

Report on XMPS architecture

 Priyanka Sinha

Submitted as part of independent study with Prof V. D. Agrawal, Fall 2004

The Report is divided into the following sections

1) Proof of concept, correctness, comparison with MIPS using simple scalar.

2) Description of XMPS simulator and SCHED

3) References

4) Acknowledgements

5) Appendix
1. Introduction

The XMP architecture was invented by C.G. Parodi, which is about an architecture in which the internal bus is replaced by a crossbar. Crossbars have been known to be incorporated in various multiprocessor architectures such as Sun’s UltraSparc II, SGI NCUBE, Raw [1], [2], [3]. Instead of using it as an interconnect between functional units such as processors and memory, the XMPS uses it to connect basic elements of the processor itself, i.e., register file, ALU, etc.
The different hardware blocks in the XMP are the crossbar, the instruction register, the Program counter, 2 ALU’s(one for arithmetic operation and one for branch/PC calculation), register file with 4 read ports and 2 write ports. The crossbar connects the register read/write, memory read/write, ALU ports. From the VLIW word instruction, the alu_opcode drives the ALU, the XBAR configuration bits drive which paths amongst the different ports are connected.
In the XMPS, the instruction length accommodates four possible simultaneous operations (one ALU operation, two register transfers, and one memory access). Each VLIW instruction encodes the configuration for the crossbar in 21 bits out of the 64 bits.
Example:

The instruction sub r15, 80 ; r5=r3 ; ; ;
Using the 21 bits in the instruction the crossbar is set to
1. connect the path from the constant part of the instruction register to the alu src 1
2. connect the path from the r15 read to the alu src2

3. set the alu opcode from the instruction to the alu

4. Connect the path from r5 write to r3 read.

These paths are exclusive and hence a sub operation and a register transfer operation can be executed in the same clock cycle.
Since an ALU operation has been modeled to take 3 clock cycles, the result of this operation is only available after that amount of delay.
The above is clearly documented in the description of the XMP architecture by C.G. Parodi in the Appendix attached. As a clarification of what constraints are mentioned in it, they are only constraints due to the number of read/write ports considered in the sample implementation.

As a comparision from other architectures, we know that the delay for transfer of values along an interconnect is due to number of elements it goes through. In bus based architecture, the delay is in capturing the bus (arbitration/polling) and then the propagation through the bus. For the crossbar, the delay is due to propagation through the gates at the nodes of the crossbar and the propagation delay from one gate to the other.
XMPS issues instructions in the order they are given and the results are not inconsistent as can be shown with an example run in the next section. It achieves instruction level parallelism. The XBAR configuration is embedded in the VLIW instruction.

A short performance comparison is performed with XMPS simulator and MIPS SimpleScalar using the program bubblesort.c

void main(void)

{

 int a[]={20,-1,53,98,-25,98,120,-34,23,123};

 int i,j,temp;

 for(i=9;i>=0;i--)

 for(j=0;j<i;j++)

 if(a[j]>a[i])

 {

 temp=a[i];

 a[i]=a[j];

 a[j]=temp;

 }

}

This program takes 1042 clock cycles, 272 ALU ops, 615 Reg ops, 171 total jumps, with 96 taken, 0 jumps, 292 writes and 180 reads on an XMPS

On SimpleScalar, i.e, MIPS processor, it takes 7867 instructions, 4204 loads and stores.
2. Description of XMPS simulator and scheduler

Note for unpacking: when unpacking the contents of xmps and sched, the files are in MS-DOS format with ^M used as line break. Opening it with a Word editor and saving it as plain txt rectifies the problem.

XMPS simulator:
A detailed description of the simulator from the README file in the directory “xmps” is as follows:

1) INTRO: --------- XMPS is a simulator for the Crossbar-switch based Microprocessor(XMP) architecture. More specifically, XMPS simulates the following

hardware:

- 16 32 bit register file (four read ports and two write ports)

- 1 three cycle latency 32 bit ALU

- 4K code I-cache (no latency, 100% hit)

- 4K data I-cache (three cycle latency, 100% hit)

The simulator has to be invoked together with an XMP assembler

file (see below for assembler syntax). The program is loaded

and the user is provided with a prompt for issuing commands.

The prompt has the following format:

<xmps:clk=XXXX> (XXXX stands for the number of clock cycles simulated)

2) SIMULATOR COMMANDS: ----------------------

The available commands are:

b ... Print the register contents

g ... Run the program

l ... List the program's code

m ... View the data memory segment

n ... View the code memory segment

p ... Print the collected program statistics

q ... Quit

r ... Reset the XMP

s ... Step through the program

This list can by typing a question mark '?'.

For avoiding awkward long listings, the memory prints are limited to only few lines (true, this need improvement).

3) ASSEMBLER SYNTAX: --------------------

 XMP assembler files must be in ASCII format. Each line can either

be blank, contain a comment, a data declaration or a code line. All

numbers must be in decimal format (no hex or binary).

 Comments start by '#' and end at the end of the line.

 Data declarations start by '.data' followed by the starting address

(must be 32 bit aligned, i.e. divisible by 4) and a braket enclosed

('{','}') list of numbers that will be loaded in consecutive locations

as sign-extended 32 bit integers. True, more data types are needed.

 Code lines specify the four operations that can be done simultaneously:

1 ALU, 2 register transfers and 1 memory access. Instructions must have

the following syntax:

alu_op [s1[,s2[,jA]]|jA] ; [rA=s3] ; [rA=s4] ; [@s5=s6|mem=@s5] ;

 * alu_op field can be any of the following:

 add,sub,neg,mul,and,or,inv,xor,shr,shl,bge,bg,be,bne,jmp,nop

 * jA is the jump magnitude, added to the PC of the instruction being

 executed when the jump is taken (count the three clock cycle latency

 for condintional jumps).

 * rA and rB are the destination of the register transfer operations

 they can be any of the 16 registers (0 to 15).

 * data sources s1,s2,s3,s4,s5,s6, and the jump jA can be any of:

 pc - the program couter (register 15)

 rN - register N (any number between 0 and 15)

 alu - the output of the ALU

 (number) - immediate constant

 mem - the memory access register

 Note: no more than 4 different source registers can be specified in

 a single instruction. Even though memory can be written from any

 source ,it can only be read to the memory access register 'mem' and

 from there the data can be routed anywhere else. Also, no more than

 one immediate constant can be specified per instruction.

3) CODE EXAMPLES:

 Example 1: add the numbers in registers r2 and r3 and store the

 result in register r4.

 add r2,r3 ; ; ; ; # issue the add to the ALU

 nop ; ; ; ; # wait for the ALU to complete

 nop ; ; ; ;

 nop ; r4=alu ; ; ; # store result in r4

 Run as :

cd xmps/bin/

./xmps ../Samples/Example1.xmp

Help:

 b ... Print the register contents

 g ... Run the program

 l ... List the program's code

 m ... View the data memory segment

 n ... View the code memory segment

 p ... Print the collected program statistics

 q ... Quit

 r ... Reset the XMP

 s ... Step through the program

<xmps:clk=0000> b

 +0 +1 +2 +4

+00 0x00000000 0x00000000 0x00000000 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000000

<xmps:clk=0000> g

Program finished

<xmps:clk=0004> b

// 4 clock cycles taken

 +0 +1 +2 +4

+00 0x00000000 0x00000000 0x00000000 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000020

<xmps:clk=0004> p

 Clock cyces ... 4

 ALU ops. 1

 Reg. ops. 1

 Branches 0 total, 0 taken

 Jumps 0

 Mem. acc. 0 writes, 0 reads

 Example 2: increment the number in memory location 48 by 3.

 nop ; ; ; mem=@48 ; # read memory[48] into

 nop ; ; ; ; # memory access register.

 nop ; ; ; ; # wait for memory latency.

 add mem,3 ; ; ; ; # increment memory[48] by 3

 nop ; ; ; ; # wait for ALU to complete

 nop ; ; ; ;

 nop ; ; ; @48=alu ; # store memory[48] from ALU

<xmps:clk=0000> g

Program finished

<xmps:clk=0007> p

 Clock cyces ... 7

 ALU ops. 1

 Reg. ops. 0

 Branches 0 total, 0 taken

 Jumps 0

 Mem. acc. 1 writes, 1 reads

<xmps:clk=0007> b

 +0 +1 +2 +4

+00 0x00000000 0x00000000 0x00000000 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000038

 Example 3: count to 10 storing the count in successive memory locations.

 nop ; r0=0 ; r1=0 ; ;

 nop ; r2=9 ; ; ;

 add r0,1 ; ; ; ;

 add r1,4 ; ; ; ;

 bg r2,r0,-24 ; ; ; @r1=r0 ; # jump back 24/8=

 nop ; r0=alu ; ; ; # =3 instructions

 add r0,1 ; r1=alu ; ; ;

 add r1,4 ; ; ; ; # from THIS POINT!

Stepping through the program in the following manner:

<xmps:clk=0000> s

0x00000000 nop ; r0=0 ; r1=0 ; ;

<xmps:clk=0001> b

 +0 +1 +2 +4

+00 0x00000000 0x00000000 0x00000000 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000008

<xmps:clk=0001> m

0x00000000 0000000000000000 0000000000000000

0x00000010 0000000000000000 0000000000000000

0x00000020 0000000000000000 0000000000000000

0x00000030 0000000000000000 0000000000000000

0x00000040 0000000000000000 0000000000000000

0x00000050 0000000000000000 0000000000000000

0x00000060 0000000000000000 0000000000000000

0x00000070 0000000000000000 0000000000000000

0x00000080 0000000000000000 0000000000000000

0x00000090 0000000000000000 0000000000000000

0x000000A0 0000000000000000 0000000000000000

0x000000B0 0000000000000000 0000000000000000

0x000000C0 0000000000000000 0000000000000000

0x000000D0 0000000000000000 0000000000000000

0x000000E0 0000000000000000 0000000000000000

0x000000F0 0000000000000000 0000000000000000

<xmps:clk=0001> n

0x00000000 F000020400000009 F000001480000000

0x00000010 0100000022000004 0000000022000001

0x00000020 F000000600000000 B2010000255AFFE8

0x00000030 0100000022000004 0000010622000001

0x00000040 0000000000000000 0000000000000000

0x00000050 0000000000000000 0000000000000000

0x00000060 0000000000000000 0000000000000000

0x00000070 0000000000000000 0000000000000000

0x00000080 0000000000000000 0000000000000000

0x00000090 0000000000000000 0000000000000000

0x000000A0 0000000000000000 0000000000000000

0x000000B0 0000000000000000 0000000000000000

0x000000C0 0000000000000000 0000000000000000

0x000000D0 0000000000000000 0000000000000000

0x000000E0 0000000000000000 0000000000000000

0x000000F0 0000000000000000 0000000000000000

<xmps:clk=0001> s

0x00000008 nop ; r2=9 ; ; ;

<xmps:clk=0002> b

 +0 +1 +2 +4

+00 0x00000000 0x00000000 0x00000009 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000010

<xmps:clk=0002> m

0x00000000 0000000000000000 0000000000000000

0x00000010 0000000000000000 0000000000000000

0x00000020 0000000000000000 0000000000000000

0x00000030 0000000000000000 0000000000000000

0x00000040 0000000000000000 0000000000000000

0x00000050 0000000000000000 0000000000000000

0x00000060 0000000000000000 0000000000000000

0x00000070 0000000000000000 0000000000000000

0x00000080 0000000000000000 0000000000000000

0x00000090 0000000000000000 0000000000000000

0x000000A0 0000000000000000 0000000000000000

0x000000B0 0000000000000000 0000000000000000

0x000000C0 0000000000000000 0000000000000000

 0x00000D0
0000000000000000 0000000000000000

0x000000E0 0000000000000000 0000000000000000

0x000000F0 0000000000000000 0000000000000000

<xmps:clk=0002> b

 +0 +1 +2 +4

+00 0x00000000 0x00000000 0x00000009 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000018

<xmps:clk=0003> s

0x00000018 add r1,4 ; ; ; ;

<xmps:clk=0004> b

 +0 +1 +2 +4

+00 0x00000000 0x00000000 0x00000009 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000020

<xmps:clk=0004> s

0x00000020 bg r2,r0,-24 ; ; ; @r1=r0 ;

<xmps:clk=0005> b

 +0 +1 +2 +4

+00 0x00000000 0x00000000 0x00000009 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000028

<xmps:clk=0005> s

0x00000028 nop ; r0=alu ; ; ;

<xmps:clk=0006> b

 +0 +1 +2 +4

+00 0x00000001 0x00000000 0x00000009 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000030

<xmps:clk=0006> s

0x00000030 add r0,1 ; r1=alu ; ; ;

.

.

.

<xmps:clk=0043> s

0x00000038 add r1,4 ; ; ; ;

<xmps:clk=0044> b

 +0 +1 +2 +4

+00 0x0000000A 0x00000028 0x00000009 0x00000000

+04 0x00000000 0x00000000 0x00000000 0x00000000

+08 0x00000000 0x00000000 0x00000000 0x00000000

+12 0x00000000 0x00000000 0x00000000 0x00000040

<xmps:clk=0044> p

 Clock cyces ... 44

 ALU ops. 22

 Reg. ops. 23

 Branches 10 total, 9 taken

 Jumps 0

 Mem. acc. 10 writes, 0 reads

XMPS scheduler:
The scheduler reads in a set of MIPS instructions and outputs the equivalent XMP instructions.

It makes a graph whose nodes are composed of the MIPS instructions parsed by the function ReadMIPSProgram which creates a graph of the instructions taking into account hard dependencies, WAR and WAW data hazards.

This graph is then levelized (in levelizeGraph -src/graph.c) and the instructions are scheduled (in scheduleGraph – src/graph.c). These scheduled instructions are printed out to stdout by the PrintXMPIns -src/parser.c.

The delays assigned for each microinstruction are given in src/parser.c in the function “iDelay”

The structure definition for the graph, node and edge are in include/graph.h

The PrintXMPProgram function prints out the scheduled instructions to the “stdout” as XMP instructions. NULL nodes are translated as nop's.

For debugging remove comments from DumpGraph(program) in src/main.c and remove the .o files from objects/ and do a make. The DumpGraph gives a snapshot of the graph when called.

Example:

elecA80:/home/priyanka/ARCH/sched# ./bin/sched < samples/bub3.s

sub r15,80 ; r5=r3 ; ; ;

nop ; ; ; ;

nop ; r15=alu ; ; ;

add r15,76 ; r14=r15 ; ; ;

add r15,72 ; ; ; ;

add r14,16 ; ; ; @alu=r12 ;

nop ; ; ; @alu=r14 ;

nop ; r2=alu ; ; ;

nop ; r4=r2 ; ; ;

where samples/bub3.s contains

 subu $15,$15,80

 sw $12,76($15)

 sw $14,72($15)

 move $14,$15

 addu $2,$14,16

 move $4,$2

 move $5,$3

Notice that MIPS instructions are given as “[opcode – string] [space] [operand-string]” as read by the ReadMIPSProgram in “parser.c”.

Now removing the comments of the main.c file at DumpGraph

elecA80:/home/priyanka/ARCH/sched# ./bin/sched <samples/bub3.s

Checkpoint I: I am dumping the graph made by parsing MIPS program

NODE: 0 @ 0x0804D028
//this is node 0 of the graph at mem loc 0x0804D028

XBAR: 1 2 3 4 5 6 7

//this is the XBAR config for the given node

 1

 2

 3 X

 4 X

 5

 6

 7

REG_READS: 15, -1, -1, -1
//register values being read for reg1,reg2,reg3,reg 4

REG_WRITES: -1, -1

//register values being written for reg 1, reg2

ALU_OPCODE: 2

//operation OPCODE for the ALU

CONSTANT: 80

//constant being used in the instruction

LEVEL: 0

//level of the node – used for subsequent scheduling

ABOVE:

//number of nodes before this node

BELOW: [0x0804D158]

//number of nodes after this node

.

.

sub r15,80 ; r5=r3 ; ; ;

.

3. Conclusions

As can be seen, the encoding of the XBAR configuration in the instruction word and the crossbar itself makes the decoding of instructions simple. It makes each atomic transaction between each element in the processor to be scheduled in a clock cycle. It provides the compiler/scheduler the flexibility to schedule/optimize instructions by manipulating the XBAR configuration.
The presence of the crossbar perhaps increases the amount of hardware required and the chip area, but the amount of decoding required is reduced. For a microprogrammed architecture, the microprogramming unit allows the flexibility to control the manner in which the instructions are decoded. Similarly, the presence of the crossbar as the interconnect allows the flexibility of changing the functional units as well as the control logic (embedded in the instruction as the crossbar) without much change in the hardware. This would lead to development of special purpose processors easy and interconnection of a bunch of them easier too. The instructions being VLIW take longer time to fetch.

Various other implementations of the XMP architecture would result in different degrees of freedom. The processor's asynchronous interconnect amongst elements provides inherent pipelining, issue of variable length instructions, and scaling the idea to include either fine elements such as register files, ALU, etc connected to it or other units such as processor cores.
The immediate goals for the scheduler are that the scheduler can incorporate the optimizations for a pipelined architecture as given in [9],[10], such as get rid of WAR hazards, do pipeline forwarding, speculative branch prediction as well as incorporate a branch prediction unit perhaps. Currently the ALU has a fixed delay for all the operations; in the simulator it can be modeled to have different delays. Since the scheduler is statically scheduled, various optimization techniques, such as loop optimizations, etc is to be incorporated. Due to the flexibility of the instruction word, I also think that at the compilation stage, optimizations need to take advantage of it, i.e., while optimizing in the compiler, the loop invariants and the instructions at the same level (not at instruction level but at the high language level, such as unrelated arithmetic operations etc) may be arranged in the manner to allow efficient ILP.
The other goals for this architecture would be, how its performance changes with increase the register file, add different functional units, etc. The simulator currently has 100% hit on the caches.
As this architecture incorporates ILP, I think that applications with lot of inherent parallelism or redundancy such as packet processing in network cards, digital signal processors, etc would better perform using it.

Apart from the XMP architecture itself, through this study, I learnt more about pipelining, scheduling and inter-connected processors.

3. Acknowledgement

I would like to acknowledge C.G. Parodi for his invention of the XMP processor, in providing with a simulator and scheduler that effectively captures the concept and further to have promptly responded to emails in my trying to understand the architecture. The document describing the architecture and effectively the concept is attached herewith.
I would also like to mention AB Kannan and Nitin Yogi for their help.
4. References

1. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP and Streams
Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, Anant Agarwal

· Has crossbar as on-chip interconnect, ICSA 2004

2. Low-Latency Virtual-Channel Routers for On-Chip Networks
Robert Mullins, Andrew West, Simon Moore, ICSA 2004

3. Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara , Andreas Nowatzyk, Shaz Qadeer , Barton Sano, Scott Smith!, Robert Stets, and Ben Verghese, ISCA 2000

4. Power-driven Design of Router Microarchitectures in On-chip Networks Hangsheng Wang Li-Shiuan Peh Sharad Malik, MICRO-35

5. PivotPoint:Clockless Crossbar Switch for High-Performance Embedded Systems, Uri Cummings, Fulcrum Microsystems, IEEE micro March/April 2004

6. Asynchronous Interconnect for Synchronous SoC Design, Andrew Lines, Fulcrum Microsystems, IEEE micro January/February 2004

7. An Interconnect Architecture for Networking Systems on Chips, Faraydon Karim , Anh Nguyen, Sujit Dey, IEEE micro September/October 2002

8. Tamiko Thiel; The Connection Machine. http://mission.base.com/tamiko/cm/cm-text.htm
9. Computer Architecture: A quantitative approach. Patterson and Henessy
10. http://hpc.serc.iisc.ernet.in/~govind/hpc/ - as a resource for notes on ILP

http://www.cs.swan.ac.uk/~csneal/HPM/index.html
GNU GLOBAL C – for source browsing

5. Appendix
CROSSBAR SWITCH BASED MICROPROCESSOR (XMP)
Copyright © 2001, Carlos G. Parodi

Overview
The crossbar switch based microprocessor (XMP) is a mixture of technologies aimed at reducing hardware complexity while providing the same (or more) performance as bus based processors. Technically, the XMP is a statically scheduled, explicitly pipelined, microcode programmable, superscalar, pseudo-VLIW microprocessor.

The XMP relies on static scheduling technique for code generation. The base of the XMP is a crossbar switch that joins all functional units. The program that the XMP executes can be viewed as the time frames of this crossbar switch (similar to space/time switching technique used in ST switches for telecommunication networks).

The compiler/scheduler has to pay special attention to the fact that operations commonly regarded as atomic are not so in the XMP. For example, to add two numbers, the crossbar has to be set for passing the two numbers to the ALU in time frame N, and also set to route the result of the addition at time frame N+b (b being the ALU latency). This is the explicit pipelining characteristic of the XMP.

The fact that all functional units are connected to the crossbar switch enables all types of non-standard instructions to be executed (combinations of functional units that are not normally available on a bus based microprocessor). The functionality of the crossbar switch is hard coded in the microcode of bus based microprocessors, but in the XMP it is open to the program to control it fully.

The architecture implementation presented in this document is a simplistic one, but it is clear how functional units can be added by scaling the architecture without modifying the underlying structure.

Provided there is a free functional unit, multiple instructions can be issued in the same instruction word (in the simple implementation presented here, memory access, ALU instruction, register moves, and branches can all be done at the same time), providing a functionality similar to VLIW architectures.

Microprocessor Diagram

[image: image1.png]st conl

REGISTER
FILE pdse |
1663 _

o |
2ty
77
77 -
e | aoph
demun 727 CROSSEAR

SWITCH

Crossbar Switch

[image: image2.png]PeaT Wew

mem addr

000 oS >

demux.

The crossbar switch routes the data between the microprocessor components. Since it is a crossbar switch, it can route any input to any output without blockage. This characteristic enables all XMP’s instructions to gather data from any source (memory, registers or ALU) and route the result to any destination.

Explicit Pipelining

[image: image3.png](CROSSEAR SWITCH:

™E
(AL LATENCY)

SEND REGISTER.
VALUESTOALU

PERFOROTHER
OPERATIONS

ROUTE LU
RESUTTO
REGSTERS

To complete a multi-cycle instruction, the crossbar switch has to be time-multiplexed: in one time frame it has to be configured be configured to read the operands, and several time frames later (exactly the same as the operation latency) it has to be configured to store the result of the operation. By shifting the overhead of this explicit pipelining to the compiler, the hardware can be minimized and the flexibility increased.

Register File

[image: image4.png]T o
ppeisp

e TE T
o0 O T

—Tpre R ¢

e sE 7
TP OE 7

The implementation of the XMP presented here has 16 registers, each 32 bits wide. They are all user-addressable and general purpose, except for register 15 which also is the Program Counter.

The register file has multiple read/write ports to take advantage of the parallelism of the XMP. In this implementation, there are four read ports and two write ports.

Even though the program counter is a general purpose register, there is an extra -continuously enabled- write port for this register, with less priority than the register file’s write ports. This extra write port is used to increment the PC after the execution of each instruction. Absolute jumps imply writing a new value to register 15 using the standard register file write ports. For branching and relative jumps, however, can be resolved with the following logic:

[image: image5.png]7x7 CROSSBAR
SWITCH

Branches and relative jumps use an explicit adder based on the current value of the PC. A condition flag set by the ALU decides if the PC should be incremented by 8 (one instruction) or by any given jump size. Also note that relative jumps are resolved immediately (the condition can be set to 1 immediately), while branches require the latency of the ALU to resolve (three clock cycles in this implementation), providing three branch delay instruction slots.

Pipelined ALU

[image: image6.png]current PC

aomb

The ALU is pipelined, with all operations having a 3 cycle latency (for simplicity). The ALU can perform two types of operations: arithmetic/logic operations, and branch comparisons. When performing arithmetic/logic operations, the ALU writes (after three cycles) the result of its operation to the ALU result line in the crossbar switch. When performing branch comparisons, the ALU chooses (according to the comparison criterions and operands) the source for the program counter jump; if the jump is conditional, this comparison takes three cycles, if it is an unconditional jump, it is immediate.

Instruction Format

[image: image7.png]weisuoo

Louns eax

02

15071

Joss7ys

joss7es

loss™1s

epoado e

For the implementation proposed in this document, the instruction length is 64 bits. This instruction length accommodates four possible simultaneous operations (one ALU operation, two register transfers, and one memory access).

The alu_opcode field specifies the ALU operation, and it can be any of the following:

0 – add (addition)

1 – sub (subtraction)

2 – mul (multiplication)

3 – neg (arithmetic inversion)

4 – and (logical “and”)

5 – or (logical “or”)

6 – inv (logic inversion)

7 – xor (logical “exclusive-or”)

8 – shr (signed right shift)

9 – shl (signed left shift)

10 – bge (branch if greater or equal)

11 – bg (branch if greater)

12 – be (branch if equal)

13 – bne (branch if not equal)

14 – jmp (jump)

15 – nop (idle, no operation)

The register source operands (register read ports) are specified in the fields r1_src to r4_src. The register destinations (register write ports) are specified in the fields r1_dst and r2_dst.

The configuration of the crossbar switch is specified in the xbar_switch field. One out of eight data sources (seven columns and one more option for no source, or all-zero input) have to be chosen for the seven data destinations (the seven rows). Each source specifier is encoded in three bits (eight possibilities), yielding a total of 21 bits necessary to specify the crossbar configuration (= 7 x 3).

For immediate operations , a 15 bits signed constant can be encoded in the constant field.

Assembler Syntax

The typical XMP instruction has the following assembler syntax:

alu_op [src1[,src2[,jdst]]|jdst] ; [r1=src3] ; [r2=src4] ; [@addr=src5|mem=@addr] ;

Where:

alu_op – ALU opcode (as detailed in the prior section)

src1 to src5 – data sources (see below for a list of valid sources)

jdst – the magnitude of the jump (see below for list of valid sources)

r1, r2 – destination registers

addr – address for memory access

The valid data sources are:

rN – register N (where N is between 0 and 15)

alu – the output of the ALU

mem – the memory access register

(number) – the immediate constant

The architectural constraints are:

- No more than four different source registers can be specified in one operation

- Only one immediate constant can be specified per instruction

- Even though memory can be written from any valid source, it can only be read to the memory access register, and from there it can be moved to any other destination (this is due to the memory read delay, assumed to be three clock cycles).

SIMULATOR

A simulator of this architecture is available upon request, contact Carlos G. Parodi (parodi75@yahoo.com)
Email clarifying my doubts:

Priyanka,

glad to hear from you. i apologize for the delay in
answering.

working for prof. Agrawal is an honor, hope you enjoy
it as much as i did.

regarding the XMP, we must distinguish between the
idea and the implementation. most of the questions
that you are asking me are regarding one possible
implementation of the XMP that we proposed as an
example.

the ALU is a standard component, it is a fully
pilpelined, parallel ALU, so you can start any
operation on each cycle, and B cycles later you would
have its result on the output. of course, this
penalizes fast operations in favour of slow ones, and
requires adding register stages on slow operations
data paths, but the advantage is simpler instruction
scheduling. here comes the difference between XMP idea
and implementation, in the idea you could have
different latencies for each ALU instruction, for the
implementation that you see in the simulator, we used
the same latency for all (i think, its been a while
since the last time i took a look at it).

can you be more specific on the constraints question?

regards,

Guillermo Parodi

--- Priyanka Sinha <sinhapr@auburn.edu> wrote:

> Hi
>
> I'm a first year grad student working with prof
> vishwani agrawal and was
> going through the description and simulator of XMPS.
> I was reading up the description and trying to find
> out how the CPU
> works ..
> I can't figure out how the ALU is working, is there
> a global clock? i
> did not get the idea of the latency 'b'..
> I also can't seem to understand why the constraints
> exist and how?
>
> I would be grateful for your help and am trying to
> analyse the design. I
> have to report on the performance of this
> architecture.
> P.S.: i had an undergrad course in comp arch.
> Regards
> Priyanka

