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Abstract—This article presents methods of increasing logic 
built-in self-test (LBIST) delay fault coverage using artificial 
neural networks (ANNs) to selecting test point (TP) locations a 
method to train ANNs using randomly generated circuits. This 
method increases delay test quality both during and after 
manufacturing. This article also trains ANNs without relying on 
valuable third-party intellectual property (IP) circuits. Results 
show higher-quality TPs are selected in significantly reduced CPU 
time and third-party IP is not be required for ANN training. 

I. INTRODUCTION 
Many design-for-test (DFT) methods increase fault 

coverage and circuit reliability under pseudo-random stimuli, 
with one noteworthy method being test-points (TPs). Integrated 
circuits (IC) manufacturing is prone to defects [1] which cannot 
be tolerated in digital circuits, especially when such circuits are 
used in life-critical applications (e.g., self-driving cars and 
embedded medical devices). TPs are circuit modifications 
which are only enabled during test (and therefore do not change 
the function of the circuit outside of test) and allow more 
defects to be detected. Although TPs have many applications 
depending on context (e.g., analog TPs or TPs for easier 
ATPG), this article addresses TPs which improve pseudo-
random tests: these TPs make pseudo-random stimuli (typically 
generated on-chip) more likely to detect random pattern-
resistant (RPR) faults. 

Choosing where to insert TPs, i.e. “TP insertion” (TPI), has 
a long history, but there are two modern challenges to address. 
First, design nuances unique to modern technologies are 
infrequently addressed in older TPI literature [2] and thus may 
insert less-than-ideal TPs: this article will show how previous 
TPI methods can mask the detection of delay faults. Second, 
TPI time must be improved. Optimal TPI (and many other DFT 
problems) is known to be NP-hard [3]: current TPI uses 
heuristics to overcome computational barriers, but established 
algorithms’ CPU time scales worse than linearly with respect to 
circuit sizes, which is demonstrated by this article’s data. This 
study performs TPI to increase delay fault coverage with 
significantly less CPU time compared to existing heuristics. 

Artificial neural networks (ANNs) are computing methods 
which recently found success on previously unsolved problems, 
and their potential to be applied to DFT problems must be 
explored. ANNs were first introduced in the 1950’s [4], but they 
were long neglected due to a lack of computational resources 
and training data. This was recently remedied, and ANNs have 
be demonstrated as effective methods to perform handwriting 
analysis, image classification, and other previously unsolvable 

problems. ANNs have recently been applied to EDA and DFT 
problems [5]–[8], both for increasing result quality and 
decreasing computational complexity. This work continues this 
trend and leverages ANNs to improve TPI quality and speed. 

Obtaining ANN training data is difficult when data owners 
are unwilling to share. Training ANNs requires “training 
circuits”, but circuit designers are reluctant to divulge their 
intellectual property (IP): leaked IP can be reproduced by 
malicious parties without compensation. Without training data 
(or with obsolete legacy circuits), ANN-training EDA 
companies will face difficulties training their ANNs for 
iterative TPI (or similar problems). This article explores 
generating training circuits and evaluates their ability to train 
ANNs compared to industrial benchmarks. 

This article extends work performed in [7] and adds the 
following original contributions. 

 A method using ANNs for iterative TPI increases delay fault 
coverage is presented and is compared against an equivalent 
heuristic algorithm. 

 The computational complexity and scalability of using 
ANNs in lieu of established heuristics is analyzed. 

 A potential source of unlimited training data is presented, 
and the effectiveness of its use is explored. 

The remainder of this article is organized as follows. 
Section II presents previous literature which motivates this 
articles’ contributions. Section III describes the ANN which 
evaluates a TP’s impact on delay fault coverage, how it is 
trained, and how it is used in a TPI algorithm. Section IV 
introduces a method of generating training. Section V presents 
the experiments and results which evaluate this article’s 
contributions. Section VI discusses the implications of results 
given in Section V and motivates future studies. 

II. ESTABLISHED LITERATURE & MOTIVATIONS 

A. Test-points & delay fault coverage 
This article addresses TPs in the context of pseudo-random 

testing, which is a common testing method for modern circuits. 
Pseudo-random tests are typically generated on-chip using 
pseudo-random pattern generators (PRPGs), typically in the 
form of linear feedback shift registers (LFSRs) [9]. PRPGs 
apply stimuli to circuit inputs while circuit outputs are 
measured: outputs are either measured directly or are 
compacted into a signature using on-chip hardware (e.g., using 
a multiple-input signature register, or MISR [10]). PRPGs can 
also set and measure the state of scannable memory elements 
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[11]. This method, often named logic built-in self-test (LBIST), 
is widely used in industry for several reasons. First, LBIST can 
obtain high fault coverage in small time and compliment ATPG 
tests, although certain circuit features can prevent this, which is 
addressed in the following paragraph. Second, LBIST tests are 
easily applied “in-the-field for post-manufacturing “reliability 
tests”. This latter feature is desirable when continuous circuit 
reliability is paramount and is the focus of the emerging DFT 
sub-field of research, “automotive test”. 

LBIST is widely-used in industry, but LBIST quality is 
known to suffer from RPR faults. RPR faults are tested by a 
small subset of all possible stimuli, and therefore the probability 
of detecting such faults under pseudo-random stimuli is 
negligible [9]. A prototypical example of an RPR fault is the 
output of a 32-bit AND gate stuck-at 0. This fault requires 32 
logic-1’s to be applied to the AND gate, which if all inputs are 
equally likely to be 0 or 1, the probability of this occurrence is (50%) , i.e., negligible. 

Many methods increase RPR faults coverage, with one 
method, TPI, being the subject of this article. In the context of 
LBIST, TPs are circuit modifications which fall into one of two 
categories: 1) “control points” which force circuit lines to pre-
determined values and 2) “observe points” which route circuit 
lines to observable circuit outputs. TPs are controlled with a 
“TP enable” signal, which when disabled leaves the function of 
the circuit is unchanged. When TPs are inserted into key circuit 
locations, RPR faults become easy to excite and observe. In 
practice, TPs frequently compliment other methods of detecting 
RPR faults (e.g., deterministic seeding [12] and weighted 
random patterns [13]). 

Although control points can increase stuck-at fault 
coverage, they are known to block other faults found in modern 
technologies [2]. Delay-causing defects become more common 
as semiconductor sizes scale [14], and the stuck-at fault model 
can no longer be the sole fault model for evaluating LBIST 
quality. [2] found typically-implemented control TPs (i.e., 
control-0 points using AND gates and control-1 points using 
OR gates [15]) mask the propagation and excitation of delay 
faults when active. Two alternatives can mitigate delay-
masking detriments, but both have drawbacks. First, observe 
points can be used exclusively, but exciting RPR faults may 
require forcing values in circuits and implementing observe 
points require expensive latches or output pins. Second, circuits 
can be tested with TPs both on and off. This is normal industry 
practice, but disabling TPs mitigates their purpose: ideally, 
active TPs can test RPR and delay faults simultaneously. 
Therefore, this study’s ANN has the following goal: insert TPs, 
both control and observe points, to detect RPR faults a without 
masking delay faults. 

B. Artificial neural networks 
ANNs [4] are computer algorithms which are becoming 

popular due to growing training data availability. ANNs are 
models biological neural networks (i.e., brains) in software or 
hardware. ANNs excel at solving problems in which manually-
developed “heuristic” algorithms falter [4]: they use problems 
with known solutions (i.e., “training data”) and “train” 
themselves until correct/accurate results are achieved for each 
training problem. Historically, ANNs were impractical due the 
absence of training data [4], but today, ANNs are used in many 
industries. 

The process of creating and training ANNs can be found in 
other sources [4], [7] and is briefly summarized here.  

Creation (ANN structure Selection): Many ANN 
structures exist in literature, but the prototypical ANN structure 
is illu strated in Figure 1. ANNs contain “neurons” with some 
neurons being input “feature” and output “label” neurons. 
Neurons are connected by “dendrites” which multiply 
(“weigh”) neuron outputs. Neurons have “activation functions” 
which calculates neuron outputs using neuron inputs. Many 
activation function and neuron arrangements (the number of 
levels, neurons per level, connections, etc.) choices are 
available: these choices are optimized through trial-and-error. 

Training: Training finds weights which matches inputs to 
desired outputs. Depending on the ANN configuration, the 
number of features and labels, and training data size, this can 
be computationally-intensive and is not an optimal process. 
Time permitting, this is repeated using different parameters to 
optimize weights and explore configuration choices. 

ANNs of various forms have recently been applied to DFT 
problems, including scan-chain diagnosis [5] and fault 
diagnosis [6], but using ANNs for TPI has not been thoroughly 
explored. Two studies have explored using ANNs for TPI [7], 
[8]. [8]’s scope is limited: only observe points are considered, 
only 4 benchmarks are analyzed, and no CPU time analysis is 
performed. Both [7] and [8] only consider stuck-at faults. 

III. ANN FOR TP DELAY FAULT QUALITY EVALUATION 

A. Use in an iterative TPI algorithm 
This article’s ANN “qualifies” TPs finds the “best” TP for 

use in a TPI algorithm. Most TPI algorithms iteratively insert 
TPs until a condition is met: either 1) the number of TPs 
inserted meets a pre-designated limit (which represents a TP 
hardware overhead limit), 2) the predicted fault coverage meets 
a pre-designated limit (i.e., no more TPs are needed), 3) CPU 
time has reached a pre-designated limit, or 4) no TP is predicted 
to increase fault coverage. Each iteration, the TP which is 
predicted to increase fault coverage the most is inserted. TPI 
algorithms calculate fault coverage in different ways, including 
fault simulation [15], probabilistic calculations [8], [16], and 
most recently ANNs [7], [8], but methods use the same iterative 
approach. All these methods attempt to balance calculating 
fault coverage accurately while keeping CPU time low. 

In the context of this article, the “quality” of a TP is the 
predicted impact on delay fault coverage when activated. A 
TP’s type and location can increase (or decrease) delay fault 
coverage significantly [2]. To the authors’ knowledge, inserting 
increase delay fault coverage through TPI has little existing 
literature [17], [18]: [17] uses analog TPs to measure specific 
delay values, and [18] proposes a rudimentary heuristic to select 

Figure 1: An example of a) a single neuron with input signals, input weights, 
and an activation function, and b) a neural network composed of multiple
hidden layers. 
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TP locations. This article will use the TP-qualifying method 
from [17] for comparison (see Section V.A). 

B. Input features 
Many input features and feature extraction methods of this 

article’s ANN are adapted from [7] and briefly discussed here. 
First, since ANNs have pre-defined sizes and large ANNs 
require more training time and data to be useful, this article’s 
ANN evaluates a TP’s quality using a sub-circuit centered 
around a TP’s location. Second, the ANN’s input features are 
the probabilistic calculations of the lines in this sub-circuit. 
These calculations are COP controllability and observability 
values [19], which are widely used in TPI [16], [17]: these 
values estimate the probability that a circuit line is logic-1 (and 
inversely, logic-0) and the probability that a fault on a circuit 
line will be observed, respectively. Third, the gate types in sub-
circuits are represented as one-hot binary strings. During TPI 
and training data generation, these features are calculated and 
passed to the ANN in a set order, as illustrated in Figure 2: first 
controllability values, then observability values, then gate 
types, all of which are given in a breath-first order [7]. 

C. Output labels 
The output label of the ANN is the change in transition 

delay fault (TDF) coverage on a sub-circuit centered around the 
TP location (when the TP is active). Many delay fault models 
attempt to accurately model delay-causing defects [20], and the 
TDF model is known to model realistic defects. 

The use of a sub-circuit allows training data to be efficiently 
collected (see Section III.D), but this creates a potential 
detriment: TP quality-calculating heuristics can calculate the 
effect a TP has on an entire circuit (as is the case of this article’s 
comparison, [17]), and therefore may return more accurate 
results. The effect of this detriment will be explored and 
discussed in Sections V and VI, respectively. 

D. Training data generation 
Training this article’s ANN’s requires the “true” TDF 

coverage of a sub-circuit when inserting an active TP: this is 
obtained through fault simulation. Fault simulation is a CPU-
intensive process, which is why most heuristic TPI methods use 
estimation techniques [16], [17]. Such estimations can give 
inaccurate fault coverage results [19], and thus less effective 
TPs may be chosen for insertion. This article’s ANN attempts 
to accurately predict the TDF coverage impact of a TP without 
performing fault simulation during TPI. Instead, fault 

simulation is performed during training: this training CPU time 
is distributed across all TPI instances. 

To obtain the training label (TDF coverage) from a sub-
circuit, techniques are needed to reduce training data generation 
time. Presuming  pseudo-random vector pairs (pairs are 
required for delay simulation) are applied to a sub-circuit with 
 inputs, at least one vector pair will be applied more than once 

if > 2 , which is likely for significant values of  and 
smaller sub-circuit sizes (which for this study, 6). Fault 
simulating a vector pair more than once wastes simulation time. 
This is exacerbated when sub-circuits are extracted from a 
circuit, since input vectors to the sub-circuit are not random: 
paths from circuit inputs to sub-circuit inputs will “weigh” 
circuit value probabilities and will make some vectors more 
likely to occur than others. 

To prevent training vector pairs being applied more than 
once, the following technique uses heuristically-calculated 
circuit controllability calculations to conditionally simulate all 
vector pairs. First, for each vector  among the 2  sub-circuit 
input vectors, the probability of applying the vector is 
calculated using COP circuit controllability information [19]. 
The probability of the required logic-0 and logic-1 values 
occurring (“ ") can calculate this probability: (  ) = = (1 (1 ) ) 

Second, a sub-set of all the 2  sub-circuit vector pairs is 
chosen to be simulated using the previously calculated 
probabilities, i.e., a vector pair is simulated with probability 

. Third, each sub-circuit vector pair is fault simulated + 1 times: once without any TPs and once for each of the  
TP types (in this study, = 3: control-0, control-1, and observe 
points). Fault effects on output pins are probabilistically 
observed using observability calculations from COP [19]. 
Lastly, the controllability, observability, and gate types of the 
sub-circuit are used for training features and the change in fault 
coverage created by the  TPs are used as training labels for  
separate ANNs. 
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Figure 3: The input features of the ANN are the controllability (CC) and 
observability (CO) values, as well as the gate types (Gate, represented as a 
one-hot encoding) of a sub-circuit centered around a TP’s location. The more 
gates forward (F) and backwards (B) included in the sub-circuit, the more
accurate the ANN will be at the expense of training time. 

Figure 2: Random DAGs generated by this algorithm, given in the form of 
vertices and edges, can be converted into logic circuits. 

Algorithm: DAG Generator 
Inputs: positive integers , , , , f  
Variables: set of vertices in rank ( ), flattened set of all vertices , 
current set of vertices , current rank , current set of fan-ins  
for  =  0 …  do 
 if  =  0 
  {    vertices} 
 else if  =   
   {    vertices} 
 else 
   {    vertices. } 
 end if 
 if 1  
  for  do 
   = {     1 …   } 
   Set  as inputs to  
  end for 
 end if 
 ( )    
  { , } 
end for 
return  
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IV. RANDOM TRAINING DATA GENERATION 
This section attempts to overcome a challenge of ANN 

training: the lack of training data. As discussed in Section 0, 
circuit developers are reluctant to share their circuits to ANN 
trainers since their IP will lose value if leaked to unauthorized 
users. Since ANNs may not be trained with industry-
representative circuits if IP is protected (and training with 
obsolete benchmarks may degrade ANN quality), this section 
introduces a method to create training circuits, and its utility 
will be explored in Sections V and VI. 

This circuit-generating algorithm creates directed acyclic 
graphs (DAGs), since DAGs can easily be converted into 
circuits. DAGs have directional edges and no path exists from 
any vertex to itself. A given DAG can be converted into a 
random binary circuit by 1) replacing all vertices with no inputs 
with circuit inputs, 2) replacing all other vertices with a 
randomly selected gate (or if it has 1 input, a buffer or inverter), 
and 3) replacing dead-end vertices with circuit outputs.  

The algorithm to generate DAGs (which are converted into 
circuits) is given in Figure 3. The inputs to this algorithm are 1) 
the number of circuit inputs to create ( ), 2) the minimum 
number of circuit outputs to create ( ), 3) the maximum 
number of circuit levels ( ), 4) the maximum number of fan-
ins per gate (  ) and 5) the desired number of nodes to create 
( ). The algorithm creates “ranks” of vertices: in the first rank, 
no vertex has inputs, in the last rank, no vertex has outputs. 
Every vertex in a rank  is connected randomly to vertices in 
previous ranks. By forcing the first rank to have  vertices, the 
last to have  , and all others to have ( )/ , this 
guarantees the circuit will have the correct number of inputs and 
a minimum number of outputs. 

It must be discovered if ANNs trained using circuits 
generated in this manner will yield useful ANNs, which will be 
explored in future sections. This method can generate infinite 
combinations of circuits, but it is not known if the circuits will 
have difficult-to-test structures which are found in industrial 
circuits. It is possible that if ANNs are trained on the randomly-
generated circuits the ANN quality will be unacceptably low, 
but this will be discovered by comparing an ANN trained with 

“real” circuits (i.e., industrial benchmarks) against an ANN 
trained with random circuits of similar characteristics (similar 
numbers of inputs, outputs, circuit levels, and nodes). This is 
performed in Section V. 

V. EXPERIMENTS & RESULTS 

A. Experimental setup 
All experiments are performed on industry-representative 

workstations: these perform fault simulation and TPI using 
software written explicitly for this study. The workstations use 
Intel i7-8700 processors and possess 8 GBs of RAM, and all 
software was written in C++ and compiled using the 
MSVC++14.15 compiler with maximum optimization 
parameters. Original software was used in lieu of industry tools 
to make a fair comparison of the proposed ANN against a 
method from literature: only code which analyzes the “quality” 
of a TP is changed between the method proposed method and 
the comparison method, thereby minimizing other sources of 
CPU time and fault coverage differences. 

The comparison TPI method is a modified version of [16]. 
[16] iteratively adds the “best” TP (with no favoritism between 
control and observe TPs), which the authors believe is 
representative of TPI implemented in industry, although 
industrial tools will have additional computation-time 
optimizations. Conveniently, this article’s ANN can directly 
replace the “quality” measuring method in [16], which 
eliminates other sources of fault coverage and CPU time 
differences. However, the method in [16] does not attempt to 
insert TPs to increase delay fault coverage. To correct this, the 
“quality” calculation to judge the detection probability of a 
stuck-at fault (the controllability of a line, multiplied by the 
observability of the line) is directly replaced by the calculation 
proposed in [17] which attempts to model the probability a 
transition will occur on a line and be observed at a circuit output 
(the controllability of a line, multiplied by the inverse of this 
controllability, multiplied by the observability of the line). This 
TPI method will attempts to increase delay fault coverage while 
using the same information as the proposed ANN. Therefore, 
the only difference in run-time and fault coverage quality will 
be in judging the “quality” of a given TP.  

TABLE 1 
TRAINING BENCHMARKS 

Bench. Training Samples Inputs Outputs Gates 
c17 2 5 2 13 
b02 2 5 5 32 
b06 2 11 15 65 
b08 8 30 25 204 
b10 9 28 23 223 
c499 12 41 32 275 
c1355 24 41 32 619 
b04 32 77 74 803 
b12 51 126 127 1197 
c2670 49 233 140 1566 
c6288 100 32 32 2480 
c7552 143 207 108 3827 
b15 445 485 519 9371 
b14 471 277 299 10343 
b20 950 522 512 20716 
b21 980 522 512 21061 
b22 1443 767 757 30686 
b17 1562 1452 1512 33741 
b18 5276 3357 3343 117941 

Figure 4: This plot of results from Table 2 illustrates the relative changes in 
TDF coverage for three TPI methods: heuristic, benchmark-trained, and 
randomly-trained. 

-1

1

3

5

7

9

11

13

TD
F 

Fa
ul

t C
ov

er
ag

e 
(%

)

[16], [17] Bench. Trained Rand. Trained

16



 

This study uses post-synthesis logic netlists of the 
ISCAS’85 [21] and the ITC’99 [22] benchmarks. A randomly 
selected subset, given in Table 1, is used solely for training: this 
table provides the number of sub-circuits (i.e., TP locations) 
extracted for training (the number of extracted sub-circuits is 
proportional to the circuit size). 

It is presumed circuits are tested in a full-scan environment 
with scan chains loaded from a 31-bit long PRPG and delay 
tests are performed using “launch-of-shift”, hence “inputs” and 
“outputs” in Tables 1 and 2 include flip-flops outputs and 
inputs, respectively. When TPs are present, control points are 
enabled by a common “TP enable” pin which is active for half 
of all vectors applied. Although other methods to selectively 
enable sub-sets of TPs exist in literature [23] such architectures 
are not the scope of this study. 

After many trials of ANN training, the final ANN 
configuration chosen was 1 hidden neuron layer of 128 neurons, 
with each hidden neuron using a sigmoid [24] activation 
function. Sub-circuit sizes are 2 gates forward and backwards 
of a TP location (i.e., = 2 and = 2 from Figure 2).  

When performing TPI and fault simulation, the number of 
vectors applied (and used for TPI calculation) is individualized 
for each benchmark and is given in the column labeled “Vec.” 
This value is calculated based on projections given in [25]: fault 
simulation with random vectors is performed on TP-free 
circuits until 63.2% stuck-at fault coverage is obtained, and this 
number of random vectors is then used to project the number of 
random vectors needed to obtain 95% stuck-at fault coverage: 
this number or ten thousand is used, whichever is lesser. This 
represents an industrial environment where either 1) TPs are 
intended to increase stuck-at fault coverage as much as possible 
after 95% stuck-at fault coverage is achieved, or 2) 95% stuck-
at fault coverage is not obtainable in ten thousand vectors and 
TPs are inserted to assist in obtaining 95% stuck-at fault 
coverage. 

B. Delay fault coverage of a benchmark-trained ANN. 
The first experiment examines the delay fault coverage 

obtained when TPs are inserted using a conventional TPI 
method (described in Section V.A) compared to using this 
article’s ANN, and the results of this experiment are given in 
Table 2. These benchmarks were not used for ANN training to 

prevent giving an advantage to the ANN. TPs are inserted using 
the ANN until either 1) no TP is calculated to increase fault 
coverage, 2) 99% fault coverage is predicted to be obtained, or 
3) the number of TPs is greater than 1% of all nodes. 
Afterwards, traditional TPI is performed until the same number 
of TPs are inserted, with the number TPs given under the 
heading “TPs”.  

Fault coverages are given in Table 2 and changes in fault 
coverage are plotted in Figures 4 and 5, which shows notable 
trends. First, inserting TPs using the proposed method (“Bench. 
Trained”) never decreases TDF or SAF coverage, while the 
conventional method (“[16], [17]”) can (see c880 and c1908). 
Additionally, this article’s ANN-based method achieves 
comparable TDF and stuck-at fault coverage compared to the 
heuristic method. This trend will motivate future studies. 

C. Time to perform TPI 
An additional result extracted from the previous experiment 

is the time required to perform TPI. This is given in Table 2 
under the heading “TPI Time (s)” for the two TPI methods, 
which shows this article’s ANN substantially decreases TPI 
time, and this remains true when training data generation and 
ANN training is considered. These results are transposed to 
Figure 6, which plots TPI CPU time relative to the number of 
logic gates in each circuit. When the training data generation 
time (3,544 seconds) and ANN training time (864 seconds, 
which includes exploring multiple ANN configurations) is 
distributed among benchmarks by circuit size (i.e., more time is 
added to circuits with more logic gates), ANN-based TPI shows 
unfavorable time for small circuits, but for large (i.e., circuits 
where TPI is most needed), the CPU time is substantially faster. 

D. Random benchmark training 
The final experiment performs TPI using an ANN, except 

this ANN is trained using randomly generated circuits. The 
random circuits have the same number of inputs and nodes, and 
a comparable number of outputs and levels as the benchmarks 
used to train the ANN in the first experiment, as given in Table 
1. These random circuits may contain marginally more outputs 
and circuit levels, but this value is always within 1% of the 
original benchmarks. The same number of sub-circuits are also 
extracted for training. TPI is performed using the same limits 
as the first experiment and the same number of TPs are inserted. 

Figure 5: This plot of results from Table 2 illustrates the relative changes in 
SAF coverage for three TPI methods: heuristic, benchmark-trained, and 
randomly-trained. 
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Randomly-trained ANN results from Table 2 are plotted 
in Figures 4 and 5 (“Rand. Trained”), which show several 
trends. First, the impact on TDF coverage compared to the 
benchmark-trained ANN is considerably higher, except for 
one (b05). Second, stuck-at fault coverage is decreased 
compared to the benchmark-trained ANN for several 
benchmarks, but it still obtains a consistent increase in SAF 
coverage compared to heuristic-based TPI. 

VI. DISCUSSIONS & FUTURE DIRECTIONS

Results show the ANN obtains results comparable to 
conventional heuristics, but also obtains results in significantly 
less time. Given a challenge of TPI (and other EDA problems) 
is managing and sharing computational resources, reducing TPI 
time without reducing TP quality is beneficial to circuit 
designers. Future studies will focus on 1) finding features and 
training methods which further increase TP quality and 2) 
inserting TPs under additional constraints, especially power 
and delay [26]. Also, when LBIST is applied at-speed, it is 
possible scanned-in vectors can excite false timing paths [27], 
which can create false failures. The authors will explore if 
ANNs can select test points which prevent such false failures. 

Using ad hoc random circuits showed great potential. The 
ability to increase TDF coverage as opposed to stuck-at fault 
coverage is most interesting, as it implies the correlation of 
stuck-at behavior to designed circuit functions is stronger than 
equivalent transition behavior. The authors are interested in 
studying different random circuit generation methods which 
better model functional logic circuits and finding the impact 
these circuits have on ANN straining. 
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TABLE 2 
EXPERIMENT RESULTS 

Fault Coverage, TDF (%) Fault Coverage, SAF (%) TPI Time (s) 

Bench. In. Out. Gates Vec. TPs 
No 
TPs 

[16], 
[17] 

Bench. 
Trained 

Rand. 
Trained 

No 
TPs 

[16], 
[17] 

Bench. 
Trained 

Rand. 
Trained 

[16], 
[17] ANN 

ANN (inc. 
training) 

b03 34 34 190 216 1 78.31 78.76 78.91 90.77 92.14 92.38 92.86 98.17 1.00 0.01 92.20 
b09 29 29 198 216 1 66.00 67.70 74.31 76.25 86.85 89.20 88.56 88.56 1.00 0.08 96.15 
c432 36 7 203 5832 2 95.49 95.49 95.83 95.83 98.71 98.71 99.08 99.08 12.00 0.12 98.61 
b13 63 63 415 512 6 81.19 81.80 83.24 86.70 94.11 94.34 95.93 96.44 10.00 0.60 201.96 
c880 60 26 469 1331 4 93.35 92.32 93.58 93.97 98.29 97.08 98.39 98.89 44.00 0.66 228.22 
b07 50 57 490 512 4 77.10 77.94 78.42 78.84 85.89 87.83 87.68 87.61 56.00 0.80 238.55 
b11 38 37 801 10000 8 86.52 92.10 87.60 87.89 94.15 96.58 95.93 94.69 283.00 2.80 391.44 
c1908 33 25 938 10000 9 98.85 98.56 98.85 98.84 99.66 99.66 99.66 99.66 794.00 3.36 458.47 
b05 35 70 1032 10000 10 70.08 75.86 71.82 71.02 76.23 79.98 78.21 77.33 649.00 4.80 505.52 
c3540 50 22 1741 10000 12 89.77 92.06 89.85 92.98 95.39 95.61 95.61 95.58 3746.00 8.00 852.73 
c5315 178 123 2608 6859 13 97.50 97.52 97.54 97.52 98.97 98.95 99.00 98.97 3746.00 13.00 1278.39 
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