
dollars [40]) for building and maintaining such foundries.
This creates the threat of hardware Trojans (HT), which is a
leading security concern for government and industry [3], [9],
[19], [28], [30]–[33], [38]. A hardware Trojan is a malicious
altercation to the original design to modify its functionality
such that an adversary can gain control of the system. An
adversary may insert a hardware Trojan into a design to
interrupt its normal operation in the field. The Trojan would act
like a “silicon time bomb” [19]. It can also create a backdoor in
a secure system to give access to critical system functionality
or leak secret information to an adversary.

Researchers have proposed numerous techniques to detect
and prevent HTs. These techniques are broadly classified into
two groups, namely, solutions targeted for the detection of
HTs, and solutions designed for preventing an adversary to
insert a HT in a design. The detection methods for HTs
can further be classified into logic testing [8], [13], [15],
[20], [35], and side-channel analysis [4], [6], [7], [21], [22],
[25]. Prevention methods can be grouped into design-for-trust
measures [12], [23], [26], [29], [39] and split manufacturing
[27], [34], [36].

The overall aim is to detect HTs in chips manufactured in
an untrusted environment and, thus, prevent Trojan infected

devices from getting into the electronics supply chain.
Logic testing can be used to detect these Trojans, where we
apply stimuli to primary inputs (PIs) and observe responses
at primary outputs (POs) [8], [9], [13], [15], [20], [30].
Detection of a HT occurs when there is a mismatch between
the observed and expected responses. Such detection of a
HT through logic testing does not have any impact from the
process and environmental variations. On the other hand, the
side-channel analysis uses physical characteristics such as
power [37], temperature [24], delay [18], and radiation [16]
to detect the HT. Side-channel detection methods primarily
rely on the availability of Trojan-free golden circuits, which
may not be available in reality. Moreover, process and
environmental variations may mask the side channel leakage,
if the Trojan circuitry is small. Despite significant research
performed on HT, we still lack methods for modeling and
test generation to detect them.

A. Contribution

We propose a generalized model of a combinational hard-
ware Trojan. We believe this is the first time such a model for
a Trojan is being presented. We then propose a generalized
method based on conditional stuck-at faults to detect the
modeled Trojans. The contributions of this paper are:

• Design of a combinational hardware Trojan: We have
proposed a generalized model of hardware Trojan based
on the circuit netlist. We call this Type-n Trojan, where
n is the number of the trigger inputs. The payload of this
Trojan can be delivered to a location where a stuck-at
fault (SAF) is detectable by a Trojan activation pattern
(TAP). Because TAPs may detect several stuck-at faults,
the location of the Trojans is not unique. Any such fault
site inserted with payload will result in Trojan behavior
for the TAP. We believe this is the first approach to model
a generalized Type-n Trojan.

• Detection based on conditional SAFs: We have proposed
a hardware Trojan detection technique based on condi-
tional detection of SAFs. With reasonable test length, we
can detect all Type-1 Trojans. These conditional SAF
patterns (CSP) also detect higher order Trojans with
reasonable confidence. It is reasonable to assume that
an adversary will not have access to the CSP since they
would not be included in manufacturing data.

The rest of this paper is organized as follows: Section II
describes the generalized model for a combinational hardware
Trojan, termed as Type-n Trojan. Section III details our
approach for detecting Type-n Trojans. Section IV describes
simulation results to demonstrate the effectiveness of our pro-
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Figure 1. A model for a combinational hardware Trojan.

posed conditional SAF patterns for hardware Trojan detection.
Section V concludes the paper.

II. MODELING A HARDWARE TROJAN

A. Hardware Trojans

A hardware Trojan has two parts, namely, a trigger and
a payload as shown in Figure 1. The trigger activates the
hardware Trojan when a certain condition is satisfied. Inputs
to the trigger can directly come from primary inputs (PI) or
from internal nets of the circuit. Although shown here as an
AND gate, the trigger can be any logic function. When the
Trojan is activated, e.g., when the AND gate output becomes
1, it delivers the payload to the circuit by modifying its
functionality. A two-input XOR gate with inputs from the
trigger and a net in the circuit, can be used for such purpose.
The output of the XOR gate is taken back to the circuit.

Trojans, added for malicious purposes, consist of circuitry
(trigger and payload) that has been added to a VLSI chip
without the knowledge of the designer or the user. A hardware
Trojan must have the following properties:

• Property 1: A Trojan modifies the logical function of
a chip, although the modification may be subtle. For
certain inputs, termed as activation vectors or activation
patterns, the output of the chip then deviates from its
correct value. This incorrect result may help an adversary
to fulfill his/her malicious purpose.

• Property 2: A Trojan must not be activated by production
(scan-based structural or functional) tests. This leads the
Trojan circuitry to remain undetected during production
testing of the chip.

• Property 3: Although the effect of a Trojan may appear
similar to a design error, the Trojan distinctly differs from
a design error. In case of a remaining error in a completed
design, production tests are generated for the chip with
error and these tests aim at preserving the error in the
manufactured chip. Since the Trojan is inserted in the
chip design after the production tests were generated, the
Trojan circuitry is, by design, made transparent to tests.
Thus, the design of a Trojan must consider its function
(activation inputs and modified outputs), the chip function
(typically, a netlist), and the production tests.

B. Hardware Trojan Model

The Trojan circuitry may be designed for malicious pur-
poses, such as, expose some secret key to an adversary, trans-
mit unencrypted data to an unsecured channel, disable a cir-
cuitry, or incorrectly execute an intended function. A hardware
Trojan modifies the input-output characteristics of the chip and
thus provides an adversary to gain undue advantage. In this
paper, we assume that the chip is sequential, is implemented
with flip-flops and combinational logic, and is tested through
the scan technique [11]. Typically, manufacturing tests are
generated for single stuck-at faults of the combinational logic.
These tests are digital vectors applied to primary inputs (PI)
of the combinational logic and the results at primary outputs
(PO) are verified against expected responses. Functional tests
and delay tests are also performed at the manufacturing site.
Without loss of generality, we focus our discussion to stuck-at
fault (SAF) manufacturing tests for designing a Trojan and its
detection.

Two single stuck-at (SSA) faults, namely, stuck-at-0 (sa0)
and stuck-at-1 (sa1), are modeled on every signal or line,
where a signal can be a primary input (PI), a gate output, or a
fanout branch. Thus, the number K of fault sites is given by:

K = #PI +#Gates+#Fanout branches (1)

A test for a fault on a signal assumes all other signals to
be fault-free. The test activates the fault by setting the signal
to an appropriate value, for example, 0 for a sa1 fault, and
propagates the state of the signal to a primary output (PO). In
addition, there are specific test sequences to verify the function
of the scan shift register [11].

To facilitate the testing of a hardware Trojan, we propose a
model shown in Figure 1 with following attributes:

1) Trigger: The objective of a Trojan designer is to evade
manufacturing tests, otherwise every chip will fail at the
testing site. The trigger circuit must remain quiet (e.g.,
output of the trigger x remains “0”) during the tests.
The selection of the trigger inputs (Ti) can be from the
primary inputs or internal nets of the circuit.

2) Payload: A net (s) is selected in the circuit to deliver the
payload of the Trojan. The original signal s, shown with
broken line in Figure 1, is rerouted through a two-input
XOR gate whose other input is either the trigger x as
shown in Figure 1 or x. We define this net as Trojan
location and assume that it is distinctly different from
the set {Ti} used to generate the trigger. Two conditions
must be satisfied by a vector at PI to activate the Trojan.
First, the vector should activate a path from s to a PO,
hence it should be a test for either a sa0 or sa1 fault on
s. Second, this vector should place a logic 1 on x (or
logic 0 if x is connected to the XOR). As a result the
PO will experience a signal inversion, changing the true
function of the circuit.

Definition 1. A Type-n Trojan is defined as a combinational
hardware Trojan of order n and has n trigger inputs.

Definition 2. The location of a Type-n Trojan is defined
as a site (signal or line) in the circuit where the payload is
delivered.
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Figure 2. An 18-line (K = 18) combinational circuit with Type-4 Trojan (n7|x1, x2, x3, x5). For Trojan activation pattern (TAP) 101000, logic states of
lines and detectable SAFs are marked on the circuit.

A Type-1 Trojan has only one trigger input that can come
from any part of the netlist or a primary input. Similarly, a
Type-2 Trojan has two trigger inputs. We note that for lower
order Trojans, in general, the trigger inputs may come from
low switching nets to keep the Trojans mostly quiet.

Figure 2 shows an example of a Type-4 Trojan inserted in
a 6-input, 2-output circuit, where we select trigger inputs di-
rectly from PIs. We specify this Trojan as (n7|x1, x2, x3, x5),
where n7 is the payload site and x1, x2, x3 and x5 are
the trigger input signals. Note that, in general, triggers can
be tapped from any line in the circuit. Nine test vectors
{P1, P2, · · · , P9} are generated using the ATPG tool Tetra-
Max [1] as manufacturing tests to provide 100% stuck-at fault
(SAF) coverage. As long as the Trojan is not activated by
these test vectors, the circuit will pass the production test.
For this example, we have Trojan activation pattern, TAP =
(101X0X)T /∈ {P1, P2, . . . , P9}, where “X” denotes don’t
care state. As the order of this Trojan (n = 4) is less than
the number of PI (6), the Trojan may be activated by multiple
input patterns. It is thus necessary to verify that the trigger
output (x) remains 0 for all test vectors (P1, P2, . . . , P9).

One can deliver the payload at any site, where a SAF is
detected by the TAP. Because the two X’s can be enumerated
in four ways, the TAP 101X0X corresponds to four vectors.
Simulating [1] two SAFs at the payload site n7 we find
that 101001 detects sa1 and the other three patters, 101000,
101100 and 101101 detect sa0 at n7. Thus, the Trojan in
Figure 2 will produce four errors at y2, 0 → 1 for 101001
input and 1 → 0 for 101000, 101100 and 101101.

In this example, the Trojan delivers the payload at signal
n7, where a SAF fault is detected by one or more TAPs. By
simulating any TAP, alternative locations for delivering the
payload can be found. Figure 2 shows SAFs detectable at x1,
x2, x6, n1, n2, n3, or n5 the TAP 101000. Thus, any of these
lines can be used as an alternative payload site.

C. Finding All Type-n Trojans

An upper bound on the number of Type-n Trojans (Tn) is
given by:

Tn ≤
(

K
n

)
× 2n × (K − n) (2)

Table I
MODELED HARDWARE TROJANS IN CIRCUIT OF FIGURE 2.

Trojan Category Type-1 Type-2 Type-3 Type-4

All possible Trojans (Eq. 2) 612 9,792 97,920 685,440

Feasible Trojans 605 8,097 60,905 294,538

Trojans removed by SAF tests 586 6,985 43,852 17,4114

Valid Trojans 19 1,112 17,053 120,424

where K is the number of lines in the Trojan-free circuit.
From Equation 1, K = 18 for the circuit of Figure 2. Numbers
of all possible Trojans of types 1 through 4, computed from
Equation 2, are shown in Table I. Note that the number of
Trojans goes up by one order for each higher type. However,
all Trojan structures (payload and trigger) do not modify the
truth table of the circuit; when trigger is active, a path from
payload site to PO may or may not be sensitized. Those
modifying the truth table are shown as feasible Trojans in
Table I. These were determined using the exhaustive set of
26 = 64 patterns, a fault simulator [1] to identify sensitized
paths, and a logic simulator [2] to examine the trigger states.
We find that a significant number of the feasible Trojans is
detectable by the set of nine SAF manufacturing test patters
P1 through P9 shown in Figure 2. We do not consider
those as valid Trojans because chips containing them will
be eliminated during production testing. Removing them from
feasible Trojans gives us the number of valid Trojans.

Although the Type-n Trojan model seems general, even for
a small circuit (K = 18), the number of valid Trojans grows
rapidly with n. For generating tests for Trojan detection and
for coverage analysis, we will use Type-1 Trojans assuming
their number equals the upper bound of Equation 2:

T1 = 2K(K − 1) (3)

This number of target Trojans is O(K2), or quadratic in circuit
size, K. The number would be O(Kn+1) for Type-n Trojans,
where n ≤ K−1. Thus, our methodology parallels SAF whose
tests are known to detect multiple stuck-at and many other
types of faults [11].

Trigger circuitry of a Type-n Trojan model is an n-inputs
AND gate. The payload is delivered through an XOR gate to
any site activated by the Trojan activation pattern (TAP).

!

!



Algorithm 1: Design of a Type-n Trojan.

Input : Circuit Netlist (C), Manufacturing test patterns
(P ), Order of a Trojan (n)

Output: Trojan activation pattern (TAP ), Trigger Inputs
(T )

1 Read the netlist ;
2 Read manufacturing test patterns (P );
3 Select a random pattern as Trojan activation pattern,

TAP /∈ P ;
4 Perform logic simulation using P to obtain all internal

node values (MK );
5 Perform logic simulation with TAP to obtain all internal

node values (ST );
6 Select a n random locations of the netlist to form the

trigger inputs ;
7 Form a new matrix Mn, Mn ← mod(MK) ;
8 if Sn ∈ Mn then
9 Drop the selection as it will activate the Trojan;

10 Go to Step 6;
11 else
12 Choose T as trigger input;
13 end
14 Perform fault simulation and logic simulation with TAP ;
15 Select a fault site (from Step 14) for delivering the payload,

i.e., Trojan location.

Algorithm 1 designs a Type-n Trojan that will not be
activated the manufacturing tests. The inputs are original
netlist (C), manufacturing test patterns (P ), and the order of
the Trojan (n). The algorithm reports the TAP and trigger
inputs (T ). It reads the Trojan free circuit netlist and manu-
facturing test patterns (Lines 1-2). A random TAP is selected
(Line 3), which is not present the manufacturing test pattern set
(TAP /∈ P ). Logic simulation gives the internal node values
(MK) of the circuit for all manufacturing test patterns (Line 4).
MK is a K×p matrix where K and p denote number of circuit
nodes and number of manufacturing test patterns, respectively.
We simulate the circuit with TAP for all internal node values
(ST ). Here, ST is a K × 1 vector. Select n locations from
K nets, either randomly or by some given criterion, to form
an (n× 1) vector Sn from ST (Line 6). The mod() function
returns a new matrix Mn corresponding to the selected n nodes
(Line 7). Selection of these n nets is not valid if Sn ∈ Mn, as
one of the test pattern will trigger the Trojan (Line 9), so select
a new set of n nodes (go to Step 6). Finally, fault simulation
with TAP gives possible sites for payload (Lines 14-15).

III. TEST GENERATION FOR TYPE-n TROJANS

Definition 3. CSP-n, CSP-1 or CSP, and CSP-0: For a signal s
in a digital circuit, two type-n conditional stuck-at fault (SAF)
patterns (CSP-n) detect sa0 and sa1 faults, respectively, while
setting specified [0,1] values on n other signals t1, · · · tn. CSP-
1, or simply CSP, are conditional tests with a condition on a
single signal. CSP-0 are tests without any condition and are
identical to the classical SAF tests.

Type-n HT’s with signal s as payload are detectable
by CSP-n we denote as (s sa0 | C1, · · ·Cn) or
(s sa1 | C1, · · ·Cn), where Ci = ti or ti. CSP-n is a
generalization of the CSP-1 defined in the literature [14].

Clearly, a Type-n Trojan is detectable by any of the two
CSP-n’s for which s is the payload site and t′is are trigger in-

Algorithm 2: Conditional stuck-at fault (SAF)
pattern generation for hardware Trojan detection.

Input : Circuit Netlist, C
Output: Conditional SAF detection pattern set, CSP

1 Read the netlist C ;
2 Determine number of nets in C,

K ← #PIs+#Gates+#fanout branches;
3 Initialize empty set of conditional SAF patterns, CSP

← φ ;
4 Initialize count c ← 0 ;
5 for i ← 0 to K do
6 for j ← 0 to 1 do
7 for k ← 0 to 1 do
8 Initialize TempNets ← Nets ;
9 Initialize count l ← 0;

10 while TempNets �= φ do
11 CSP [c] ← Test pattern for stuck-at j

fault with netl = k ;
12 Invoke logic simulation with CSP [c]

to get internal node values ;
13 Remove nets with signal value from

CSP [c], TempNets ←
update(TempNets);

14 c ← c+ 1, and l ← l + 1 ;
15 end
16 end
17 end
18 end
19 Report CSP for Trojan detection;

puts. For example, the Type-4 Trojan in Figure 2 is detected by
CSP-4 (n7 sa0 | x1, x2, x3, x5) and (n7 sa0 | x1, x2, x3, x5).
Considering complexity, we restrict to test generation for CSP-
1 and evaluate their coverage for higher type of Trojans.

A. Conditional SAF Pattern (CSP-1 or CSP) Generation
Algorithm 2 generates conditional SAF patterns (CSP) for

detecting hardware Trojans. It is necessary to determine the
total number of nets (K) according to Equation 1 (Line 2).
The algorithm initializes CSP-n as an empty set (Line 3) and
then iterations with their signal values (Nets) are stored in
TempNets. A CSP-1 is generated for a specific SAF with
signal values for specific nets (Line 11). Note that, a CSP-
n generation capability in the ATPG tool TetraMAX [1] is
invoked by specifying an SAF target with n other signals and
their values. Logic simulation is performed with this pattern
to find the internal node values (Line 12). All {net, signal
value} pairs corresponding to this pattern are dropped from
TempNets (Line 13). Repeat this process until TempNets
is empty (Line 10). Once all iterations are complete, the
algorithm reports CSP-n’s for Type-n Trojan detection.

B. An Example: Circuit of Figure 2.
Once again, considering the high complexity due to large

number of higher type of Trojans, explained in Section II C, we
generated tests for all 612 Type-1 Trojans using Algorithm 2.
As a result, 48 CSP-1 detected 605 feasible Trojans confirming
the data in Table I. Without confusion, we simply call them
CSP. Assuming that 9 SAF vectors would have already tested
for 586 Trojans during production, those were removed leaving
as set of 48 vectors that detect all 19 valid Type-1 Trojans.
Manufacturing tests are applied during production to all chips
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Table II
HT TEST COVERAGE (%) OF VALID TROJANS (Vn).

Trojan
type Circuit Lines, K

Eq (1)
All Trojans
Tn, Eq (2)

SAF
tests

Valid Trojans
Vn, Eq (5)

HT
tests

Vn Coverage (%)
CSP N -det. Random

Type 1

Fig. 2 18 612 9 19 48 100 100 100

c432 307 187,884 69 16,684 99,991 100 96.86 70.29

c880 577 664,704 76 152,583 531,846 96.25 95.88 94.81

Type 2

Fig. 2 18 9,792 9 1,112 48 100 99.60 99.73

c432 307 5.73×107 69 1.27107 99,991 93.48 89.71 61.93

c880 577 3.82×108 76 1.22×108 531,846 93.72 92.98 91.62

Type 3

Fig. 2 18 97,920 9 17,053 48 99.80 98.46 97.64

c432 307 1.16×1010 69 3.96×109 99,991 89.62 83.89 59.16

c880 577 1.46×1011 76 6.25×1010 531,846 90.08 89.99 88.06

Type 4

Fig. 2 18 685,440 9 120,424 48 99.30 97.40 95.95

c432 307 1.76×1012 69 7.27×1011 99,991 85.28 78.67 53.11

c880 577 4.19×1013 76 2.176×1013 531,846 87.87 87.51 85.62

to eliminate defective ones. Assuming that a Trojan remains
undetected (we define this as a valid Trojan, all passing chips
must have the same Trojan. Hence it is sufficient to test just
one chip for Trojans and the Trojan tests can be much longer
than the manufacturing tests. For any type (n), the quality of
Trojan tests is their coverage of valid Trojans, which, in turn
depends on the manufacturing tests. Thus,

Trojan Coverage =
# of detected valid Trojans

# of all valid Trojans
×100 %

(4)
We generated two other sets, each with 48 vectors, an
N -detect set and a random set. Valid Trojans of types 1
through 4 (Table I) were simulated. Results are given in
Table II (Rows 1, 4, 7 and 10). Coverage of CSP was always
higher and dropped slower with increasing n. Four Type-2
Trojans, (x5 | x2, x4), (x5 | x4, n5), (n4 | x1, x4) and
(n3 | x1, x4), were only detected by CSP. Their payloads are
closer to PI. Besides, they indicate superior capability of CSP
in covering trigger combinations.

IV. BENCHMARK CIRCUITS

To study the effectiveness of the proposed conditional SAF
patterns (CSP), we used a simulation setup for ISCAS 85
benchmark circuits [10]. TetraMax [1] provided manufacturing
tests for each circuit covering 100% of all detectable SAFs.
Next, we generate the CSP for each circuit using Algorithm 2.
As the number of valid Trojans is large, we perform the
coverage analysis of CSP based on four random sample sets of
20,000 Trojans of Type-1 through Type-4, respectively. Some
Trojans cannot be triggered from inputs, nor do they affect
outputs. Excluding these, we get feasible Trojans. Feasibility
within each sampled set was assessed using the TetraMax
conditional ATPG capability [1]. Some feasible Trojans are
detectable by the manufacturing tests. Excluding those, we get
valid Trojans (vn), any of which an adversary may insert in the
netlist. It is economical to estimate the total number of valid
Trojans (Vn) in a circuit based on the 20,000-Trojan sample.
This sample size is large enough for reasonable accuracy [11].
Total number of valid Trojans is,

Vn =
vn

20, 000
× Tn (5)

Table II shows the results. Trojan sampling was not used for
the circuit of Figure 2 (Rows 1, 4, 7 and 10). Next, Rows 2,
5, 8 and 11 show data for c432 benchmark. For K = 307,
Equation 2 gives T1 = 187, 884 Type-1 Trojans (Column 4).
This circuit has 712 SAFs detected by 69 manufacturing
test patterns (Column 5). Algorithm 2 generated 99,991 CSP,
beyond 69 SAF patterns, shown as HT tests in Column 7.
From 187,884 Type-1 Trojans, we take a random sample
of 20,000 Type-1 Trojans to estimate the Trojan coverage.
Among these, 513 Trojans could not be triggered from inputs,
leaving 19,487 feasible Trojans. In addition, 17,711 Trojans
were detected by 69 SAF patterns. Hence, number of valid
Trojans, vn = 19, 487 − 17, 711 = 1, 776. From Equation 5,
number of valid Type-1 Trojans, Vn = 16, 684 (Column 7).
Next three columns of Row 2 give Type-1 Trojan coverage
by CSP, N -detect patterns, and random patterns, respectively,
each containing 99,991 patterns. Similarly, results for Trojans
of Type 2 (Row 5), Type 3 (Row 8) and Type 4 (Row 11) were
obtained. Notably, the CSP coverages are consistently higher.

Results for c880 benchmark in Rows 3, 6, 9 and 12 were
obtained in a similar manner with one exception. The number
of HT tests is 531,846 and will grow significantly larger for
bigger circuits. We randomly sampled 5,000 patterns from
531,846 HT tests to estimate the coverage of Trojans of
Types 1 through 4 [17]. The results are given in Columns 8-10
(rows for c880). Once again, CSP coverages are higher.

V. CONCLUSION

The Type-n Trojan is a generalized model that facilitates
test generation and coverage analysis. A Consideration of the
complexity issue leads to the Type-1 Trojan model and its
test by conditional stuck-at fault patterns (CSP). Thus, the
number of Trojans to be modeled is O(K2) for a circuit with
K signal lines. Although the detection coverage is measured
over valid Type-1 Trojans, not detectable by manufacturing
tests, tests are generated for all Type-1 Trojans. This is because
our “real” targets include higher types as well. We find that
both Trojan sampling and vector sampling are beneficial for
coverage estimates. For larger circuits, CSP generation for a
randon sample of Type-1 Trojans may also be used [5].

In the future, the scope of modeling and test generation
should be expanded to solve diagnostic problems. Another
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aspect to explore is the minimization of Trojan tests. Despite
the fact that the Trojan tests need not be applied to all chips,
the numbers of Type-1 Trojans and their CSP for large circuits
can be enormous. A third aspect to explore is the behavior of
CSP in detecting Trojans with n > 4.
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