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Abstract—We present an automatic test pattern generation
(ATPG) system using the PODEM (path-oriented decision mak-
ing) algorithm where backtraces and D-drive are directed by
composite heuristics. In a worked out illustration, three heuristic
measures are combined by an unsupervised learning procedure
of principal component analysis (PCA). The three measures
for each signal node are distance (dPI and dPO or minimum
distances to primary inputs and outputs), COP (controllability-
observability program probabilities, CC0, CC1, and CO), and
SCOAP (Sandia controllabilitiy-observability analysis program
combinational testability measures, SC0, SC1, and SO). PCA
combines these into heuristic measures, P0 and P1 for directing
backtraces, and PD to advance the D-drive. The new ATPG
program for all faults of benchmark circuits shows order of
magnitude reduction in total backtracks and notable reduction
in CPU time in comparison to the ATPG program with any single
heuristic. For individual faults, backtracks often reduced to zero.
Even redundant faults were identified by the new program with
fewer backtracks.

Index Terms—ATPG, Backtrace, COP, Digital testing, Heuris-
tics, Machine intelligence (MI), Machine learning (ML), PODEM,
Principal component analysis (PCA), SCOAP.

I. INTRODUCTION

Automatic test pattern generation (ATPG) is an essential
part of VLSI design and manufacture. An ATPG algorithm
finds test patterns for single stuck-at faults in a digital circuit.
This problem is proven to be NP-complete [1]–[3], implying
that the worst-case complexity of an ATPG program will
grow exponentially with the circuit size. Hence, successful
completion of an ATPG program for a large circuit and a
reasonable run time are conflicting requirements.

ATPG algorithms like D-algorithm [4] and PODEM [5] can
guarantee a test, given sufficient run time. As is the wide-
spread practice we will use the PODEM algorithm, which is
simpler to implement. However, we rely on the terminology
defined by D-algorithm. The symbol D specifies the combined
state of a signal being logic 1 in the fault-free circuit and 0
in the faulty circuit. The opposite values are represented by
D. The ATPG starts by placing a D or D at the fault site and
then setting the primary input (PI) values to propagate these
values to a primary output (PO). The process of propagating
the objective value through a gate is called D-drive. During
the execution of ATPG, the set of gates with D or D at input
and unknown value (denoted by X) at its output are referred
to as a D-frontier.

The PODEM algorithm has two steps, backtrace that justi-
fies the logic state of a signal, and D-drive that selects a line

from the D-frontier, both potentially benefit from heuristic
guidance. Typical heuristics are distances, dPI and dPO, the
minimum distances to PI and PO [5], COP [6] (controllability-
observability program) probabilities CC0, CC1, and CO,
or SCOAP [7] (Sandia controllability-observability analysis
program) conbinational testability measures SC0, SC1, and
SO.

An ATPG algorithm requires one more step, backtrack. If
the D-frontier becomes null before a test is found, successive
previous steps are undone until a D-drive become available.
The search terminates when either a test is found or all possi-
bilities are exhausted, when the fault is considered redundant
or undetectable. The benefit of a heuristic is thus measurable
in terms of how few backtracks are required.

An experimental study [8], [9] on the effectiveness of
various heuristics in PODEM ATPG found that no single
heuristic works best for all faults of a circuit. Rather than
using a single heuristic with a high backtrack limit, it is more
efficient to use multiple heuristics, each with a low backtrack
limit. This is because the program has no way of switching to
a second heuristic until the first one has failed.

In a recent study [10], an unsupervised machine learning
(ML) procedure of principal component analysis (PCA) com-
bined several heuristics into a single heuristic. The PCA did
improve the performance reducing backtracks. However, the
procedure was incomplete because the learning procedure was
not applied to the forward drive of the D-frontier. The present
paper completes that work and shows that the total benefits
can be very significant (see Section IV-A and Table III).

ATPG applications of machine learning (ML), both super-
vised and unsupervised, have recently appeared [11], [12].
Terms machine learning (ML) and machine intelligence (MI)
are interchangeably used. Supervised ML uses sample ATPG
data and circuit information, that may otherwise direct heuris-
tic decisions, to train an artificial neural network (ANN).
The ANN then provides heuristic decisions in the ATPG.
Unsupervised ML is more direct as it may not use an ANN is
the main topic of this paper. Significant contributions of this
work are:

• Development of an ATPG system using the PODEM
algorithm guided by three principal components, two for
backtraces and one for D-drive, generated through PCA.
The ATPG system starts with random vectors to cover
easy-to-detect faults and then switches to PODEM.
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• Evaluation of ATPG for benchmark circuits based on total
number of backtracks and CPU time.

• Evaluation of ATPG based upon backtracks for hard-to-
detect, easy-to-detect, and redundant faults.

This article is organized as follows. Section II highlights
background work on MI applied to testing and ATPG algo-
rithms. Section III outlines the contribution of this study, ex-
plains the principal component analysis (PCA), and techniques
to choose major PCs. In Section IV, PODEM guided by PCs is
compared with those guided by single heuristics on a sample
of faults and on all faults that have not been covered by random
patterns. Section V summarizes the study and suggests future
work, and Section VI concludes the article.

II. PRIOR WORK

Several recent surveys [11], [13], [14] examine ML-based
analog and RF circuit testing, memory testing, applications of
ML to hardware security, IC counterfeiting, and devices based
on emerging technologies. One of these [13] also discusses the
use of ML-based PCA model, in which ATPG algorithmic
decisions are guided by PCA models to generate tests for
digital circuits.

Popularity of PCA grows as data mining and pruning
techniques are addressing storage and computation challenges.
Despite the discovery of PCA and its extensions almost a
century ago [15], [16], its demand burgeoned when computer-
based applications spread across multiple disciplines.

Recent algorithms for test point insertion (TPI) and ATPG
used MI as heuristics. A deep learning-based technique could
tackle the TPI problem of a logic circuit [17]. An ANN evalu-
ates control-0, control-1, and observes types of test points for
impact on fault coverage to iteratively select test points [18],
[19]. Subsequent work [20], [21] even trained the ANN with
random circuits for performance comparable to that of training
from real circuits.

The ANN-based backtracing could reduce backtracks and
CPU time compared to other conventional ATPG heuris-
tics [22]. Systematic training of ANN has further advan-
tages [23]. The principal component analysis (PCA) can ef-
fectively compact the ANN training data [24]. The possibility
of using unsupervised learning for PODEM ATPG, suggested
recently [10], has never been harnessed completely until now.

III. METHODOLOGY

PODEM [5] is an exhaustive search algorithm. It searches
the entire vector space, if necessary, to find a test pattern for a
target fault. No test would be found in the end for an untestable
(redundant) fault, when the faulty circuit has a logically correct
behavior. In coverage such faults may be counted either as
nonexistent or virtually detected. It is important for the ATPG
algorithm to be complete, otherwise necessary (high) fault
coverage may not be attained.

Application of deterministic test vectors to a circuit in-
creases the fault coverage but the rate of increase can be circuit
dependent. This coverage is dependent on circuit testability.
A statistical analysis of fault coverage for random and deter-
ministic vectors [25] can assess circuit testability from fault
simulation, predict coverage from testability analysis, estimate

test length for required coverage, or help generate test vectors
by fault sampling. We used the results of this analysis to
devise a practical ATPG system where easy-to-detect faults
are covered by a random pattern generator and hard-to-detect
faults are left for a complex program like PODEM where the
backtrace guidance comes from either MI [10], [12], [22]–[24],
or distance heuristic [5], or Controllability and Observability
Program (COP) [6], or Sandia Controllability/Observability
Analysis Program (SCOAP) [7]. We found MI-guided ATPG
showed significant improvement in performance over others.

A. Random Pattern Test Generation
In 1972, random pattern test generation (RPTG) was used

for testing the ILLIAC IV parallel computer [26]. The cover-
age of random patterns always saturated between 60-80% and
switching to D-algorithm [4] program at that point proved
beneficial. An essential part of the RPTG scheme is a fault
simulator that selects useful patterns. In the present work, we
first run an RPTG scheme on a set of benchmarks and try to
cover easy-to-detect faults, before switching to PODEM [5]
ATPG to detect the remaining hard-to-detect faults.

B. MI-Guided ATPG
Machine intelligence (MI) is used in two ways. Supervised

learning trains an ANN, which then guides the ATPG. Unsu-
pervised learning uses statistical tools such as PCA [15], [16]
and others to compact the ATPG guidance data. In this study,
we apply PCA to a variety of data and then use the most
significant PC to direct the ATPG for hard-to-detect faults.

1) Data for Heuristic Guidance: The data used for heuristic
guidance in ATPG, as listed in Section I (second paragraph),
are distances, dPI and dPO, COP [6] probabilities CC0,
CC1, and CO, and SCOAP [7] conbinational testability
measures SC0, SC1, and SO, for all nodes of the circuit.

The 0 and 1 COP probabilities [6] have perfect correlation
because 1−CC0 = CC1. Hence, we discard CC0, only using
CC1. Since each item has a different numerical range, all are
normalized to interval [0,1] through division by the largest
value occurring in the circuit. The data are then placed in two
groups, one to guide backtraces and other to guide D-drives.
Data used for backtrace guidance are dPI , CC1, SC0, and
SC1. Data used to guide the D-drive are dPO, CO, and SO.

2) Phase Alignment: It is important that items of data do
not contradict each other. Suppose, to justify logic 0 at the
output of an AND gate whose inputs are all unknown (X) we
are selecting an input for backtracing. Using distance heuristic,
we will select the input with minimum dPI . According to COP
heuristic, we select the input with minimum CC1. SCOAP [7]
is a measure of the effort of setting a value. Therefore, we
would select the input with minimum SC0, or if using SC1
we select the input with maximum SC1. Notice that SC0 and
SC1 of SCOAP are independently computed measures that are
not completely correlated.

Table I shows input selection criteria for backtracing specific
logic through various gate types and output states, based upon
individual heuristics. We observe that the selection criteria
does not remain the same across any row in the table, showing
conflicts among various heuristics, which must be resolved
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TABLE I
BACKTRACING THROUGH A GATE USING HEURISTICS FOR INPUT

SELECTION. BOLDFACE ENTRIES INDICATE CONFLICTING SELECTION
CRITERION WITH RESPECT TO dPI , USED AS REFERENCE. THE VALUES OF
CONFLICTING HEURISTICS ARE COMPLEMENTED BEFORE COMBINING VIA

PCA INTO PRINCIPAL COMPONENTS P0 AND P1 .

Gate Output Input selection criterion for PCA
type value dPI CC1 SC0 SC1 P0 P1

AND 0 min min min max min
1 max min min max max

OR 0 max max max min max
1 min max max min min

NAND 0 max min min max max
1 min min min max min

NOR 0 min max max min min
1 max max max min max

TABLE II
D-DRIVE BY HEURISTIC SELECTION OF A D FROM D-FRONTIER.

BOLDFACE ENTRY INDICATES CONFLICTING SELECTION CRITERION WITH
RESPECT TO dPO , USED AS REFERENCE. THE VALUES OF CONFLICTING

HEURISTICS ARE COMPLEMENTED BEFORE COMBINING VIA PCA INTO A
PRINCIPAL COMPONENT PD .

D-drive selection criterion w.r.t. heuristics
Distance dPO COP CO SCOAP SO PCA PD

min max min min

before they are combined. We use the distance (dPI) as
reference and complement the data whose criteria differs
(shown in bold in the table). For example, in the first row
SC1 will be replaced by 1 − SC1. We recall that all data
have been normalized to the range [0,1].

Similar approach is taken to calculate the composite heuris-
tic for D-drive that selects a D from the D-frontier to be
propagated toward PO. Once again, various heuristic data,
dPO, CO, and SO, all normalized to the range [0,1], are
examined in Table II for conflicts. Thus, heuristic data for
CO, shown in boldface, are complemented as 1−CO, while
dPO and SO remain unchanged.

3) Reduction of Data Dimensions: PCA is a powerful tool
to reduce data dimension by transforming to new variables
called principal components (PCs). Each PC has linear depen-
dency on the original data that maximizes uncorrelated data
variance while preserving statistical information. Evaluation
of PCs from the original data uses single value decomposition
(SVD) [27] that chooses PCs based on either correlation or
covariance matrix.

The first (major) PC has the highest variance (see Figures 1
through 3). The explained variance, πj of the jth PC, is the
ratio of its variance λj to the total variance (sum of variances
of all PCs) [10]:

πj =
λj∑p
i=1 λi

(1)

where, p is the number of PCs and λi is the individual variance
of ith PC. A proportion of total explained variance for a
subset S of q PCs is expressed as a percentage of the total
variance:

∑
i∈S πi. It is common to set a threshold for this

total variance to decide how many PCs to use; only 1 to 3
PCs may be required. However, in some cases, such as outlier
detection [27] or image analysis, more PCs may be of interest.
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Fig. 1. PCA for backtracong 0 in ISCAS’85 and ITC’99 benchmarks. Logic
0 output state is assumed for all gates during PCA. Items with conflicting
criteria, shown in bold in Table I, were complemented. Four PCs are P0#1,
P0#2, P0#3 and P0#4. The major PC, P0#1 shown in blue, is selected as P0

of Table I [10].

We used SVD to obtain PCs based on “explained vari-
ance” [28]. PCs represent the same amount of information
as the original data. The total variances of the original data
and PC data are same but unequally distributed among PCs.

PCA was conducted in two phases. The first phase combines
dPI , CC1, SC0, and SC1 as organized in Table I to produce
principal components P0 and P1 for each signal node in
the circuit to provide backtrace guidance. The second phase
applies PCA to dPO, CO, and SO to obtain PD for every
signal to guide the D-drive. This requires three applications
of PCA:

1) Generation of P0: Logic 0 output is temporarily assumed
for all gates. PCA was applied to the four-dimensional
data of all signal nodes. For each node, the row in Table I
corresponding to the source gate type with output 0 was
considered. Data items with min-max criterion, shown
in boldface, were complemented. The PCA produced, as
shown in Fig. 1, four PCs P0#1, P0#2, P0#3 and P0#4.
The major PC, P0#1 shown in blue, was selected as P0

of Table I.
2) Generation of P1: Logic 1 output is temporarily assumed

for all gates. PCA was applied to the four-dimensional
data of all signal nodes. For each node, the row in Table I
corresponding to the source gate type with output q was
considered. Data items with min-max criterion, shown
in boldface, were complemented. The PCA produced, as
shown in Fig. 2, four PCs P1#1, P1#2, P1#3 and P1#4.
The major PC, P1#1 shown in blue, was selected as P1

of Table I.
3) Generation of PD: Items with conflicting criteria, shown

in boldface in Table II, were complemented for all signal
nodes. PCA applied to the three-dimensional data for all
signal nodes produced, as shown in Fig. 3, three PCs
PC#1, PC#2 and PC#3. The major PC, PC#1 shown in
blue, was selected as PD in Table II.

IV. EXPERIMENTAL RESULTS

We expect electronic design automation (EDA) system
vendors to incorporate MI in their ATPG software. Since
they are reluctant to divulge program source code, it was not
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Fig. 2. PCA for backtracing 1 in ISCAS’85 and ITC’99 benchmarks. Logic
1 output state is assumed for all gates during PCA. Items with conflicting
criteria, shown in bold in Table I, were complemented. Four PCs are P1#1,
P1#2, P1#3 and P1#4. The major PC, P1#1 shown in blue, is selected as P1

of Table I [10].
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Fig. 3. PCA for directing D-drive in ISCAS’85 and ITC’99 benchmarks.
Items with conflicting criteria, shown in bold in Table II, were complemented.
Three PCs are PC1#1, PC1#2 and PC3#4. The major PC, PC#1 shown in blue,
is selected as PD of Table II.

possible to incorporate our procedures in a commercial tool
to assess the advantage. Therefore, we used an EDA system
developed in-house to observe the comparative improvement.
Given that our EDA system cannot match the mature per-
formance of commercial tools, the results in this section may
only be interpreted as the potential relative benefits of the new
procedure over conventional methods.

We used a workstation comprised of Intel i7-8700 processor
and 8-GB of RAM. Our EDA tools were implemented in
C++ using the MSVC++ 14.15 with maximum performance
optimization, and all PCA activities were executed in Python.
PODEM ATPG [5] and an event-driven fault simulator [29]
were developed such that any topological data or testability
measure, e.g., distance [5], COP [6], SCOAP [7], or PCA can
be applied across ISCAS’85 [30] and ITC’99 [31] benchmarks
without restricting to any single heuristic.

The ATPG system starts with all checkpoint single stuck-at
faults. It has an initial random test pattern generation (RTPG)
phase using a pattern generator and fault simulator. Only the
vectors that detect new faults are retained. The faults left over
by RTPG are given to the PODEM ATPG, which can use any
one of the four heuristics distance, COP, SCOAP, or PCA.
This phase generates tests for one fault at a time. Either a
test vector is generated or the fault is found to be redundant.
Generation of a test is followed by fault simulation to update

TABLE III
C6288: COMPARING ATPG SYSTEM IMPLEMENTATIONS.

Characteristic Performance with respect to various heuristics
Dist. COP SCOAP PCA composite

Prev. [10] Present
CPU time (s) 125.9 101.9 191.7 47.0 1.9

Backtracks 43,675 65,996 24,268 5,303 128

the fault list. ATPG ends when the fault list becomes empty.

A. A Comparison with Previous ATPG System

In our previous work [10] we applied unsupervised learning
or PCA only in the backtrace step. The D-drive selection used
the conventional distance heuristic [5]. The present work com-
pletes that investigation by applying PCA to both backtrace
and D-drive. In addition, we have a complete ATPG system
with random and algorithmic phases and a fault simulator. For
evaluating the effects of the added D-drive, we compared the
supervised learning versions of the previous algorithm [10]
and the present one. Table III gives the results for c6288. Our
version of the netlist had 7,744 checkpoint faults; no further
fault collapsing was done. RTPG produced 50 vectors leading
to 99.14% fault coverage. In both cases, random pattern phase
and fault simulation were common. The only difference was
the absence of PCA guided D-drive in the previous system.

We also observe, as pointed out by other researchers [8],
[9], that no single heuristic is ideal for all cases. For ex-
ample, COP gives lowest CPU time (101.9 s) but SCOAP
produces fewest backtracks. In the case of PCA, the previous
implementation [10] using composite heuristic on backtraces
and distance for D-drive did better than individual heuristics,
taking 47 s with 5,303 backtracks. The best result is from the
present PCA composite heuristics applied to both backtrace
and D-drive, requiring only 1.9 s and 128 backtracks.

B. Sample of Faults

In another experiment we used sample of faults (easy-to-
detect, hard-to-detect, and redundant) for circuits to prove
the power and efficiency of PCA-guidance via a fault-by-
fault approach. Tables IV and V show a reduced number of
backtracks (almost zero in several cases) for 12 faults (7 hard-
to-detect, 3 easy-to-detect, and 2 redundant faults). Although,
the number of backtracks for redundant faults were reduced,
they did not drop to zero, confirming that it must take at least
one backtrack to complete the search for a test for a redundant
fault. These results are shown for circuits c6288 and b07 in
Tables IV and V, respectively.

C. Faults Filtered through Random Pattern Testing

Experiments used faults filtered out using random testing to
prove the efficacy of guidance provided by PCA to PODEM
ATPG. In Figures 4 and 5 circuits are arranged left to right in
order of increasing number of nodes. Fig. 4 gives total CPU
time and Fig. 5 shows combined backtracks for all stuck-at
faults left over from RTPG. Corresponding to the four versions
of PODEM, there are four bars for total backtracks in the
bar chart and four points for CPU times, for each circuit.
Trend curves in Fig. 4 graph are the power-law fit for the four

Authorized licensed use limited to: Auburn University. Downloaded on July 20,2022 at 23:51:49 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
BACKTRACKS IN PODEM ATPG WITH HEURISTIC GUIDANCE FROM

DISTANCE, COP, SCOAP, AND PCA FOR 12 SAMPLE FAULTS
(EASY-TO-DETECT, HARD-TO-DETECT, AND REDUNDANT) OF C6288.

Testability class Backtracks for various guidance data
of fault Distance COP SCOAP PCA

Hard-to-detect #1 128 1 129 0
Hard-to-detect #2 64 10 64 0
Hard-to-detect #3 3 10 1 0
Hard-to-detect #4 2 10 3 0
Hard-to-detect #5 3 10 128 0
Hard-to-detect #6 3 10 1 0
Hard-to-detect #7 2 4 3 1
Easy-to-detect #1 3 1 4 0
Easy-to-detect #2 2 9 1 0
Easy-to-detect #3 3 1 6 0

Redundant #1 7 7 4 3
Redundant #2 11 10 7 4

TABLE V
BACKTRACKS IN PODEM ATPG WITH HEURISTIC GUIDANCE FROM

DISTANCE, COP, SCOAP, AND PCA FOR 12 SAMPLE FAULTS
(EASY-TO-DETECT, HARD-TO-DETECT, AND REDUNDANT) OF B07.

Testability class Backtracks for various guidance data
of fault Distance COP SCOAP PCA

Hard-to-detect #1 122 720 105 56
Hard-to-detect #2 86 92 94 80
Hard-to-detect #3 36 170 68 0
Hard-to-detect #4 2 978 2 0
Hard-to-detect #5 22 19 154 5
Hard-to-detect #6 2 2 2 0
Hard-to-detect #7 13 2 2 0
Easy-to-detect #1 1 26 7 0
Easy-to-detect #2 1 22 9 0
Easy-to-detect #3 2 250 2 0

Redundant #1 94 92 94 80
Redundant #2 98 92 96 86

PODEM versions. Notably, the black bars and black curve
indicate consistent improvement by the PCA guidance.

Results show that multiple heuristics combined as a linear
combination effectively reduce backtracks and CPU time of
ATPG over any single heuristic. Circuits b03, c432, b10, b13,
c880, b07, b05, b12, c5315, c7552, c1355, c2670, c3540,
b04, b11, b08, c499 and c6288 had significant reduction
in backtracks and CPU times (Figures 4 and 5). PCA is
frequently the best guidance for ATPG, but even when it is not,
it is never the worst. There are no reconvergent fanouts in c17,
b02, b01, and b06, and hence there is no backtrack possibility.
An example of zero backtracks by PCA-based PODEM ATPG
is b09 (Fig. 5).

V. DISCUSSION AND FUTURE WORK

The ATPG CPU time of PCA-guidance was reduced only
slightly for circuits with fewer nodes compared to that of
conventional heuristic guidance (see Fig. 4). However, the
ATPG CPU time of PCA-guidance was reduced uniformly
across all the benchmarks. Therefore, it can be concluded that
the PCA-guidance may be the best novel composite heuristic
compared to other conventional heuristic guidance for ATPG.

Many years of research and development has significantly
advanced the state-of-the-art of PODEM ATPG programs.
However, MI-enabled PODEM was never explored and this
is the first time in the VLSI testing history it is shown to
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Fig. 5. Backtracks required to find testable and redundant checkpoint faults
filtered out of random pattern testing.

further improve the detection of both easy as well as hard-to-
detect faults in typical large circuits with long paths and many
reconvergent fan-outs.

SAT-based techniques are another possible area where MI
application may be explored. Although no commercial tools
exist, the technique is reported in research [32] and as an in-
house tool [33].

Within unsupervised learning, the PCA-based ATPG as
described here, opens up new avenues for future work. First,
reconvergent fanout-free circuits do not have any backtracks,
but backtraces can be reduced to generate more efficient tests
requiring fewer PI assignments. Second, a total backtrack elim-
ination has a cost in CPU time, finding a “sweet-spot” may be
feasible to obtain optimized non-zero backtracks for minimal
CPU time. Third, a quick detection of redundant faults in
a circuit may expedite ATPG by MI-guided ATPG. Fourth,
comparing k-means clustering against PCA as the second
unsupervised learning technique could reveal some interesting
results. Fifth, state-of-the-art ATPG tools are unable to detect
some faults either due to the circuit size or some characteristics
of faults. Sixth, this study used academic benchmark circuits
instead of large industry-standard circuits; the authors believe
the observed performance trends are likely to be valid for
larger circuits and prove to be valuable in the future.

Supervised learning using PCA may have specific benefits
worth investigating. Tables IV and V show reduced back-
tracks by PCA-based unsupervised learning in redundancy
identification, which is regarded as a difficult ATPG problem.
We should expect greater advantage with supervised learning
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where training data could be derived from ATPG runs on
redundant faults of the training circuit.

VI. CONCLUSION

Researchers are limited in their imagination to find solutions
for NP-complete problems. All ATPG algorithms use various
heuristics to achieve a lower test generation runtime, but
achieving the lowest ATPG run-time is still an open problem.
This study uses MI to combine various ATPG inputs as
heuristics, narrow down the search space, and achieve speed-
up in ATPG runtime [10], [22]–[24]. However, with the
dramatic rise in research on quantum computing, it is only
natural to use those ideas to break the VLSI testing area out
of its plateau. The discovery of quantum-based test generation
algorithms may break the computational barrier and achieve
the theoretical run-time complexity of

√
N [34]. Until it is

proven that a given solution is the most optimal, there is always
a pursuit to research. Attempts have been reported but the field
is still open [35], [36].

Unsupervised learning of MI when integrated with PODEM
ATPG decreased backtrack and CPU time. Practical ATPG sys-
tems combine a simple program (e.g., random vector ATPG)
for easy faults and a complex program (e.g., MI-based or
quantum-computing ATPG) for hard-to-detect faults. PCA was
used to combine multiple features, and a linear transformation
formulated the ATPG backtracing using a new major PC (the
first PC) that replaces the tradition single-heuristic guidance
found in practical ATPG (tested on hard-to-detect faults).
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