

Applying Neural Networks to Delay Fault Testing:
Test Point Insertion and Random Circuit Training

Spencer K. Millican, Yang Sun, Soham Roy, and Vishwani D. Agrawal
Department of Electrical and Computer Engineering, Auburn University

341 War Eagle Way, Auburn, AL 36849-5201
millican@auburn.edu, yzs0057@auburn.edu, szr0075@auburn.edu, agrawvd@auburn.edu

Abstract—This article presents methods of increasing logic
built-in self-test (LBIST) delay fault coverage using artificial
neural networks (ANNs) to selecting test point (TP) locations a
method to train ANNs using randomly generated circuits. This
method increases delay test quality both during and after
manufacturing. This article also trains ANNs without relying on
valuable third-party intellectual property (IP) circuits. Results
show higher-quality TPs are selected in significantly reduced CPU
time and third-party IP is not be required for ANN training.

I. INTRODUCTION
Many design-for-test (DFT) methods increase fault

coverage and circuit reliability under pseudo-random stimuli,
with one noteworthy method being test-points (TPs). Integrated
circuits (IC) manufacturing is prone to defects [1] which cannot
be tolerated in digital circuits, especially when such circuits are
used in life-critical applications (e.g., self-driving cars and
embedded medical devices). TPs are circuit modifications
which are only enabled during test (and therefore do not change
the function of the circuit outside of test) and allow more
defects to be detected. Although TPs have many applications
depending on context (e.g., analog TPs or TPs for easier
ATPG), this article addresses TPs which improve pseudo-
random tests: these TPs make pseudo-random stimuli (typically
generated on-chip) more likely to detect random pattern-
resistant (RPR) faults.

Choosing where to insert TPs, i.e. “TP insertion” (TPI), has
a long history, but there are two modern challenges to address.
First, design nuances unique to modern technologies are
infrequently addressed in older TPI literature [2] and thus may
insert less-than-ideal TPs: this article will show how previous
TPI methods can mask the detection of delay faults. Second,
TPI time must be improved. Optimal TPI (and many other DFT
problems) is known to be NP-hard [3]: current TPI uses
heuristics to overcome computational barriers, but established
algorithms’ CPU time scales worse than linearly with respect to
circuit sizes, which is demonstrated by this article’s data. This
study performs TPI to increase delay fault coverage with
significantly less CPU time compared to existing heuristics.

Artificial neural networks (ANNs) are computing methods
which recently found success on previously unsolved problems,
and their potential to be applied to DFT problems must be
explored. ANNs were first introduced in the 1950’s [4], but they
were long neglected due to a lack of computational resources
and training data. This was recently remedied, and ANNs have
be demonstrated as effective methods to perform handwriting
analysis, image classification, and other previously unsolvable

problems. ANNs have recently been applied to EDA and DFT
problems [5]–[8], both for increasing result quality and
decreasing computational complexity. This work continues this
trend and leverages ANNs to improve TPI quality and speed.

Obtaining ANN training data is difficult when data owners
are unwilling to share. Training ANNs requires “training
circuits”, but circuit designers are reluctant to divulge their
intellectual property (IP): leaked IP can be reproduced by
malicious parties without compensation. Without training data
(or with obsolete legacy circuits), ANN-training EDA
companies will face difficulties training their ANNs for
iterative TPI (or similar problems). This article explores
generating training circuits and evaluates their ability to train
ANNs compared to industrial benchmarks.

This article extends work performed in [7] and adds the
following original contributions.

 A method using ANNs for iterative TPI increases delay fault
coverage is presented and is compared against an equivalent
heuristic algorithm.

 The computational complexity and scalability of using
ANNs in lieu of established heuristics is analyzed.

 A potential source of unlimited training data is presented,
and the effectiveness of its use is explored.

The remainder of this article is organized as follows.
Section II presents previous literature which motivates this
articles’ contributions. Section III describes the ANN which
evaluates a TP’s impact on delay fault coverage, how it is
trained, and how it is used in a TPI algorithm. Section IV
introduces a method of generating training. Section V presents
the experiments and results which evaluate this article’s
contributions. Section VI discusses the implications of results
given in Section V and motivates future studies.

II. ESTABLISHED LITERATURE & MOTIVATIONS

A. Test-points & delay fault coverage
This article addresses TPs in the context of pseudo-random

testing, which is a common testing method for modern circuits.
Pseudo-random tests are typically generated on-chip using
pseudo-random pattern generators (PRPGs), typically in the
form of linear feedback shift registers (LFSRs) [9]. PRPGs
apply stimuli to circuit inputs while circuit outputs are
measured: outputs are either measured directly or are
compacted into a signature using on-chip hardware (e.g., using
a multiple-input signature register, or MISR [10]). PRPGs can
also set and measure the state of scannable memory elements

13

2019 IEEE 28th Asian Test Symposium (ATS)

2377-5386/19/$31.00 ©2019 IEEE
DOI 10.1109/ATS47505.2019.000-7

[11]. This method, often named logic built-in self-test (LBIST),
is widely used in industry for several reasons. First, LBIST can
obtain high fault coverage in small time and compliment ATPG
tests, although certain circuit features can prevent this, which is
addressed in the following paragraph. Second, LBIST tests are
easily applied “in-the-field for post-manufacturing “reliability
tests”. This latter feature is desirable when continuous circuit
reliability is paramount and is the focus of the emerging DFT
sub-field of research, “automotive test”.

LBIST is widely-used in industry, but LBIST quality is
known to suffer from RPR faults. RPR faults are tested by a
small subset of all possible stimuli, and therefore the probability
of detecting such faults under pseudo-random stimuli is
negligible [9]. A prototypical example of an RPR fault is the
output of a 32-bit AND gate stuck-at 0. This fault requires 32
logic-1’s to be applied to the AND gate, which if all inputs are
equally likely to be 0 or 1, the probability of this occurrence is (50%) , i.e., negligible.

Many methods increase RPR faults coverage, with one
method, TPI, being the subject of this article. In the context of
LBIST, TPs are circuit modifications which fall into one of two
categories: 1) “control points” which force circuit lines to pre-
determined values and 2) “observe points” which route circuit
lines to observable circuit outputs. TPs are controlled with a
“TP enable” signal, which when disabled leaves the function of
the circuit is unchanged. When TPs are inserted into key circuit
locations, RPR faults become easy to excite and observe. In
practice, TPs frequently compliment other methods of detecting
RPR faults (e.g., deterministic seeding [12] and weighted
random patterns [13]).

Although control points can increase stuck-at fault
coverage, they are known to block other faults found in modern
technologies [2]. Delay-causing defects become more common
as semiconductor sizes scale [14], and the stuck-at fault model
can no longer be the sole fault model for evaluating LBIST
quality. [2] found typically-implemented control TPs (i.e.,
control-0 points using AND gates and control-1 points using
OR gates [15]) mask the propagation and excitation of delay
faults when active. Two alternatives can mitigate delay-
masking detriments, but both have drawbacks. First, observe
points can be used exclusively, but exciting RPR faults may
require forcing values in circuits and implementing observe
points require expensive latches or output pins. Second, circuits
can be tested with TPs both on and off. This is normal industry
practice, but disabling TPs mitigates their purpose: ideally,
active TPs can test RPR and delay faults simultaneously.
Therefore, this study’s ANN has the following goal: insert TPs,
both control and observe points, to detect RPR faults a without
masking delay faults.

B. Artificial neural networks
ANNs [4] are computer algorithms which are becoming

popular due to growing training data availability. ANNs are
models biological neural networks (i.e., brains) in software or
hardware. ANNs excel at solving problems in which manually-
developed “heuristic” algorithms falter [4]: they use problems
with known solutions (i.e., “training data”) and “train”
themselves until correct/accurate results are achieved for each
training problem. Historically, ANNs were impractical due the
absence of training data [4], but today, ANNs are used in many
industries.

The process of creating and training ANNs can be found in
other sources [4], [7] and is briefly summarized here.

Creation (ANN structure Selection): Many ANN
structures exist in literature, but the prototypical ANN structure
is illu strated in Figure 1. ANNs contain “neurons” with some
neurons being input “feature” and output “label” neurons.
Neurons are connected by “dendrites” which multiply
(“weigh”) neuron outputs. Neurons have “activation functions”
which calculates neuron outputs using neuron inputs. Many
activation function and neuron arrangements (the number of
levels, neurons per level, connections, etc.) choices are
available: these choices are optimized through trial-and-error.

Training: Training finds weights which matches inputs to
desired outputs. Depending on the ANN configuration, the
number of features and labels, and training data size, this can
be computationally-intensive and is not an optimal process.
Time permitting, this is repeated using different parameters to
optimize weights and explore configuration choices.

ANNs of various forms have recently been applied to DFT
problems, including scan-chain diagnosis [5] and fault
diagnosis [6], but using ANNs for TPI has not been thoroughly
explored. Two studies have explored using ANNs for TPI [7],
[8]. [8]’s scope is limited: only observe points are considered,
only 4 benchmarks are analyzed, and no CPU time analysis is
performed. Both [7] and [8] only consider stuck-at faults.

III. ANN FOR TP DELAY FAULT QUALITY EVALUATION

A. Use in an iterative TPI algorithm
This article’s ANN “qualifies” TPs finds the “best” TP for

use in a TPI algorithm. Most TPI algorithms iteratively insert
TPs until a condition is met: either 1) the number of TPs
inserted meets a pre-designated limit (which represents a TP
hardware overhead limit), 2) the predicted fault coverage meets
a pre-designated limit (i.e., no more TPs are needed), 3) CPU
time has reached a pre-designated limit, or 4) no TP is predicted
to increase fault coverage. Each iteration, the TP which is
predicted to increase fault coverage the most is inserted. TPI
algorithms calculate fault coverage in different ways, including
fault simulation [15], probabilistic calculations [8], [16], and
most recently ANNs [7], [8], but methods use the same iterative
approach. All these methods attempt to balance calculating
fault coverage accurately while keeping CPU time low.

In the context of this article, the “quality” of a TP is the
predicted impact on delay fault coverage when activated. A
TP’s type and location can increase (or decrease) delay fault
coverage significantly [2]. To the authors’ knowledge, inserting
increase delay fault coverage through TPI has little existing
literature [17], [18]: [17] uses analog TPs to measure specific
delay values, and [18] proposes a rudimentary heuristic to select

Figure 1: An example of a) a single neuron with input signals, input weights,
and an activation function, and b) a neural network composed of multiple
hidden layers.

a) Single Neuron b) Neural Network

14

TP locations. This article will use the TP-qualifying method
from [17] for comparison (see Section V.A).

B. Input features
Many input features and feature extraction methods of this

article’s ANN are adapted from [7] and briefly discussed here.
First, since ANNs have pre-defined sizes and large ANNs
require more training time and data to be useful, this article’s
ANN evaluates a TP’s quality using a sub-circuit centered
around a TP’s location. Second, the ANN’s input features are
the probabilistic calculations of the lines in this sub-circuit.
These calculations are COP controllability and observability
values [19], which are widely used in TPI [16], [17]: these
values estimate the probability that a circuit line is logic-1 (and
inversely, logic-0) and the probability that a fault on a circuit
line will be observed, respectively. Third, the gate types in sub-
circuits are represented as one-hot binary strings. During TPI
and training data generation, these features are calculated and
passed to the ANN in a set order, as illustrated in Figure 2: first
controllability values, then observability values, then gate
types, all of which are given in a breath-first order [7].

C. Output labels
The output label of the ANN is the change in transition

delay fault (TDF) coverage on a sub-circuit centered around the
TP location (when the TP is active). Many delay fault models
attempt to accurately model delay-causing defects [20], and the
TDF model is known to model realistic defects.

The use of a sub-circuit allows training data to be efficiently
collected (see Section III.D), but this creates a potential
detriment: TP quality-calculating heuristics can calculate the
effect a TP has on an entire circuit (as is the case of this article’s
comparison, [17]), and therefore may return more accurate
results. The effect of this detriment will be explored and
discussed in Sections V and VI, respectively.

D. Training data generation
Training this article’s ANN’s requires the “true” TDF

coverage of a sub-circuit when inserting an active TP: this is
obtained through fault simulation. Fault simulation is a CPU-
intensive process, which is why most heuristic TPI methods use
estimation techniques [16], [17]. Such estimations can give
inaccurate fault coverage results [19], and thus less effective
TPs may be chosen for insertion. This article’s ANN attempts
to accurately predict the TDF coverage impact of a TP without
performing fault simulation during TPI. Instead, fault

simulation is performed during training: this training CPU time
is distributed across all TPI instances.

To obtain the training label (TDF coverage) from a sub-
circuit, techniques are needed to reduce training data generation
time. Presuming pseudo-random vector pairs (pairs are
required for delay simulation) are applied to a sub-circuit with
 inputs, at least one vector pair will be applied more than once

if > 2 , which is likely for significant values of and
smaller sub-circuit sizes (which for this study, 6). Fault
simulating a vector pair more than once wastes simulation time.
This is exacerbated when sub-circuits are extracted from a
circuit, since input vectors to the sub-circuit are not random:
paths from circuit inputs to sub-circuit inputs will “weigh”
circuit value probabilities and will make some vectors more
likely to occur than others.

To prevent training vector pairs being applied more than
once, the following technique uses heuristically-calculated
circuit controllability calculations to conditionally simulate all
vector pairs. First, for each vector among the 2 sub-circuit
input vectors, the probability of applying the vector is
calculated using COP circuit controllability information [19].
The probability of the required logic-0 and logic-1 values
occurring (“ ") can calculate this probability: () = = (1 (1))

Second, a sub-set of all the 2 sub-circuit vector pairs is
chosen to be simulated using the previously calculated
probabilities, i.e., a vector pair is simulated with probability

. Third, each sub-circuit vector pair is fault simulated + 1 times: once without any TPs and once for each of the
TP types (in this study, = 3: control-0, control-1, and observe
points). Fault effects on output pins are probabilistically
observed using observability calculations from COP [19].
Lastly, the controllability, observability, and gate types of the
sub-circuit are used for training features and the change in fault
coverage created by the TPs are used as training labels for
separate ANNs.

CC0,CC1fo,CC0a,CC0b,CC2fo,CC1,CC2,…,CCBb,CCB+1a,CCB+1b,…,CCB+F ,CCB+F,
CO0,CO1fo,CO0a,CO0b,CO2fo,CO1,CO2,…,COBb,COB+1a,COB+1b,…,COB+F ,COB+F,
Gate0,Gate1,Gate2,…,GateB,GateB+1,GateB+2,…,GateB+F

0
1

2

0a
0b

1fo

2fo

B+1

B+2

B+1b

B+2a

B+1a

B+2b

… …
B F

… …

NN Input Vector

X

TP Location

Figure 3: The input features of the ANN are the controllability (CC) and
observability (CO) values, as well as the gate types (Gate, represented as a
one-hot encoding) of a sub-circuit centered around a TP’s location. The more
gates forward (F) and backwards (B) included in the sub-circuit, the more
accurate the ANN will be at the expense of training time.

Figure 2: Random DAGs generated by this algorithm, given in the form of
vertices and edges, can be converted into logic circuits.

Algorithm: DAG Generator
Inputs: positive integers , , , , f
Variables: set of vertices in rank (), flattened set of all vertices ,
current set of vertices , current rank , current set of fan-ins
for = 0 … do
 if = 0
 { vertices}
 else if =
 { vertices}
 else
 { vertices. }
 end if
 if 1
 for do
 = { 1 … }
 Set as inputs to
 end for
 end if
 ()
 { , }
end for
return

15

IV. RANDOM TRAINING DATA GENERATION
This section attempts to overcome a challenge of ANN

training: the lack of training data. As discussed in Section 0,
circuit developers are reluctant to share their circuits to ANN
trainers since their IP will lose value if leaked to unauthorized
users. Since ANNs may not be trained with industry-
representative circuits if IP is protected (and training with
obsolete benchmarks may degrade ANN quality), this section
introduces a method to create training circuits, and its utility
will be explored in Sections V and VI.

This circuit-generating algorithm creates directed acyclic
graphs (DAGs), since DAGs can easily be converted into
circuits. DAGs have directional edges and no path exists from
any vertex to itself. A given DAG can be converted into a
random binary circuit by 1) replacing all vertices with no inputs
with circuit inputs, 2) replacing all other vertices with a
randomly selected gate (or if it has 1 input, a buffer or inverter),
and 3) replacing dead-end vertices with circuit outputs.

The algorithm to generate DAGs (which are converted into
circuits) is given in Figure 3. The inputs to this algorithm are 1)
the number of circuit inputs to create (), 2) the minimum
number of circuit outputs to create (), 3) the maximum
number of circuit levels (), 4) the maximum number of fan-
ins per gate () and 5) the desired number of nodes to create
(). The algorithm creates “ranks” of vertices: in the first rank,
no vertex has inputs, in the last rank, no vertex has outputs.
Every vertex in a rank is connected randomly to vertices in
previous ranks. By forcing the first rank to have vertices, the
last to have , and all others to have ()/ , this
guarantees the circuit will have the correct number of inputs and
a minimum number of outputs.

It must be discovered if ANNs trained using circuits
generated in this manner will yield useful ANNs, which will be
explored in future sections. This method can generate infinite
combinations of circuits, but it is not known if the circuits will
have difficult-to-test structures which are found in industrial
circuits. It is possible that if ANNs are trained on the randomly-
generated circuits the ANN quality will be unacceptably low,
but this will be discovered by comparing an ANN trained with

“real” circuits (i.e., industrial benchmarks) against an ANN
trained with random circuits of similar characteristics (similar
numbers of inputs, outputs, circuit levels, and nodes). This is
performed in Section V.

V. EXPERIMENTS & RESULTS

A. Experimental setup
All experiments are performed on industry-representative

workstations: these perform fault simulation and TPI using
software written explicitly for this study. The workstations use
Intel i7-8700 processors and possess 8 GBs of RAM, and all
software was written in C++ and compiled using the
MSVC++14.15 compiler with maximum optimization
parameters. Original software was used in lieu of industry tools
to make a fair comparison of the proposed ANN against a
method from literature: only code which analyzes the “quality”
of a TP is changed between the method proposed method and
the comparison method, thereby minimizing other sources of
CPU time and fault coverage differences.

The comparison TPI method is a modified version of [16].
[16] iteratively adds the “best” TP (with no favoritism between
control and observe TPs), which the authors believe is
representative of TPI implemented in industry, although
industrial tools will have additional computation-time
optimizations. Conveniently, this article’s ANN can directly
replace the “quality” measuring method in [16], which
eliminates other sources of fault coverage and CPU time
differences. However, the method in [16] does not attempt to
insert TPs to increase delay fault coverage. To correct this, the
“quality” calculation to judge the detection probability of a
stuck-at fault (the controllability of a line, multiplied by the
observability of the line) is directly replaced by the calculation
proposed in [17] which attempts to model the probability a
transition will occur on a line and be observed at a circuit output
(the controllability of a line, multiplied by the inverse of this
controllability, multiplied by the observability of the line). This
TPI method will attempts to increase delay fault coverage while
using the same information as the proposed ANN. Therefore,
the only difference in run-time and fault coverage quality will
be in judging the “quality” of a given TP.

TABLE 1
TRAINING BENCHMARKS

Bench. Training Samples Inputs Outputs Gates
c17 2 5 2 13
b02 2 5 5 32
b06 2 11 15 65
b08 8 30 25 204
b10 9 28 23 223
c499 12 41 32 275
c1355 24 41 32 619
b04 32 77 74 803
b12 51 126 127 1197
c2670 49 233 140 1566
c6288 100 32 32 2480
c7552 143 207 108 3827
b15 445 485 519 9371
b14 471 277 299 10343
b20 950 522 512 20716
b21 980 522 512 21061
b22 1443 767 757 30686
b17 1562 1452 1512 33741
b18 5276 3357 3343 117941

Figure 4: This plot of results from Table 2 illustrates the relative changes in
TDF coverage for three TPI methods: heuristic, benchmark-trained, and
randomly-trained.

-1

1

3

5

7

9

11

13

TD
F

Fa
ul

t C
ov

er
ag

e
(%

)

[16], [17] Bench. Trained Rand. Trained

16

This study uses post-synthesis logic netlists of the
ISCAS’85 [21] and the ITC’99 [22] benchmarks. A randomly
selected subset, given in Table 1, is used solely for training: this
table provides the number of sub-circuits (i.e., TP locations)
extracted for training (the number of extracted sub-circuits is
proportional to the circuit size).

It is presumed circuits are tested in a full-scan environment
with scan chains loaded from a 31-bit long PRPG and delay
tests are performed using “launch-of-shift”, hence “inputs” and
“outputs” in Tables 1 and 2 include flip-flops outputs and
inputs, respectively. When TPs are present, control points are
enabled by a common “TP enable” pin which is active for half
of all vectors applied. Although other methods to selectively
enable sub-sets of TPs exist in literature [23] such architectures
are not the scope of this study.

After many trials of ANN training, the final ANN
configuration chosen was 1 hidden neuron layer of 128 neurons,
with each hidden neuron using a sigmoid [24] activation
function. Sub-circuit sizes are 2 gates forward and backwards
of a TP location (i.e., = 2 and = 2 from Figure 2).

When performing TPI and fault simulation, the number of
vectors applied (and used for TPI calculation) is individualized
for each benchmark and is given in the column labeled “Vec.”
This value is calculated based on projections given in [25]: fault
simulation with random vectors is performed on TP-free
circuits until 63.2% stuck-at fault coverage is obtained, and this
number of random vectors is then used to project the number of
random vectors needed to obtain 95% stuck-at fault coverage:
this number or ten thousand is used, whichever is lesser. This
represents an industrial environment where either 1) TPs are
intended to increase stuck-at fault coverage as much as possible
after 95% stuck-at fault coverage is achieved, or 2) 95% stuck-
at fault coverage is not obtainable in ten thousand vectors and
TPs are inserted to assist in obtaining 95% stuck-at fault
coverage.

B. Delay fault coverage of a benchmark-trained ANN.
The first experiment examines the delay fault coverage

obtained when TPs are inserted using a conventional TPI
method (described in Section V.A) compared to using this
article’s ANN, and the results of this experiment are given in
Table 2. These benchmarks were not used for ANN training to

prevent giving an advantage to the ANN. TPs are inserted using
the ANN until either 1) no TP is calculated to increase fault
coverage, 2) 99% fault coverage is predicted to be obtained, or
3) the number of TPs is greater than 1% of all nodes.
Afterwards, traditional TPI is performed until the same number
of TPs are inserted, with the number TPs given under the
heading “TPs”.

Fault coverages are given in Table 2 and changes in fault
coverage are plotted in Figures 4 and 5, which shows notable
trends. First, inserting TPs using the proposed method (“Bench.
Trained”) never decreases TDF or SAF coverage, while the
conventional method (“[16], [17]”) can (see c880 and c1908).
Additionally, this article’s ANN-based method achieves
comparable TDF and stuck-at fault coverage compared to the
heuristic method. This trend will motivate future studies.

C. Time to perform TPI
An additional result extracted from the previous experiment

is the time required to perform TPI. This is given in Table 2
under the heading “TPI Time (s)” for the two TPI methods,
which shows this article’s ANN substantially decreases TPI
time, and this remains true when training data generation and
ANN training is considered. These results are transposed to
Figure 6, which plots TPI CPU time relative to the number of
logic gates in each circuit. When the training data generation
time (3,544 seconds) and ANN training time (864 seconds,
which includes exploring multiple ANN configurations) is
distributed among benchmarks by circuit size (i.e., more time is
added to circuits with more logic gates), ANN-based TPI shows
unfavorable time for small circuits, but for large (i.e., circuits
where TPI is most needed), the CPU time is substantially faster.

D. Random benchmark training
The final experiment performs TPI using an ANN, except

this ANN is trained using randomly generated circuits. The
random circuits have the same number of inputs and nodes, and
a comparable number of outputs and levels as the benchmarks
used to train the ANN in the first experiment, as given in Table
1. These random circuits may contain marginally more outputs
and circuit levels, but this value is always within 1% of the
original benchmarks. The same number of sub-circuits are also
extracted for training. TPI is performed using the same limits
as the first experiment and the same number of TPs are inserted.

Figure 5: This plot of results from Table 2 illustrates the relative changes in
SAF coverage for three TPI methods: heuristic, benchmark-trained, and
randomly-trained.

-2
-1
0
1
2
3
4
5
6
7

SA
F

Fa
ul

t C
ov

er
ag

e
(%

)

[16], [17] Bench. Trained Rand. Trained

Figure 6: This plot of results from Table 2 illustrates CPU TPI time for three:
heuristic and ANN-based TPI (with and without training time).

0.01

0.1

1

10

100

1000

10000

0 500 1000 1500 2000 2500 3000

TP
I T

im
e

(s
)

Num. Gates

[16], [17] ANN ANN (inc. training)

17

Randomly-trained ANN results from Table 2 are plotted
in Figures 4 and 5 (“Rand. Trained”), which show several
trends. First, the impact on TDF coverage compared to the
benchmark-trained ANN is considerably higher, except for
one (b05). Second, stuck-at fault coverage is decreased
compared to the benchmark-trained ANN for several
benchmarks, but it still obtains a consistent increase in SAF
coverage compared to heuristic-based TPI.

VI. DISCUSSIONS & FUTURE DIRECTIONS

Results show the ANN obtains results comparable to
conventional heuristics, but also obtains results in significantly
less time. Given a challenge of TPI (and other EDA problems)
is managing and sharing computational resources, reducing TPI
time without reducing TP quality is beneficial to circuit
designers. Future studies will focus on 1) finding features and
training methods which further increase TP quality and 2)
inserting TPs under additional constraints, especially power
and delay [26]. Also, when LBIST is applied at-speed, it is
possible scanned-in vectors can excite false timing paths [27],
which can create false failures. The authors will explore if
ANNs can select test points which prevent such false failures.

Using ad hoc random circuits showed great potential. The
ability to increase TDF coverage as opposed to stuck-at fault
coverage is most interesting, as it implies the correlation of
stuck-at behavior to designed circuit functions is stronger than
equivalent transition behavior. The authors are interested in
studying different random circuit generation methods which
better model functional logic circuits and finding the impact
these circuits have on ANN straining.

VII. REFERENCES
[1] I. Koren and Z. Koren, “Defect Tolerance in VLSI Circuits: Techniques

and Yield Analysis,” Proc. IEEE, vol. 86, no. 9, pp. 1819–1838, Sep.
1998.

[2] S. Roy, B. Stiene, S. Millican, and V. Agrawal, “Improved Random
Pattern Delay Fault Coverage Using Inversion Test Points,” in Proc. IEEE
28th North Atlantic Test Workshop (NATW), Essex, VT, 2019.

[3] B. Krishnamurthy, “A Dynamic Programming Approach to the Test Point
Insertion Problem,” in Proc. 24th ACM/IEEE Design Automation
Conference, New York, NY, USA, 1987, pp. 695–705.

[4] S. O. Haykin, Neural Networks and Learning Machines, 3rd ed. New
York: Pearson, 2008.

[5] M. Chern et al., “Improving Scan Chain Diagnostic Accuracy Using
Multi-stage Artificial Neural Networks,” in Proc. 24th Asia and South
Pacific Design Automation Conference, New York, NY, USA, 2019, pp.
341–346.

[6] L. R. Gómez and H. Wunderlich, “A Neural-Network-Based Fault
Classifier,” in Proc. 25th IEEE Asian Test Symposium (ATS), 2016, pp.
144–149.

[7] Y. Sun and S. Millican, “Test Point Insertion Using Artificial Neural
Networks,” in Proc. IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), Miami, FL, 2019.

[8] Y. Ma et al., “High Performance Graph Convolutional Networks with
Applications in Testability Analysis,” in Proc. 56th Annual Design
Automation Conference (DAC), New York, NY, USA, 2019, pp. 18:1–
18:6.

[9] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI:
Pseudorandom Techniques. New York, NY, USA: Wiley-Interscience,
1987.

[10] R. David, “Signature Analysis for Multiple-Output Circuits,” IEEE
Trans. Comput., vol. C–35, no. 9, pp. 830–837, Sep. 1986.

[11] P. H. Bardell and W. H. McAnney, “Self-Testing of Multichip Logic
Modules,” in Proc. International Test Conference (ITC), 1982, pp. 200–
204.

[12] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in Test for Circuits with Scan Based on Reseeding of Multiple-
polynomial Linear Feedback Shift Registers,” IEEE Trans. Comput., vol.
44, no. 2, pp. 223–233, Feb. 1995.

[13] S. Ghosh, E. MacDonald, S. Basu, and N. A. Touba, “Low-power
Weighted Pseudo-random BIST Using Special Scan Cells,” in Proc. 14th
ACM Great Lakes Symposium on VLSI (GLSVLSI), New York, NY, USA,
2004, pp. 86–91.

[14] P. Nigh and A. Gattiker, “Test Method Evaluation Experiments and
Data,” in Proc. International Test Conference (ITC), 2000, pp. 454–463.

[15] N. A. Touba and E. J. McCluskey, “Test Point Insertion Based on Path
Tracing,” in Proc. VLSI Test Symposium, 1996, pp. 2–8.

[16] H.-C. Tsai, K.-T. Cheng, C.-J. Lin, and S. Bhawmik, “A Hybrid
Algorithm for Test Point Selection for Scan-based BIST,” in Proc. 34th
Design Automation Conference (DAC), 1997, pp. 478–483.

[17] S. Ghosh, S. Bhunia, A. Raychowdhury, and K. Roy, “A Novel Delay
Fault Testing Methodology Using Low-Overhead Built-In Delay Sensor,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 12,
pp. 2934–2943, Dec. 2006.

[18] I. Pomeranz and S. M. Reddy, “Design-for-testability for Path Delay
Faults in Large Combinational Circuits Using Test Points,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 17, no. 4, pp. 333–343,
Apr. 1998.

[19] F. Brglez, “On Testability Analysis of Combinational Networks,” in Proc.
IEEE International Symposium on Circuits and Systems (ISCAS), 1984,
vol. 1.

[20] J. Mahmod, S. Millican, U. Guin, and V. Agrawal, “Delay Fault Testing:
Present and Future,” in Proc. IEEE VLSI Test Symposium (VTS),
Monterey, CA, 2019.

[21] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Targeted Translator in FORTRAN,” in Proc.
IEEE International Symposium on Circuits and Systems, 1985.

[22] S. Davidson, “ITC’99 Benchmark Circuits - Preliminary Results,” in
Proc. IEEE International Test Conference, 1999, pp. 1125–1125.

[23] N. Tamarapalli and J. Rajski, “Constructive Multi-phase Test Point
Insertion for Scan-based BIST,” in Proc. IEEE International Test
Conference, 1996, pp. 649–658.

[24] A. Menon, K. Mehrotra, C. K. Mohan, and S. Ranka, “Characterization
of a Class of Sigmoid Functions with Applications to Neural Networks,”
Neural Netw., vol. 9, no. 5, pp. 819–835, Jul. 1996.

[25] T. W. Williams, “Test Length in a Self-Testing Environment,” IEEE Des.
Test Comput., vol. 2, no. 2, pp. 59–63, Apr. 1985.

[26] M. Nakao, S. Kobayashi, K. Hatayama, K. Iijima, and S. Terada, “Low
Overhead Test Point Insertion for Scan-based BIST,” in Proc. IEEE
International Test Conference, 1999, pp. 348–357.

[27] F. P. Higgins and R. Srinivasan, “BSM2: next generation boundary-scan
master,” in Proc. 18th IEEE VLSI Test Symposium (VTS), Montreal,
Quebec, Canada, 2000, pp. 67–72.

TABLE 2
EXPERIMENT RESULTS

Fault Coverage, TDF (%) Fault Coverage, SAF (%) TPI Time (s)

Bench. In. Out. Gates Vec. TPs
No
TPs

[16],
[17]

Bench.
Trained

Rand.
Trained

No
TPs

[16],
[17]

Bench.
Trained

Rand.
Trained

[16],
[17] ANN

ANN (inc.
training)

b03 34 34 190 216 1 78.31 78.76 78.91 90.77 92.14 92.38 92.86 98.17 1.00 0.01 92.20
b09 29 29 198 216 1 66.00 67.70 74.31 76.25 86.85 89.20 88.56 88.56 1.00 0.08 96.15
c432 36 7 203 5832 2 95.49 95.49 95.83 95.83 98.71 98.71 99.08 99.08 12.00 0.12 98.61
b13 63 63 415 512 6 81.19 81.80 83.24 86.70 94.11 94.34 95.93 96.44 10.00 0.60 201.96
c880 60 26 469 1331 4 93.35 92.32 93.58 93.97 98.29 97.08 98.39 98.89 44.00 0.66 228.22
b07 50 57 490 512 4 77.10 77.94 78.42 78.84 85.89 87.83 87.68 87.61 56.00 0.80 238.55
b11 38 37 801 10000 8 86.52 92.10 87.60 87.89 94.15 96.58 95.93 94.69 283.00 2.80 391.44
c1908 33 25 938 10000 9 98.85 98.56 98.85 98.84 99.66 99.66 99.66 99.66 794.00 3.36 458.47
b05 35 70 1032 10000 10 70.08 75.86 71.82 71.02 76.23 79.98 78.21 77.33 649.00 4.80 505.52
c3540 50 22 1741 10000 12 89.77 92.06 89.85 92.98 95.39 95.61 95.61 95.58 3746.00 8.00 852.73
c5315 178 123 2608 6859 13 97.50 97.52 97.54 97.52 98.97 98.95 99.00 98.97 3746.00 13.00 1278.39

18

