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INTRODUCTION

In this paper we introduce the probability of fault occurrence. For a modeled fault (e.g.,
a stuck fault) this is the probability with which the fault will occur on a chip. The occurrence
of a fault is only observable as fault indication by a test capable of detecting it. We determine
the probability of fault occurrence from chip test data. No attempt is made to find these proba-
bilities for individual faults but they are determined only as a distribution for all faults. Com-
bined with detection probabilities (related to the conventional fault coverage), fault occurrence
probabilities provide a revised coverage requirement versus chip quality relation.

In the previous work [1,2, 3], attempts are made to find a relation between fault coverage
and product quality. Product quality is measured as reject ratio or the ratio of faulty chips
among those passing tests. The reject ratio is found by combining the actual chip (or wafer)
data with fault coverage data. For a required reject ratio, it is possible to determine the neces-
sary fault coverage of tests. This coverage, in general, depends on certain processing parame-
ters that also determine the yield.

The work in the papers cited above has been used by several workers to analyze experi-
mental data [4,5,6]. However, there are difficulties with these analyses. For generally accept-
able reject ratios, e.g., 1 in 10,000, most computed fault coverage requirements tum out to be
almost 100 percent. Such coverage is not considered possible by the designers of large VLSI
chips. There are several reasons for this. First, large circuits have some redundant faults and
algorithms to find redundancies are very complex. Second, the alternative approach of exhaus-
tive testing (where redundant faults may be ignored) is applicable only to the special class of
circuits that can be partitioned into small combinational blocks with access to inputs and out-
puts. A third reason is the arbitrariness in measuring fault coverage. Different fault simulators
make different assumptions about race faults, oscillation faults, hyperactive faults, etc.

The detection probability of a fault is really a conditional probability. It is the probability
of detection by an input vector, given the fact that the fault is present. We have studied this
probability in a recent paper [7]. In the present work, we also consider the fault occurrence
probability. It is defined for each fault as the probability of its being found on a chip. Just as
all faults are not equally detectable, they also do not occur with equal probability. The product
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of these two probabilities is thc absolute failure probability of a chip by a test vector. In other
words, a more realistic coverage requirement can be obtained if the faults were weighted by
their occurrence probability. For example, a fault that never occurs will have a zero weight
and is not required to be covered.

We analyze wafer test data to illustrate our analysis. The data on the measured fraction
of failing chips versus the number of vectors is used to empirically determine a failure proba-
bility density function. From this, true yield and reject ratio are easily estimated without any
fault coverage analysis.

NOTATION
c Total number of chips tested
N Total number of test vectors applied
i Number of chips that fail exactly at vector number
y True yield, i.e., fraction of good chips
Yn Estimated yield of chips after application of » vectors
T Reject ratio after application of n vector, On —Y)/In
THEORY

We assume that a chip failure on an applied test vector is a random event with the associ-
ated density function f (x). Thus, f (¥)dx is the fraction of chips that fail on a vector with a
probability between x and x +dx. Since only a fraction 1—y of the total chips can fail, we have

f&)=y8(x)+p &)

where, 8(x) is the Kronecker delta function and p (x) is a partial density function. Clearly,

x = Prob. (A fault has occurred and is tested by the vector)

Since f (x) is a density function,

1 1
{f @dc=y + [pmdx =1
0

Therefore,
1
[pax=1-y
0

Now suppose after application of n test vectors, a certain fraction of the chips has not failed.
The expected value of this fraction is the yield of chips after n vectors and is denoted by ya.
Clearly,

1 1
Yo = [A=2)"f @dx =y + [(1=x)"p ()ax )
0 0

It is easily verified that yo =1 and y.. =, that is, before the testing starts the yield is 100%
and if testing continues indefinitely, only the good chips would contribute to the yield.

Our aim is to estimate f (x) from the chip failure data obtained while testing a sample of
¢ chips by a test sequence of N vectors. As these vectors are applied, we record the number of
chips that fail for the first time at each vector. For vector number i we will denote the number
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of such chips by c;. Using Bayes theorem [8] with a uniform a priori failure probability, we
have

N _ N )il
f (X)=y5(x) + (1 -y - % ZC,‘ ) —]-(‘l—x)N— + %ZC,‘I—JE(—JC)—-
T Jawae T fxaa

0 0

The derivation of the above equation is similar to the one described in a recent paper [7]. The
three terms on the right hand side represent, respectively, the contributions to £ (x) due to the
fault-free chips, the faulty chips not rejected by any of the N vectors, and the remaining chips
that are grouped according to vectors at which they failed. On evaluating the integrals on the
right hand side we can rewrite the above equation as

N N 3
f e =y8m + (1-y = 2 Tc ) (V + D1 —xf* + LR iR @)
i=] i=1 ’

Substituting this expression for f (x) in Equation (1), we find the yield after n vectors as

1y N+1 1Y i(i+1)
=y+(l—-y - — B S il P, o A 3
m=y+(-y cE,C‘) Ntn+l ciz:;c‘ (n+i)(n+i +1) 3

In the above expressions, the yield y is still an unknown parameter. It can be evaluated by
equating the estimated yield after N vectors to the measured yield. Thus

1N
}’N=1"?Zci

i=1

Substituting for yy from Equation (3) and solving for y, we get

1y 2N+1 1 0 i (i+1)
) cZAT TN S 2NN+ @
From Equations (3) and (4) it is now possible to compute the reject ratio as follows:
r, = Yn—) (5)
In

EXPERIMENT

To illustrate the application of the above analysis, we will use the experimental test data
of a VLSI chip from a previous paper [2]. The measured yield of this chip for a test sequence
of 3062 vectors is 0.469062. Of the 1002 tested chips, 470 did not fail after all vectors had
been applied. The measured yield as a function of vectors is shown in Fig. 1. The true yield,
as computed from Equation (4), was 0.46082. Figure 1 also shows the estimated yield y,, as
computed from Equation (3), for three different values of true yicld. Only for the yield given
by Equation (4), y, closely maiches the experimental data. This shows the sensitivity of our
expression to the value of the true yield y and hence its suitability for estimating yield.

Reject ratio, as computed from Equation (5), is shown in Fig. 2. At the end of 3062 vec-
tors, the computed reject ratio is about 0.017 or 17 faulty chips per thousand. The fault cover-
age of these vectors was about 90 percent [2]. Figure 2 predicts a reject ratio of 0.0001 or one
faulty chip per 10,000 for about 500,000 vectors. Notice that this computation does not use
fault coverage but only involves the use of the probabilities of fault occurrence and detection
that are obtained from the actual measured data.
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Fig. 1 Yield determination from measured test data.
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Fig. 3 Failure probability density function.

Figure 3 shows the failure probability density function f (x) as computed from Equation
(2). The delta function at the origin corresponds to the estimated true yield or good chips.
The remaining par, i.e., p (x), is the density of faulty chips. As explained earlier, this is the
joint probability of a fault occurring and of its being detected by a vector. Evidently, p (x) has
two parts. One is a sharp peak near the origin and the other is a function of relatively lower
magnitude. The peak corresponds to those faulty chips that survived all 3,062 vectors. This
portion is mainly responsible for field rejects.

It can be conjectured that the second portion of p (x) corresponds to failure modes similar
to stuck type faults. Since the vectors were generated for such faults, the detection probabili-
ties are higher. The faults in the peak near the origin might correspond to other failure modes
like delay faults, stuck open faults, etc., for which the tests were not specifically targeted.
Further investigation should lead to better insight.

CONCLUSION

We have given an entirely new method of asessing VLSI test quality. The tested product
quality is directly evaluated from test data. This eliminates the need for complex fault models
and fault simulation. Results are more realistic than coverage evaluation because the probabil-
ity of fault occurrence is implicit in the analysis. Further investigation may lead to better
methods of test generation. For example, tests are required to detect the low detection proba-
bility faults that have non-zero probability of occurrence rather than detecting stuck type faults
that may never occur.
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