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An Information Theoretic Approach to Digital Fault Testing

VISHWANI D. AGRAWAL

Abstract-The concepts of information theory are applied to the problem
of testing digital circuits. By analyzing the information throughput of the circuit
an expression for the probability of detecting a hardware fault is derived. Ex-
amples are given to illustrate an application of the present study in designing
efficient pattern generators for testing.

Index Terms-Logic testing, statistical communication theory, statistical
testing, test generation.

I. INTRODUCTION

The concepts of information theory have proved their usefulness
in combatting noise-related errors of communication. Recently, at-
tempts have been made to apply information theory to digital testing
[ 1 ], [2]. In [ 1 ] information output is used as a testability measure and
in [2] system testability is analyzed by defining an information
measure on the circuit graph. The contribution of the present work,
on the other hand, lies in the area of test generation. The effect of
hardware faults on the flow of information through a digital circuit
is studied. When a noise-free environment is assumed, the only errors
in the output are caused by the hardware faults. Thus, the probability
of error also represents the probability of detecting the fault. An ex-
pression for fault detection probability is derived which shows that
this probability is maximized when the information output of the
circuit is maximized. Our analysis, therefore, gives a justification for
using the information output as a testability measure [ 1]. This result
is also consistent with the principle ofmaximum entropy [3], [4],
which states that one can attach maximum confidence to testing a
system if the entropy at the output of the system is maximized during
the test. Another argument that supports this result is Shannon's
coding theorem [5]. According to this theorem, error suppression is
impossible when the transmission rate exceeds the maximum possible
rate of a communication channel. In practice, an error suppressing
or coding scheme is difficult to devise for a transmission rate that is
equal to the maximum rate.
The examples in Sections V and VI illustrate the construction of

software pattern generators from functional descriptions of circuits
that will optimize the fault detection probability. Such pattern gen-
erators are useful for testing permanent as well as intermittent faults.
For simplicity, most of the results are derived for combinational
circuits with a generalization to sequential circuits attempted in
Section VIII.

II. INFORMATION FLOW THROUGH A DIGITAL CIRCUIT

Some authors [6]-[8] have treated computing machines from a
point of view of information theory. But their analyses are directed
toward estimating computational work done by the machine and as
such do not give insight into the consequences of faults. Our treat-
ment, therefore, is quite different.

Let us consider a digital circuit as a two-port device with an input
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and an output port. Each port contains a group of lines carrying in-
formation in the form of binary patterns. Using Shannon's formula
[5], the information content on a group of k lines can be written
as

2k
H = - 3 P, log2pi bits/pattern

i=1
(1)

where pi is the probability of occurrence of the ith pattern among the
total of 2k possible patterns. The information H is maximum when
all possible patterns have an equal probability of occurrence, that is,
pi = 2-k and H = kbits per pattern.

As an example, consider a two-input AND gate. The maximum
input information is 2 bits/pattern when the patterns 00, 01, 10, and
11 each have a probability 0.25. In this case, the output will be a 1 with
a probability 0.25 and a 0 with a probability 0.75. Thus, the output
information is

HO = -0.25 log2 0.25 - 0.75 log2 0.75 = 0.811 bit/pattern.

Notice that the circuit has an information loss of 2.0 - 0.811 = 1.189
bits/pattern. This loss, however, can be reduced. Consider an infor-
mation source producing 2-bit patterns such that each bit is 1, inde-
pendently of the other, with a probability q. Now the output of the
AND gate will be a 1 with probability q2 and a 0, with probability 1
- q2. The output information will be maximized to 1 bit/pattern when
q2 = 0.5 or q = 0.707. In this case, the total input information is 1.745
bits/pattern and the loss is reduced to 0.745 bit/pattern. Thus, the
information throughput of a digital circuit is a function of the
characteristics of the circuit and the characteristics of the source
producing the input information.

Logic circuits are decisionmaking devices. Using the input infor-
mation, they make certain decisions and produce the result as the
output information. Thus, the information at the output completely
depends upon the input information. In general, some information
is lost in these decisions. When such a loss occurs, the input infor-
mation cannot be recovered from the output.1 Only in the special case
of an information lossless network, an inverse network is possible
[10]. An example of information lossless network is an encoder for
which the inverse network is the decoder.
Memory devices store information which can be used in the future.

Consider a random access memory (RAM) of 2x words of kbits each.
The memory may have x + k + 1 input lines (x address lines + k data
lines + 1 read-write line) and k output data lines. When the memory
is used to store random data, each word contains kbits of information.
Also, when the words are randomly accessed, the information supplied
to the address lines during a read or write operation would be x bits.
If we assume that the memory does a read or write with equal prob-
ability on every input pattern, then the average input information is
x + k/2 + 1 bits/pattern and the average output information is k/2

For instance, a circuit can be designed to accept digitally represented
values of temperature, pressure, and humidity and then make a binary deci-
sion, based upon certain risk/cost criteria, whether or not it will rain. Now
just by knowing this decision it is impossible to recover the values of the input
variables. In thermodynamics, a process in which the entropy increases is called
irreversible; an entropy increase is analogous to information decrease since
Shannon's information is just the negative of the thermodynamic entropy
[9].
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bits/pattern. This is because the read-write line carries one bit per
pattern, while during half the patterns that write there is no output
and during the other half that read there is no information given to
the data input lines. Thus, the average information loss is x + 1
bits/pattern.

III. INFORMATION AND HARDWARE FAULTS

In Shannon's theory of communication [5], errors are caused by
noise. Noise can cause errors in digital circuits, but such errors are
usually intermittent. Coding schemes are sometimes used to detect
and correct these errors. Parity check and Hamming codes are ex-
amples of such codes. In most of our present discussion, however, we
are concerned with a different class of errors. These errors are per-
manent (except for the intermittent errors considered in Section VII)
and are caused by hardware faults.
The signals handled by digital circuits are binary and, therefore,

their faults are, for practical purposes, modeled as stuck-at-0 and
stuck-at-I fault conditions. Consider a line (hardware connection)
in a digital circuit which transmits information in the form of l's and
0's. If the probabilities of a bit being 1 or 0 are q and 1- q, respec-
tively, then the information carried by this line is

H(q) =-qlog2 q-(1 -q) 1og2 ( -q). (2)

A stuck-at-I fault on this line makes q = 1 and a stuck-at-0 fault
results in q = 0. In either case, the information transmitted by the line
becomes zero because H(1) = H(0) = 0. Thus, the presence of the
fault will be indicated at the output of the line as a loss of information.
A faulty line may be embedded in the circuit such that its output is
not directly observable. In such cases the observable information at
the output of the circuit may contain a small amount of information
coming from the faulty line and the detection of the fault would be-
come difficult.

Another comffplication arises due to the fan-outs. Suppose a line
carrying H bits of information branches out into two lines. Now if
one of the fan-outs has a fault and the information through it drops
to zero, the same information is still available on the other fan-out
line. In case of reconvergent fan-outs, the loss ofH bits due to fault
on one fan-out line may not manifest itself readily at the circuit
output.

There is one more aspect of fault detection that must be discussed.
If we have a sequence 0101101 passing through a line, the fault
stuck-at- I will convert it to 1 1 1 1 1 1 1 and the fault stuck-at-0 will
convert it to 0000000. We say that our sequence is sensitive to both
the faults. On the other hand, a sequence 1111111 is sensitive only
to the stuck-at-0 fault. Thus, for any given fault there is only one se-
quence (all l's for stuck-at- I or all 0's for stuck-at-0) that is not al-
tered by the fault. As we increase the length of the sequence we find
that all 1 and all 0 sequences imply q = 1 and 0, respectively. In either
case the information on the line as given by (2) is zero: In general, one
is interested in detecting both stuck-at-l and stuck-at-0 faults; we
would, therefore, like to avoid the all 1's and all 0's sequences. This
means thatfor sensitization ofhardwarefaults; in a circuit element,
it is necessary that this element be transmitting a nonzero amount
of information.

IV. PROBABILITY OF DETECTING A FAULT

Let us consider a circuit containing n input and m output lines. The
circuit is connected to an information source (or pattern generator)
supplying Hi bits/pattern on the n input lines. Also assume that the
output information on the m output lines is Ho bits/pattern. From
(1), Hi < n and Ho < m. Now we consider the influence of a stuck-
type of fault on a line inside the circuit. In order to study the amount
of information flowing through the fault-site, let us consider a par-
tition of the circuit as shown by the dotted line PP in Fig. 1. This
partition cuts through k lines, including the one on which the fault
is being considered, each carrying information from left to right.
Information flow from left to right implies that the information
carried through the partition once should not pass through it again.

k LINES THROUGH
/PARTITION PP

Ho
BITS/PATTERN

n
INPUT
LUNE S H BITS.

m
OUTPUT
LINES

Fig. 1. Information flow through a circuit.

Let the total information flowing through the partition PP be H
bits/pattern, where Hi > H 2 Ho. These bounds simply indicate that
the H bits of information are found at some intermediate step during
the processing of information by a circuit that does not contain any
information sources. Consider now a sequence of T input patterns.
For large T, according to McMillan's theorem2 [1 1], there are ap-
proximately 2HT high probability sequences that can occur at the
partition PP, each with a probability 2-HT. Similarly, at the primary
output of the circuit, there are 2HoT high probability sequences, each
having a probability 2-HoT. On an average, therefore, the same
output sequence can be produced by 2(H-Ho)T different sequences
at the partition PP. This is shown in Fig. 2, where each black dot
represents an output sequence and the circles represent pattern se-
quences at the partition PP. Next assume that theH bits through the
partition are equally divided among the k lines, then each line in the
partition would carry H/kbits/.pattern. This means that the faulty
line, in the absence of a fault, can have any one of the 2HT/k equip-
robable bit-strings of length T. The fault will transform any one of
these bit-strings to either all 0's (stuck-at-0) or all l's (stuck-at- 1).
Now consider a sequence of T patterns applied to the fault-free cir-
cuit. By examining the output sequence we know that any one of the
2 (H-HO)T possible sequences may have occurred at the partition PP.
The pattern sequence at PP in the faulty circuit will differ only in the
bit-string at the faulty line. Fig. 3 gives an example of a pattern se-
quence as modified by the fault stuck-at-0; as shown, the same
modified sequence can be obtained by any one of the several se-
quences. Only if the modified sequence produces an output sequence
that is different from that produced in the fault-free circuit, will the
fault be detected.

Fig. 4 shows a set of 2HT sequences. If we consider a subset of se-
quences which differ in the bit-string on just one among k lines, then
this subset will contain 2HT/k sequences. Similarly, in any randomly
chosen subset of n sequences, there will be nI/k sequences of the above
type. Suppose the sequence marked X is the sequence as modified by
the fault at PP. The fault-free circuit may have any of the 2HT/k se-
quences shown as X, A, B, C, where A, B, C differ fromX only in the
faulty line bit-string. As shown in Fig. 4, ifA orX was the sequence
produced at PP by the input patterns, then the fault will not be de-
tected. But, ifB or C were produced at PP, the fault will be detected.
Now there are 2(H-Ho)T sequences that produce the same output as
that produced by X. Of these, only 2(H-H0)T/k sequences belong to
the subset of 2HT/k sequences described above. Therefore, the
probability of detecting the fault is

P(T)=lI-2HHoTkI 2oTk
2HT/k (3)

2 McMillan's theorem applies to sequences which are ergodic and sta-
tionary. A sequence is stationary if the statistical properties remain the same
as one moves along the sequence. A stationary sequence is ergodic if an ap-
preciable interpattern correlation exists at most over a finite number of pat-
terns. For circuits that are combinational or have a relatively small number
of storage elements, these conditions may be easily satisfied if the input pat-
terns are uncorrelated. The sequence, however, may not be strictly ergodic
stationary when it is designed to execute a function involving a series of linked
operations. In the latter case the analysis of ergbdic stationary model may still
serve as an approximation. For a concise discussion of McMillan's theorem,
see [12].
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Fig. 2. Schematic representation of input-output relationship.
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Fig. 3. Transformation of sequences of 8 patterns by a fault at a
partition with 4 lines.

The above formula indicates that for a given length (T) of sequence
the probability of detecting a fault would increase with output in-
formation H,. This is equivalent to Jaynes' maximum entropy
principle [3], [4] as used in reliability analysis. Also, for given T and
Ho, the probability of detection will be smallest for those faults which
lie on a partition having the largest number of lines (k). Such faults
are usually encountered immediately after large fan-outs since fan-
outs tend to increase the number of lines without increasing the total
amount of information. Another assumption that was used in deriving
(3) was that the information H bits/pattern was equally divided
among k lines. This may not be true and, therefore, the probability
of detection of faults will be lower on some lines and higher on others
in the same partition. Equation (3) represents a probability computed
on the basis of average information through each line. The condition
can be somewhat met if one makes sure during the testing that the
information flow over the whole circuit is as uniform as possible [13],
[14].

V. EXAMPLE

The use of the above formula will now be illustrated by a simple
example of a 10-input AND gate, where the input patterns are gen-
erated randomly, setting each of the 10 input lines independently to
I with probability q and to 0 with probability 1 - q. Total input in-
formation is

Hi 10[-q 1og2 q - (1 - q) log2 (1 - q)] bits/pattern. (4)

The output line will have a 1 only when all the inputs are 1. The
probability of -this event is q'O. Therefore, the output information
is

Ho = -q10 1og2 qI0 - (1- q10) log2 (1 - qO0) bits/pattern. (5)

Fig. 5 shows a plot of Hi and Ho as a function of q. Ho attains a

O- SEQUENCES
THAT DIFFER
ONLY IN THE
BIT STRING ON
THE FAULT SITE

2HT SEQUENCES eoT SEQUENCES
Fig. 4. Schematic representation of transformations of sequences by a

fault into the same faulty sequence.
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Fig. 5. Input and output information of a 10-input AND gate as a

function of the probability (q) of l's in the input patterns.

maximum when q'O = 0.5 or q = 0.933. One would thus expect the
circuit to be tested most efficiently when the input patterns are gen-

erated with q = 0.933.
Input patterns were constructed by using a computer generated

random number for each bit position. The random numbers were
generated such that they were uniformly distributed in the interval
[0.0, 1.0]. A bit was set to a 1 when the corresponding random number
was less than or equal to q, otherwise, the bit was set to a 0. Enough
random patterns were generated so that every stuck-at-0 and stuck-
at- 1 fault on all the lines was detected by at least one pattern. The
procedure was repeated for various values of q and the final number
of patterns in each case is shown as a point in Fig. 6. From (3) we can
determine the number of patterns that will detect an input fault with
high probability, say P(T) = 0.99. Thus

I -2-HT/k = 0.99

or

T = 6.67k/Ho.

2(H- HO)T
PATTERN
SEQUENCES,
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Fig. 6. Number of patterns required for detecting all stuck-type faults in
a 10-input AND gate as a function of the probability q used in generating
patterns. Points indicate results of test generation experiments and the curve
is the computed number of patterns required for detecting an input fault
with 99 percent probability.

The continuous curve in Fig. 6 gives the theoretical length (T) of
sequence that will detect any input fault with probability 0.99. The
plotted values of sequence length were obtained from the above
equation by substituting Ho as a function of q from (5). The fact that
most of the points lie below the curve should be viewed as a qualitative
verification of the theoretical result.

VI. DESIGN OF A FUNCTIONAL PATTERN GENERATOR
The simple example of an AND gate discussed above illustrates how

the probability of fault detection can be improved by suitably de-
signing the pattern generator. We now consider a more complex ex-
ample. The circuit used in this example is a 4-bit multiplier [15]
shown in Fig. 7. This circuit has eight input lines (four for the mul-
tiplier and four for the multiplicand, each of which can be a binary
integer between 0000 and I I 1) and eight output lines. The possible
outputs are binary representations of decimal integers between 0 and
225. Certain prime numbers such as 17, * ., 43, * , etc., and certain
other numbers like 46 which cannot be factorized with both factors
less than 15 cannot appear at the output. In fact, there are only 90
different integers which can occur at the output of this circuit.
Therefore, the maximum possible information output is Ho = log2
(90) = 6.49 bits/pattern. Fig. 8 shows the flowchart of a pattern
generator which maximizes the output information. An output integer
Z is generated by using a random number function U(0, 225) which
produces any integer from 0 to 225 with equal probability.
The integer Z is then factorized to form k pairs of integer factors

such that each factor is between 0 and 15. If no factors are possible
(i.e., k _ 0), meaning that either Z is a prime number greater than
15 or at least one factor must be greater than 15, then a new value for
Z is obtained. Otherwise, any one factor-pair, Z = X(J).Y(J), is
selected randomly among the k available pairs. Binary representations
of X(J) and Y(J) then form the input pattern.

Fig. 7. Four-bit multiplier circuit, as it appeared in [15].

U(A,B)-RANDOM INTEGER
UNIFOMLY DtSTROUTED
IN THE INTER%AL (A.D)

Fig. 8. Pattern generator for the four-bit multiplier. Input patterns
produce each possible output with equal probability.

The patterns from the above pattern generator were used in a fault
simulation of the multiplier circuit. All stuck-at faults were simulated
and the cumulative percentage of detected faults is shown in Fig. 9
as a function of the number of patterns (the points in the plot corre-
spond to the patterns that detected some new faults undetected thus
far). In several independent runs the number of patterns for the de-
tection of all faults always ranged near 40. For comparison, patterns
with equiprobable 0 or 1 on each input line were evaluated in a similar
manner and their result is also shown in Fig. 9.3 In this case, complete
fault detection required 100 or more patterns.

3 Equiprobable 0 or 1 in patterns assure that each of the 256 possible input
patterns will be selected with equal probability. In this case, the outputs will
occur with unequal probability. For example, a 00000000 (or decimal 0) at
the output will be about 1 5 times more frequent than 00011010 (or decimal
26). Thus, the output information will be less than 6.49 bits/pattern.
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Fig. 9. Results of fault simulation of the four-bit multiplier circuit with
patterns generated using the procedure of Fig. 8 and those with equally
probable O's and l's.

It must be pointed out that a pattern generator of the type shown
in Fig. 8, which maximizes the information output, uses only the
function of the circuit and hence is not dependent upon its imple-
mentation. In practice, some implementations may be more difficult
to test. For example, a circuit implementation with many reconver-
gent fan-outs and large fan-ins may be more difficult to test as com-
pared to another implementation with fewer reconvergent fan-outs
and smaller fan-ins. For any given implementation, however, our
pattern generator is likely to be more effective against any other
statistical pattern generator.

VII. INTERMITTENT FAULTS

Intermittent faults, whenever active, are like the permanent faults.
Because of their intermittent nature they are more difficult to detect.
Often a test has to be applied repeatedly to test such faults [ 16]. In
our model we will assume that an intermittent fault is present only
p percent of the time and is absent otherwise. The influence of such
faults is similar to the errors caused by noise. According to Shannon's
coding theorem [5], the errors can be suppressed (or corrected) for
a communication channel only if the rate of transmission does not
exceed the channel capacity. The error suppression is achieved by
making use of the redundancy afforded by the lower rate of trans-
mission.

In a digital circuit the maximum information output is analogous
to the channel capacity. When the input information is more than the
output information (i.e., there is loss in the circuit), there is already
redundancy in the circuit. Further lowering of output information
rate will increase the redundancy resulting in greater error suppres-
sion. Thus, when a circuit transmits at the maximum possible rate,
the error suppression is minimum. The above arguments point to the
fact that our pattern generator which maximizes information output
should also be effective in detecting the intermittent faults having a
noise-like nature.

In order to study the performance of pattern generators in detecting
intermittent faults, a Monte Carlo experiment was carried out using
a fault simulator. In the multiplier circuit of Fig. 7 a fault was picked
randomly from the list of all stuck-at-I and stuck-at-0 faults. This
fault was simulated using the patterns from the generator of Fig. 8.

z
0

a

a-

1.0- ---- ---

08

06
INTERMITTENT FAULT

04 p-50%

02

08

0.6 M PERMANENT FAULT

04 F P=100%
o0. .

0 20 40 60 80 100 120
NUMBER OF PATTERNS APPLIED

Fig. 10. Monte Carlo probability of detecting the intermittent faults that
are present for half the time (p = 50 percent) and the permanent faults (p
= 100 percent). Solid lines correspond to the pattern generator of Fig. 8,
and the dotted lines to the patterns with equiprobable O's and l's.

The results of the fault simulation were examined only for p percent
of the applied patterns. For other patterns, even if the fault was de-
tectable it remained unreported, thus simulating the absence of the
fault for (I - p) percent of patterns. The experiment was repeated
for 50 sample faults and the result is shown in Fig. 10 by solid curves
for p = 100 percent and 50 percent. The dotted curve was obtained
in a similar experiment with input patterns having equiprobable zeros
and ones. The advantage of increasing the information output is ev-
ident in both cases of p = 100 percent (permanent faults) and p =
50 percent (intermittent faults).

VIII. SEQUENTIAL CIRCUITS

A sequential circuit, in addition to the combinational elements, also
contains memory elements. A portion of the information supplied at
the primary inputs flows to the primary outputs, while some of this
information gets stored in the memory elements. The stored infor-
mation becomes available to the combinatorial part of the circuit
when the next pattern is applied. Thus, the information flowing
through the memory elements may arrive at the primary outputs after
several patterns have been applied. In other words, a sequence of
patterns may be required to produce an output sequence from a se-
quential circuit. For example, to produce an output from a micro-
processor, one may execute an instruction requiring an ordered se-
quence of patterns at the input. Completely random patterns, on the
other hand, are unlikely to execute an instruction and produce a
meaningful output. Thus, the information output of a sequential
circuit, when input patterns are completely random, could be very
small and such patterns may not be effective in testing.

Sequential circuits normally contain feedback paths. In partitioning
the circuit in the procedure of Section IV, it is necessary that the
feedback lines should not pass through the partition [17]. This is
because the feedback lines do not carry any new information that has
not already passed through the partition. In fact, the feedback lines
carry a part of this information to the memory elements for later use.
This procedure does not exclude the faults on the feedback lines since
these faults are identical to the faults at the output of the logic ele-
ments that produce the feedback signals.
The information flow on a per pattern basis for sequential circuits

can be calculated as follows. Consider a circuit that is designed to
perform n operations. Let us assume that thejth operation requires
an input sequence of vj patterns and can produce mj distinct output
sequences. The information output of this operation will be maximum
when each of the mj output sequences are made equiprobable. In this
case the average information output of the jth operation will be

hj 1092 bits/pattern. (6)
Vi
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Now if the probability of executing the jth operation is pj, then the
average information output of the circuit is given by

n
Ho = E pjhj bits/pattern. (7)

j=1
In order to generate patterns, first, pj's should be assigned to the
various operations such that the output information as given by (7)
and (6) is maximized. The pattern generator would then proceed by
selecting operations with the assigned probabilities and generating
an input pattern sequence for the selected operation. An input pattern
sequence is generated from the functional description of the circuit
and data patterns are selected to make all possible outputs equipro-
bable.

IX. CONCLUSION
The problem of digital testing has been discussed from a new

viewpoint. Although the analysis is based upon a model of a digital
circuit where all signals are assumed to have certain statistical
properties and the information is assumed to distribute uniformly
among the lines, the results have qualitative importance. The main
result, according to which a maximized information output implies
highest probability of fault detection, is used in constructing pattern
generators for testing. These pattern generators make use of only the
functional description of the circuit and hence are independent of the
actual hardware implementation.

Apart from the digital testing, two other applications of the analysis
presented here may be suggested. Since the concepts of information
theory are applicable to the digital as well as to the analog signals,
the analysis could possibly be extended to the testing of analog cir-
cuits. A second application might be in software testing. Quite re-
cently, the use of random test inputs in software testing has been re-
ported [ 1 8]. In that work it was shown that the effectiveness of ran-
dom data was strongly dependent on the interval from which the data
were drawn. The authors concluded that good results could be ob-
tained if problem-specific information was used in generating the
random data. The procedure of maximizing the program output in-
formation while selecting test data should prove useful in software
testing.
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Fault Diagnosis in a Boolean n Cube Array of Microprocessors

J. R. ARMSTRONG AND F. G. GRAY

Abstract-Fault-tolerant characteristics of a Boolean n cube array of mi-
croprocessors are analyzed. Connectivity properties of the network graph are
used to show that n processor or link failures are required to isolate a processor.
For processor failures the network is shown to be n (one step) diagnosable. A
testing algorithm is presented which can diagnose up to n processor fail-
ures.

Index Terms-Array, diagnosability, faults, fault tolerance, microprocessor,
network.

I. INTRODUCTION
In designing a fault-tolerant array of microprocessors, it is ad-

vantageous to use an interconnection network with more than one
path between processor nodes. The Boolean n cube interconnect
possesses this property and thus was studied for application in a fault
tolerant computing system.

II. CONNECTIVITY AND DIAGNOSABILITY
Communication in the Boolean n cube network is based on message

and broadcast algorithms such as those defined in [I ]. The effect of
failures is to disrupt these mechanisms and isolate processors from
each other. Our analysis of the fault-tolerant characteristics of the
Boolean n cube network is based on a graph theoretic model. In this
model the processors are the graph nodes and the full duplex links
interconnecting the processors are the graph edges. The major concern
of this correspondence is with processor failure. A processor failure
is assumed to remove a node from the graph and all edges connected
to that node. The connectivity results given here also discuss link
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