Glitch filtering in gate-level switching power estimation using Dual-transition probability
1st Author
1st author's affiliation
1st line of address
2nd line of address
Telephone number, incl. country code

1st author's email address

2nd Author

2nd author's affiliation
1st line of address
2nd line of address
Telephone number, incl. country code

2nd E-mail

ABSTRACT
Most of existing gate-level probabilistic approaches on power estimation fails to model glitch filtering effect accurately. However, this effect could have significant impact on the power dissipation in a circuit and therefore not negligible. In this paper, we propose an accurate glitch filtering method which can be applied to existing probability simulation and tagged probability simulation techniques. Our glitch filtering method is based the new measure of dual-transition probability that captures the probability of states on one node at two different time instance. Experiments show that the application to the tagged probability simulation gives a power estimation which has a more stable performance than that of the original one. For certain circuits with a large component of glitch power, up to 28% estimation accuracy improvements have been obtained.

Keywords
Dual-transition probability, dual-transition correlation coefficient
1. INTRODUCTION

Power estimation refers to the techniques that can estimate or predict the average power and maximum power for a given circuit. It’s been well understood that accurate power estimation methods are critical to IC designs because the power consumptions for each module must meet the specification during the design phase. Otherwise, a costly redesign process is inevitable. Numerous computer aided design tools for power estimation has been developed to address this issue. From the interest of estimation and circuit details provided, power estimation techniques ranges from circuit level SPICE simulation to high level estimation of power dissipation of a CPU.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

For gate level power estimation, a gate level netlist of the circuit is provided. The power components that consist of the total power dissipation for a CMOS circuit are switching power (
[image: image120.wmf]1

1

3

4

1

1

5

2

1

2

3

4

5

6

7

8

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

3

2

2

17

18

19

20

21

22

23

24

1

3

25

26

27

28

3

3

1

33

29

30

31

32

, caused by the signal transitions charging and discharging load capacitors), leakage power (
[image: image2.wmf]leakage

P

, caused by sub-threshold current of transistors when no input changes) and short-circuit power (
[image: image3.wmf]shortcircuit

P

-

, power dissipation during the gate switching, when both PMOS and NMOS network are turned on) [2]. Among these three components, switching power has been the dominant component in the past decades.
[image: image4.wmf]2

switchingLddclk

PkCVf

=

, where
[image: image5.wmf]k

 is the switching activity factor,
[image: image6.wmf]L

C

 is the load capacitance,
[image: image7.wmf]dd

V

 is the supply voltage and
[image: image8.wmf]clk

f

 is the clock frequency. Although leakage power is becoming more and more significant as the device size keeps shrinking, an accurate estimation of switching power is always of great interests.
Switching power estimation at gate level normally has two approaches, simulation-based and probabilistic methods. Although the event-driven logic simulation can give the precise switching activity at each node, the major drawback is that a large number of typical input vectors have to be simulated in order to get a meaningful average power. Therefore, it is normally very slow and strongly input pattern dependent. On the other hand, probabilistic methods only require one analysis to derive the power given input probabilities and are more preferred.* Previous probabilistic approaches differ in terms of delay model used, the way to handle spatial temporal independence, and glitch filtering effect considerations. They also vary on the estimation complexity and speed.
Most of early probabilistic approach for power estimation [3],[5],[11],[9],[10] are under zero delay assumption, which means only steady state signal values are analyzed. Premature signal transitions during the transient stage, so called glitches or hazards, can not be analyzed by zero-delay models. In reality, power consumed by glitches is not negligible in most cases and some of the late works tried to include the glitch power for a more accurate estimation. In [12], works in [10] has been extended into real delay case. There are many other approaches based on real delay model or differential delay to account for glitch power. Probabilistic simulation (CREST) [1],[6],[7] and Tagged probability simulation [13],[4] was proposed to propagate probability waveform throughout the circuit. Transition density approach, proposed by Najm [8], utilize a differential delay model (assuming that no two signal will arrive at a gate at the exactly same time) to include glitch power into the total switching power. For most of above techniques, except Tagged probability simulation, glitch filtering effect are not considered. Glitch filtering effect refers to the fact that glitches with pulse width less than the inertial delay of the gate will not be able to propagate to the output of the gate. The glitch filtering effect can change the switching activity of a gate significantly especially for gate with a large inertial delay. As far as we know, no one has proposed an accurate method to account for this effect. Even in tagged probability simulation, where glitch filtering is considered, the filtering is so approximated that glitches coming from single input will not be filtered.
In this paper, we propose an accurate glitch filtering method based on probability simulation approaches. Our technique can be applied to both probability simulation (CREST) and tagged probability simulation. Since probability simulation assumes spatial independence of input signals, it leads to a larger estimation error when the circuit contains reconvergent fanouts. Our application to the tagged probability waveform shows significant improvements in estimation accuracy for some circuits with a large component of glitch power. The organization of this paper is as follows. In section 2, we will briefly introduce the background of probability simulation and related terms. In section 3, we will discuss the way to propagate probability waveform throughout the circuit. In section 4, the new glitch filtering will be discussed. We will show some experimental result in section 5 and draw our conclusions and future works in section 6.
2. BACKGROUNDS
Our new glitch filtering method is based on previous technique of probability simulation. Here we have an introduction on probability waveform and Tagged probability waveform.

2.1 Probability waveform

Probability waveforms [7] represent the logic waveforms of each node collectively using probabilistic measurements. A probability waveform is a sequence of transitions edges over time where each edge is annotated with a probability of occurrence. In a probability waveform w, two concepts are critical, signal probability and transition probability. Signal probability
[image: image9.wmf]()

n

spt

 is defined as the probability of node n having logic one at time t. Transition probability refers to the probability of signal transition at the node. More precisely, the probability of an event that signal value of node n transfer from zero to one (or one to zero) at time t can be defined as a rising transition probability
[image: image10.wmf]()

n

tut

 (or falling transition probability
[image: image11.wmf]()

n

tdt

). The probability waveform of a node is a compact representation of all possible waveform at that node under the input stimuli and can be constructed easily if we enumerate all possible logic waveform and corresponding occurrence probability. A probability waveform can be represented by an initial signal probability followed by a sequence of transition probabilities in the temporal order. E.g.
[image: image12.wmf]00

{(0),(),(),...,(),()}

nnnnknk

wsptuttdttuttdt

=

. Note that
[image: image13.wmf]()()()()

nnnn

sptspttuttdt

+=-+-

.

In this paper, probability waveform is the representation of logic waveforms within a single clock period. We also extend the definition of transition probability to general cases. We define transition probability
[image: image14.wmf]()

sn

n

Pt

 as the probability that node n has a logic transition state sn (
[image: image15.wmf]{00,01,10,11}

sn

Î

) at time t. Therefore,
[image: image16.wmf]01

()()

nn

tutPt

º

 and
[image: image17.wmf]10

()()

nn

tdtPt

º

.
[image: image18.wmf]11

()

n

Pt

 (or
[image: image19.wmf]00

()

n

Pt

) denote the probability of node n hold on logic one (or zero) at time t. Consequently, we have
[image: image20.wmf]1011

()()()

nnn

sptPtPt

-=+

 and
[image: image21.wmf]1101

()()()

nnn

sptPtPt

+=+

. The switching power dissipation of a node can be described as

[image: image22.wmf]20110

1

()(()())

2

avclkddnnini

PnfVCPtPt

=+

å

(1)
, where Cn is the load capacitance of node n and
[image: image23.wmf]()()

nini

tuttdt

+

 is the transition density of the node.
2.2 Tagged probability waveform

A tagged probability waveform [4] can be viewed as a partitioning of a probability waveform according to the initial and final steady state signal values of each logic waveform contributed to it. That is, if we enumerate all possible logic waveform for a node, logic waveform with same steady state values are to be grouped to form one probability waveform, which is then tagged with the steady state values. Four tagged probability waveform can be defined to a node n:
[image: image24.wmf]000110

,,

nnn

www

, and
[image: image25.wmf]11

n

w

, where 00, 01, 10, 11 are tags. Similar to probability waveform,
[image: image26.wmf]()

xy

n

spt

(
[image: image27.wmf],{0,1}

xy

Î

) represents the signal probability in tagged probability waveform
[image: image28.wmf]xy

n

w

. More accurately,
[image: image29.wmf]()

xy

n

spt

 represents the probability that node n has logic one at time t and its initial and final steady state values are x and y. Furthermore,
[image: image30.wmf]()

xy

n

tut

 (or
[image: image31.wmf]()

xy

n

tdt

) represent the rising (or falling) transition probability in tagged probability waveform
[image: image32.wmf]xy

n

w

. That is the probability that node n has a zero to one (or one to zero) transition at time t and its steady state values are x and y. Note that either
[image: image33.wmf]()

xy

n

spt

,
[image: image34.wmf]()

xy

n

tut

, or
[image: image35.wmf]()

xy

n

tut

 are not conditional probabilities. A simple summation of four tagged probability waveform can reconstruct the original probability waveform. Tagged waveform probability, denoted as
[image: image36.wmf]()

xy

n

Pw

, is also defined, which is the sum of occurrence probabilities of all logic waveforms represented by
[image: image37.wmf]xy

n

w

. Figure 1 shows an example of probability waveform and tagged probability waveform. Each tagged probability waveform is labeled with its tag and the corresponding
[image: image38.wmf]()

xy

n

Pw

.
Similar to probability waveform, we extend the definition of transition probability in tagged probability waveform to a more general form. We define transition probability in tagged waveform
[image: image39.wmf],

()

sn

nxy

Pt

as the probability that node n has a logic transition state sn (
[image: image40.wmf]{00,01,10,11}

sn

Î

) at time t and its initial and final steady state values are x and y (
[image: image41.wmf],{0,1}

xy

Î

).The switching power dissipation of a node can be described as

[image: image42.wmf]20110

,,

1

()(()())

2

avclkddnnxyinxyi

ixy

PnfVCPtPt

=+

ååå

 (2)
, where Cn is the load capacitance of node n and
[image: image43.wmf]0110

,,

(()())

nxyinxyi

xy

PtPt

+

åå

 is the transition density of the node.

[image: image44.emf]sp

t

t1t2

0.1

0.2

0.1

0.2

0.5

sp

t

t1t2

0.05

0.15

sp

t1t2

0.15

0.15

0.35

sp

t1t2

0.05

0.1

0.15

sp

t1t2

0.35

11

01

10

00

t

t

t

0

1

0

1

0

1

0

1

t1

t2t

0

1

0

1

(a)

(b)

(c)

P=0.2

P=0.15

P=0.1

P=0.05

P=0.05

P=0.1

0

1

P=0.35

0.1

Figure 1. An example of probability waveform and tagged probability waveform. (a) shows all possible logic waveform within one clock period for a given node and corresponding occurrence probabilities. (b) shows a probability waveform constructed from (a). Arrows are rising edges and falling edges which are annotated with its transition probability. (c) shows four tagged probability waveforms constructed from (a), and each waveform is labeled with its tag (00,01,10,or 11). The y axis is the signal probability and the height of dashed line indicate the tagged waveform probability
[image: image45.wmf]()

xy

n

Pw

.
3. PROPAGATION OF WAVEFORMS
The waveform propagation scheme in probability waveform and tagged probability waveform is similar. However, for tagged probability waveform four waveforms are propagated through the circuit. Also the propagation of single probability waveform is simpler because no spatial correlation is considered.
3.1 Propagation of Probability Waveform

For probability waveform, the spatial correlation between two different inputs is ignored and the waveform will not be exact when circuits contain reconvegent fanouts. For a two input AND gate, with inputs a, b and output c. The output probability waveform at node c is calculated as

[image: image46.wmf]01

011101011101

()()

()()()()()()

cc

ababab

tutdPtd

PtPtPtPtPtPt

+º+

=++

(3)

[image: image47.wmf]10

101110101110

()()

()()()()()()

cc

ababab

tdtdPtd

PtPtPtPtPtPt

+º+

=++

(4)

, where d is the inertial delay of the AND gate. An OR gate is similar to a AND gate with
[image: image48.wmf]1111

(),()

ab

PtPt

 be substituted by
[image: image49.wmf]0000

(),()

ab

PtPt

 in above equations. In our implementation, to limit the complexity, gates with two or more inputs will be decomposed to two input gates first then perform the waveform propagation. To propagate the waveform, an initial signal probability
[image: image50.wmf](0)

n

sp

-

 is necessary for each node n.
[image: image51.wmf](0)

n

sp

-

 is the steady state signal probability that can be derived from primary input using global OBDD approach [9]. In practice, we can use a zero delay bit-parallel logic simulator to find out the values [4].

3.2 Propagation of TPW
3.2.1 Tree structure circuit
The propagation of tagged probability waveform is more complex because each input has four waveforms. In tagged waveform propagation, circuits with tree structure and circuits with reconvergent fanouts are handled differently. For circuit with tree structure, signal connected to two inputs of the AND gate are uncorrelated if the circuit inputs are uncorrelated. Therefore, the transition probability for a two input AND gate can be calculated as

[image: image52.wmf],01

,(,)

011101011101

,,,,,,

()()

()()()()()()

xywz

ccxywz

axybwzaxybwzaxybwz

tutdPtd

PtPtPtPtPtPt

+º+

=++

 (5)

[image: image53.wmf],10

,(,)

101110101110

,,,,,,

()()

()()()()()()

xywz

ccxywz

axybwzaxybwzaxybwz

tdtdPtd

PtPtPtPtPtPt

+º+

=++

 (6)

, where a, b are the inputs, c is the outputs,
[image: image54.wmf],,,{0,1}

xywz

Î

. The left terms of each equation is the joint-tagged (by xy,wz) transition probability. Since each joint tag actually indicates the initial and final steady state value of logic waveform for each input, we can easily calculate the initial and final steady state value of logic waveform at the output, which will be the output tag. All joint-tagged waveforms with same output tag are added together. After this procedure, 16 joint-tagged waveforms are combined to form 4 tagged waveforms. And these 4 waveforms will be propagated to the fanout gates. As in probability simulation, An OR gate is similar to a AND gate with
[image: image55.wmf]1111

,,

(),()

axybwz

PtPt

 be substituted by
[image: image56.wmf]0000

,,

(),()

axybwz

PtPt

 in above equations. Gates with two or more inputs will be decomposed to two input gates to avoid the complexity.
3.2.2 Circuits with reconvergent fanouts

For circuits with reconvergent fanout, spatial correlations of signals are not negligible. As illustrated in [4], exact calculation of transition probability is very difficult. To exactly calculate the output waveform from two input waveform of a two input gate, we need to know the correlation between any two states of different inputs at the same time instance. Therefore, the macroscopic correlations between steady state signal values (tags) are used to approximate the exact correlations. The macroscopic correlation are encapsulated by correlation coefficients, which is defined, for tagged waveform
[image: image57.wmf],

xywz

ab

ww

,

[image: image58.wmf],

,

(^)

()()

xywz

xywz

ab

ab

xywz

ab

Pww

PwPw

w

=

 (7)
,where
[image: image59.wmf],,,{0,1}

xywz

Î

. The correlation coefficient is the ratio of the probability of both tagged waveform occurs and the product of individual tagged waveform probability.

Under the assumption that all correlations between any two states of different inputs at the same time instance are the same as
[image: image60.wmf],

,

xywz

ab

w

, the transition probabilities for a two input AND gates can be calculated as

[image: image61.wmf],01

,(,)

011101011101,

,,,,,,,

()()

(()()()()()())

xywz

ccxywz

xywz

axybwzaxybwzaxybwzab

tutdPtd

PtPtPtPtPtPt

w

+º+

=++

 (8)

[image: image62.wmf],10

,(,)

101110101110,

,,,,,,,

()()

(()()()()()())

xywz

ccxywz

xywz

axybwzaxybwzaxybwzab

tdtdPtd

PtPtPtPtPtPt

w

+º+

=++

 (9)

, where a, b are the inputs, c is the outputs,
[image: image63.wmf],,,{0,1}

xywz

Î

. The rest of the propagation is the same as the case with tree structure circuit.

4. NEW GLITCH FILTERING METHOD

4.1 Original glitch filtering in TPS

[image: image1.wmf]switching

P

The glitch filtering effect refers to subtraction of transition probabilities from probability waveforms. In tagged probability simulation [4], glitch filtering on joint-tagged waveform
[image: image64.wmf],

xywz

c

w

 of a two input AND gate with inertial delay d can be described as follows. For a rising transition event
[image: image65.wmf]1

()

xy

a

tut

, all of the falling transition events
[image: image66.wmf]2

()

wz

d

tut

 that comes from the other gate input with
[image: image67.wmf]121

tttd

<<+

 are subject to glitch filter. It means that
[image: image68.wmf],

,12

()()

xywzxywz

abab

tuttdt

w

 is subtracted from both
[image: image69.wmf],

1

()

xywz

c

tutd

+

 and
[image: image70.wmf],

2

()

xywz

c

tdtd

+

. In essence, they assume that
[image: image71.wmf]1

()

xy

a

tut

 and
[image: image72.wmf]2

()

wz

d

tut

 are also correlated by macroscopic correlations, described by
[image: image73.wmf],

,

xywz

ab

w

.
[image: image74.wmf],

,12

()()

xywzxywz

abab

tuttdt

w

 represents the probability that both rising and falling transitions happens at the output c at time t1,t2, which is subjected to the filtering since the pulse width is less than d. This process is applied to each joint-tagged probability waveform before they merged into four output tagged probability waveform. For multiply input gates, only the last gate in the decomposed network is subject to glitch filtering.

4.2 Dual-transition probability
The above method for glitch filtering is very imprecise. First of all, the glitch coming from the single input can not be filtered by this method. 2nd, even if we maintain the same assumption for the use of macroscopic correlation, the probability that both rising and falling transitions happens at t1, t2 is not simply
[image: image75.wmf],

,12

()()

xywzxywz

abab

tuttdt

w

. In probability waveform, either a or b (inputs of the AND gate) could has four possible states at t1 (or t2), a rising transition (01), a falling transition (10), holding on one (11), or holding on zero (00). To have a rising transition on the output c at t1 +d, three possible combinations of states of a and b at t1 are (01, 01), (01, 11) or (11, 01). Similarly, to have a falling transition on the output c at t2+d, three possible combinations of states of a and b at t2 are (10, 10), (10, 11) or (11, 10). To have an accurate estimation of the probability that both transition happens at the output, joint probability of events at t1 and t2 on each input should be adopted.

For our new glitch filtering method, we define dual-transition probability
[image: image76.wmf]1,2

,12

(,)

snsn

nxy

Ptt

 as the joint probability that node n has the state sn1 at time t1 and the state sn2 at t2 on the xy tagged probability waveform, where
[image: image77.wmf]1,2{00,01,10,11}

snsn

Î

 and
[image: image78.wmf],{0,1}

xy

Î

. Then, the probability that both rising and falling transition happens at t1, t2 on the output of a two input AND gate can be calculated as

[image: image79.wmf]01,10

,(,)12

33

1,21,2

,

,12,12,

11

(,)

(,)(,)

ijij

cxywz

sasasbsb

xywz

axybwzab

ij

Ptdtd

PttPtt

w

==

++

=

åå

(10)

, where c is the output, a, b is the inputs, d is the gate inertial delay,
[image: image80.wmf],,,{0,1}

xywz

Î

,
[image: image81.wmf](1,1){(01,11), (11,01), (01,01)}

ii

sasb

Î

, and
[image: image82.wmf](2,2){(10,11), (11,10), (10,10)}

jj

sasb

Î

. Note that we still adopted the macroscopic correlation
[image: image83.wmf],

,

xywz

ab

w

 to approximate the spatial correlation between two inputs. The output dual-transition probability is joint-tagged with (xy,wz). Similar to the merging of joint-tagged transition probabilities, joint-tagged dual-transition probabilities are added together according to its output tag to form the (single tagged) dual-transition probability.
4.3 New glitch filtering

With the new notion of dual-transition probability, the glitch filtering on joint-tagged waveform
[image: image84.wmf],

xywz

c

w

 of a two input AND gate with inertial delay d is modified as follows. For a rising transition event at t1, all falling transition events at t2 that has
[image: image85.wmf]121

tttd

<<+

 are subject to glitch filter. It means that the dual-transition probability
[image: image86.wmf]01,10

,(,)12

(,)

cxywz

Ptt

 is subtracted from both
[image: image87.wmf],

1

()

xywz

c

tutd

+

 and
[image: image88.wmf],

2

()

xywz

c

tdtd

+

. Moreover, For a falling transition event at t1, all rising transition events at t2 that has
[image: image89.wmf]121

tttd

<<+

 are subject to glitch filter. The dual-transition probability
[image: image90.wmf]10,01

,(,)12

(,)

cxywz

Ptt

 is subtracted from both
[image: image91.wmf],

1

()

xywz

c

tdtd

+

 and
[image: image92.wmf],

2

()

xywz

c

tutd

+

. This process is applied to each joint-tagged probability waveform before they merged into four output tagged
probability waveform. Figure 2 shows an example of the process.
[image: image117.wmf]c

d

a

b

t

t

1

t

2

sp

0

.

5

0

.

2

0

.

2

11

a

w

t

sp

t

2

t

3

0

.

2

0

.

2

11

b

w

0

.

5

t

t

1

'

t

2

'

sp

0

.

25

0

.

1

0

.

06

11

c

w

0

.

06

0

.

1

t

3

'

t

sp

0

.

25

11

c

w

t

1

'

t

2

'

t

3

'

Glitch filtering

10,0110,0111,11

,1112,1112,1112

10,0110,0111,11

,1123,1123,1123

10,0110,11

,1113,1113,11

(',')(',')(',')0...00.2*0.30.06

(',')(',')(',')0...00.2*0.30.06

(',')(',')

cab

cba

cab

PttPttPtt

PttPttPtt

PttPttP

=++==

=++==

=

11,01

13

(',')0...00.2*0.20.04

tt

++==

4.4 Propagation of dual-transition probability
4.4.1 Calculate dual-transition probability

Dual-transition probability is propagated from the primary inputs throughout the circuit. The general equation for propagation of dual-transition probability is as follows,

[image: image93.wmf]1,2

,(,)12

1,21,2

,

,12,12,

11

(,)

(,)(,)

ijij

ss

cxywz

kl

sasasbsb

xywz

axybwzab

ij

Ptdtd

PttPtt

w

==

++

=

åå

(11)

where c is the output, a, b is the inputs, d is the gate inertial delay,
[image: image94.wmf],,,{0,1}

xywz

Î

,
[image: image95.wmf](1,1)1

ii

sasbQ

Î

, and
[image: image96.wmf](2,2)2

jj

sasbQ

Î

. Q1(or Q2) represents the group of input combinations on a and b that give output state s1 (or s2) and the size of Q1(or Q2) is k (or l). For primary inputs, where transitions can only occur at time zero,
[image: image97.wmf]1,21

,,

(0,)(0)

sss

nxynxy

PtP

=

 or
[image: image98.wmf]1,2

,

(0,)0

ss

nxy

Pt

=

 depending on the value of s1 and s2.

4.4.2 Update probabilities after glitch filtering
It is important to update values of dual-transition probability after the glitch filtering. Indeed, no two transitions could happen with a time difference less than the gate delay d. The dual-transition probability is updated as follows. Define
[image: image99.wmf]2[1],2[2]

ss

 as the first (left) and 2nd (right) bit of s2. For t1, t2 with
[image: image100.wmf]121

tttd

<<+

,
[image: image101.wmf]1,21

,12,1

(,)()

sss

nxynxy

PttPt

=

 if
[image: image102.wmf]2[1]2[2]1[2]

sss

==

 and
[image: image103.wmf]1,22

,12,2

(,)()

sss

nxynxy

PttPt

=

 if
[image: image104.wmf]1[1]1[2]2[1]

sss

==

. Otherwise,
[image: image105.wmf]1,2

,12

(,)0

ss

nxy

Ptt

=

.
To help update dual-transition probability for t1, t2 with
[image: image106.wmf]12

tdt

+<

, we define dual-transition correlation coefficient
[image: image107.wmf]1,2

,12

(,)

ss

nxy

tt

w

 as follow,

[image: image108.wmf]1,2

,12

1,2

,12

12

,1,2

(,)

(,)

()()

ss

nxy

ss

nxy

ss

nxynxy

Ptt

tt

PtPt

w

=

 (12)

[image: image118.wmf]1

1

3

4

1

1

5

2

1

2

3

4

5

6

7

8

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

3

2

2

17

18

19

20

21

22

23

24

1

3

25

26

27

28

3

3

1

33

29

30

31

32

, where
[image: image109.wmf]1,2{00,01,10,11}

ss

Î

,
[image: image110.wmf],{0,1}

xy

Î

.
[image: image111.wmf]1,2

,12

(,)

ss

nxy

Ptt

 is the dual-transition probability and
[image: image112.wmf]1

,1

()

s

nxy

Pt

 is the transition probability on tagged waveform. Before the glitch filtering is applied,
[image: image113.wmf]1,2

,12

(,)

ss

nxy

tt

w

’s are calculated. After the glitch filtering, we assume the correlation for transitions at t1, t2 with
[image: image114.wmf]12

tdt

+<

does not change, and update dual-transition probability as follows,

[image: image115.wmf]1,2121,2

,12,1,2,12

(,)()()(,)

ssssss

nxynxynxynxy

PttPtPttt

w

=

(13)

Note that
[image: image116.wmf]12

,1,2

(),()

ss

nxynxy

PtPt

 here is the new transition probability after the subtraction. To avoid the exponential increase of complexity, only correlation coefficients (and dual-transition probabilities) with t2-t1<dmax are propagated, where dmax is the maximum gate delay of the circuit.

5. EXPERIMENTAL RESULTS
Although we explained our new glitch filtering method under tagged probability simulation. Our glitch filtering method can be applied to both probability simulation and tagged probability simulation. The proposed algorithm has been implemented in software prototypes which are to be referred to as “ProSim+” and “TPS+”. The software takes a description of a circuit and gives the estimation of switching power (in terms of transition density) at each node. The description of circuit includes the netlist of the circuit and input signal probabilities. In our experiments, spatial and temporal independence is assumed for primary inputs. Input signal probabilities for PIs are 0.5 and we randomly generate 40,000 input vectors under the same probability as the input sequence for the logic simulator. As that in [4], the transition probabilities and macroscopic correlations for steady state signals are first generated using a zero delay logic simulator and then fed into our power estimation software.
5.1 Tree structure circuit
Our first experiment is a simple tree structure circuit as shown in Figure 3. Gates are given randomly selected delay values. Results are compared in Table 1. The power estimates (in terms of transition density Dx) for each node from different probability simulations are compared against those obtained from logic simulation over the entire vector sequence. The percentage error is the ratio between the absolute error and the average node activity. The standard deviation of node errors has also been included. We can see our new glitch filtering method gives a very accurate estimation in both cases. On the other hand, TPS itself gives a larger error because of the inaccurate glitch filtering at node 31. Note that for a tree structure circuit, no spatial correlation exists in the circuit if signal at PIs are independent. Therefore, probability simulation can perform well in this case.

[image: image119.wmf]c

d

a

b

t

t

1

t

2

sp

0

.

5

0

.

2

0

.

2

11

a

w

t

sp

t

2

t

3

0

.

2

0

.

2

11

b

w

0

.

5

t

t

1

'

t

2

'

sp

0

.

25

0

.

1

0

.

06

11

c

w

0

.

06

0

.

1

t

3

'

t

sp

0

.

25

11

c

w

t

1

'

t

2

'

t

3

'

Glitch filtering

10,0110,0111,11

,1112,1112,1112

10,0110,0111,11

,1123,1123,1123

10,0110,11

,1113,1113,11

(',')(',')(',')0...00.2*0.30.06

(',')(',')(',')0...00.2*0.30.06

(',')(',')

cab

cba

cab

PttPttPtt

PttPttPtt

PttPttP

=++==

=++==

=

11,01

13

(',')0...00.2*0.20.04

tt

++==

Table 1. Node by node comparison of switching power.

	Node
	Logic Sim.
	ProSim +
	TPS
	TPS +

	
	Pswitch (Dx)
	Pswitch (Dx)
	Err. (%)
	Pswitch (Dx)
	Err. (%)
	Pswitch (Dx)
	Err. (%)

	17
	0.4570
	0.4608
	0.80
	0.4606
	0.75
	0.4606
	0.78

	18
	0.4599
	0.4608
	0.19
	0.4603
	0.08
	0.4602
	0.08

	19
	0.4604
	0.4608
	0.08
	0.4604
	0.01
	0.4604
	0.01

	20
	0.4619
	0.4608
	0.24
	0.4604
	0.33
	0.4604
	0.34

	21
	0.4622
	0.4608
	0.30
	0.4607
	0.32
	0.4607
	0.33

	22
	0.4618
	0.4608
	0.22
	0.4604
	0.30
	0.4604
	0.31

	23
	0.4610
	0.4608
	0.05
	0.4610
	0.00
	0.4610
	0.00

	24
	0.4585
	0.4608
	0.49
	0.4601
	0.33
	0.4601
	0.34

	25
	0.5858
	0.5898
	0.85
	0.5898
	0.84
	0.5898
	0.68

	26
	0.4856
	0.4837
	0.42
	0.4838
	0.39
	0.4838
	0.38

	27
	0.5923
	0.5898
	0.51
	0.5899
	0.50
	0.5899
	0.40

	28
	0.4833
	0.4837
	0.07
	0.4838
	0.10
	0.4838
	0.10

	29
	0.6049
	0.6060
	0.22
	0.6052
	0.06
	0.6052
	0.05

	30
	0.3262
	0.3249
	0.27
	0.3243
	0.39
	0.3243
	0.57

	31
	0.4987
	0.4820
	3.53
	0.6052
	22.5
	0.4816
	3.44

	32
	0.3262
	0.3249
	0.27
	0.3243
	0.39
	0.3243
	0.57

	33
	0.4670
	0.4578
	1.94
	0.5462
	16.8
	0.4564
	2.28

	Total
	8.0529
	8.0289
	0.30
	8.2364
	2.28
	8.0228
	0.37

	Std. dev.
	-
	-
	0.88
	-
	6.49
	-
	0.90

5.2 Circuits with reconvergent fanouts
More experiments have been done for ICS’85 benchmark circuits. Delay of each gate is approximated with the number of fanouts. For each circuit, average node error (Eavg), standard deviation of node errors (Δ), and error for total power (Etot) are measured. Again, node errors are percentage errors with respect to the average node activity. Results are shown in Table 2. For benchmark circuits, reconvergent fanouts exist in the circuit, therefore probability simulation gives a large error in most cases even though our new glitch filtering method is applied. For tagged probability simulation, the improvement of estimation accuracy is significant in some circuits. E.g. c432, c1355, c6288. These circuits typically have a large component of glitch power. However, for some other circuits, the application of our new glitch filtering method in TPS does not improve the estimation accuracy and sometimes even gave a larger error. This is due two factors, first, we found out that TPS tends to underestimate switching activity for some nodes for those circuits and 2nd, the original glitch filtering in TPS tends to underestimate the probability to be subtracted. Therefore, the estimation error for total power is still small. In these cases, a more accurate glitch filtering will actually increase the error for total power. The application of our new glitch filtering method gave a relative more “stable” estimation error for different circuits, which is a very important factor that our new glitch filtering is superior in terms of estimation accuracy comparing to the original one. In practice, we have no idea which circuit could give a large estimation error; a more “stable” estimation gave user a lot more confidence about the estimation result.

Table 2. Estimation error comparison on benchmark circuits

	Circuits
	ProSim+
	TPS
	TPS+

	
	Eavg (%)
	Δ(%)
	Etot (%)
	Eavg (%)
	Δ(%)
	Etot (%)
	Eavg (%)
	Δ(%)
	Etot (%)

	c17
	5.83
	7.79
	0.65
	2.28
	2.55
	0.13
	2.28
	2.55
	0.13

	c432
	14.73
	17.33
	8.51
	29.90
	38.75
	35.84
	9.46
	11.84
	6.50

	c499
	3.74
	6.79
	4.83
	7.96
	13.95
	2.96
	3.25
	2.34
	0.21

	c880
	11.21
	18.23
	7.26
	8.33
	15.34
	1.64
	8.01
	15.65
	5.15

	c1355
	16.78
	21.45
	18.33
	24.21
	31.63
	32.85
	5.82
	11.19
	5.43

	c1908
	21.90
	33.75
	19.66
	15.00
	23.11
	4.09
	17.73
	27.85
	11.19

	c2670
	20.63
	29.71
	15.03
	16.56
	29.78
	7.24
	16.65
	28.32
	9.93

	c3540
	16.61
	36.28
	10.08
	13.79
	26.34
	9.78
	10.3
	25.59
	2.42

	c5315
	20.19
	40.05
	17.24
	11.80
	24.39
	2.29
	13.42
	31.52
	10.07

	c6288
	29.63
	29.86
	26.37
	27.39
	27.48
	32.12
	15.65
	18.78
	4.05

	c7552
	21.59
	39.92
	16.39
	14.45
	27.51
	3.17
	14.79
	31.39
	7.78

	Avg.
	16.62
	25.56
	13.12
	15.61
	23.71
	12.01
	10.67
	18.82
	5.71

The computation speed of TPS+ is about 2-3 times faster than that of the logic simulation over all the vector sequence, while ProSim+ is about 20-30 times faster and TPS is about 2 orders of magnitude faster than logic simulation. The computation complexity of TPS+ is significantly higher because of the propagation of pairwise dual-transition probabilities. Since there are only one probability waveform for ProSim+, its computation cost is much lower than that of TPS+.

6. CONCLUSIONS
Most existing gate-level probabilistic approach on power estimation fails to model glitch filtering effect accurately. However, gate filtering effect has a non-negligible impact on the power consumption of a circuit. In this paper, we proposed an accurate glitch filtering method based on the propagation of dual-transition probability (and probability simulation). Our new glitch filtering method is able to be applied in both probability simulation and tagged probability simulation techniques. For tree structure circuits where spatial correlations do not exist inside of the circuit, our new glitch filtering method is able to give very accurate power estimation. For circuits with reconvergent fanouts, the application of our new glitch filtering method to TPS gives an estimation that is less erratic than original TPS in terms of estimation accuracy. For some circuits with a large component of glitch power, up to 28% improvement on estimation accuracy is obtained by our new glitch filtering method.
Some weakness does exist in our current method. The application of our method to TPS gives larger error in some cases. Also the computation time is much slower than original TPS because of the complexity in propagation dual-transition probability. Future work could be the continuous improvement of the power estimation accuracy and computation time. Since TPS itself tends to underestimate the switching activity in some cases, a modification of tagged probability waveform propagation schemes is under investigation. Also, the computation complexity of our method may be further reduced. Software and algorithm optimization are to be studied.

7. REFERENCES

[1] R. Burch, F. Najm, P. Yang, and D. Hocevar. Pattern-independent current estimation for reliability analysis of CMOS circuits. In Proceedings of 25th ACM/IEEE Design Automation Conference, Anaheim, CA, pages 294–299, June 1988.
[2] A. P. Chandrakasan and R. W. Brodersen. Low power digital CMOS design. Kluwer academic publishers, Boston, 1995.
[3] M. A. Cirit. Estimating dynamic power consumption of CMOS circuits. In Proceedings of IEEE International Conference on Computer-Aided Design, pages 534–537, Nov. 1987.
[4] C.-S. Ding, C.-Y. Tsui, and M. Pedram. Gate-level power estimation using tagged probabilistic simulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17(11):1099–1107, Nov. 1998.
[5] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Ricco. Estimate of signal probability in combinational logic networks. In Proceedings of the First European Test Conference, pages 132–138, 1989.
[6] F. N. Najm, R. Burch, P. Yang, and I. N. Hajj. CREST - a current estimator for CMOS circuits. In Proceedings of IEEE International Conference on Computer-Aided Design, pages 204–207, Nov. 1988.
[7] F. N. Najm, R. Burch, P. Yang, and I. N. Hajj. Probabilistic simulation for reliability analysis of CMOS VLSI circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9(4):439–450, April 1990.
[8] F. N. Najm. Transition density: a new measure of activity in digital circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(2):310–323, Feb. 1993.
[9] R. Marculescu, D. Marculescu, and M. Pedram. Logic level power estimation considering spatiotemporal correlations. In Proceedings of the IEEE International Conference on Computer Aided Design, pages 294–299, Nov. 1994.
[10] R. Marculescu, D. Marculescu, and M. Pedram. Efficient power estimation for highly correlated input streams. In Proceedings of the 32nd Design Automation Conference, pages 628–634, June 1995.
[11] P. Schneider and U. Schlichtmann. Decomposition of boolean functions for low power based on a new power estimation technique. In Proceedings of the 1994 International Workshop on Low Power Design, pages 123–128, April 1994.
[12] G. Theodoridis, S. Theoharis, D. Soudris, T. Stouraitis, and C. Goutis. An efficient probabilistic method for logic circuits using real delay gate model. In the 1999 IEEE International Symposium on Circuits and Systems, ISCAS ’99, volume 1, pages 286–289, Jun 1999.
[13] C.-Y. Tsui, M. Pedram, and A. M. Despain. Efficient estimation of dynamic power consumption under a real delay model. In Proceeding of IEEE International Conference on Computer-Aided Design, Santa Clara, CA, pages 224–228, Nov. 1993.

� EMBED Visio.Drawing.11 ���

Figure � SEQ Figure * ARABIC �2�. An example for the glitch filtering process. Propagation of probability waveform for a two input AND gate with an inertial delay d is shown. For glitch filtering, we assume all t1<t2<t3<t1+d

� EMBED Visio.Drawing.11 ���

Figure � SEQ Figure * ARABIC �3�. A simple tree structure circuit.

* Probabilistic methods are also pattern dependent because analysis results depends on supplied probabilities. However, no specific input pattern is required for probabilistic methods and therefore it is less pattern-dependent.

PAGE

_1164047664.unknown

_1164047698.unknown

_1164047732.unknown

_1164047749.unknown

_1164047769.unknown

_1164047777.unknown

_1164047786.unknown

_1164047790.unknown

_1164048332.unknown

_1164194382.vsd
1

1

1

3

4

1

1

5

2

1

2

3

4

5

6

7

8

9

10

11
12

13
14

15
16

1

3

2

2

17

18

19

20

21

22

23

24

1

3

25

26

27

28

3

3

1

33

29

30

31

32

_1164194383.vsd
d

a

b

c

t

t1

t2

sp

t

0.5

0.2

0.2

t2

t3

sp

0.2

0.2

0.5

t

t1'

t2'

sp

0.25

0.1

0.06

0.06

0.1

t3'

t1'

t

t2'

t3'

sp

0.25

Glitch filtering

_1164192737.vsd
sp

t

t1

t2

0.1

0.2

0.1

0.2

0.5

sp

t

t1

t2

01

0.1

0.05

10

0.15

sp

t1

t2

00

0.15

t

0.15

0.35

sp

t1

t2

t

t

0

0.05

0.1

1

0.15

sp

t1

t2

0

1

P=0.35

0

1

0.35

11

0

1

0

1

t1

t2

t

0

1

0

1

(a)

(b)

(c)

P=0.2

P=0.15

P=0.1

P=0.05

P=0.05

P=0.1

_1164047793.unknown

_1164047788.unknown

_1164047782.unknown

_1164047784.unknown

_1164047779.unknown

_1164047773.unknown

_1164047775.unknown

_1164047771.unknown

_1164047758.unknown

_1164047764.unknown

_1164047766.unknown

_1164047760.unknown

_1164047754.unknown

_1164047756.unknown

_1164047752.unknown

_1164047741.unknown

_1164047745.unknown

_1164047747.unknown

_1164047743.unknown

_1164047736.unknown

_1164047739.unknown

_1164047734.unknown

_1164047715.unknown

_1164047724.unknown

_1164047728.unknown

_1164047730.unknown

_1164047726.unknown

_1164047719.unknown

_1164047721.unknown

_1164047717.unknown

_1164047707.unknown

_1164047711.unknown

_1164047713.unknown

_1164047709.unknown

_1164047702.unknown

_1164047704.unknown

_1164047700.unknown

_1164047681.unknown

_1164047689.unknown

_1164047694.unknown

_1164047696.unknown

_1164047692.unknown

_1164047685.unknown

_1164047687.unknown

_1164047683.unknown

_1164047672.unknown

_1164047677.unknown

_1164047679.unknown

_1164047674.unknown

_1164047668.unknown

_1164047670.unknown

_1164047666.unknown

_1164047629.unknown

_1164047646.unknown

_1164047655.unknown

_1164047659.unknown

_1164047661.unknown

_1164047657.unknown

_1164047651.unknown

_1164047653.unknown

_1164047648.unknown

_1164047637.unknown

_1164047642.unknown

_1164047644.unknown

_1164047639.unknown

_1164047633.unknown

_1164047635.unknown

_1164047631.unknown

_1164045254.unknown

_1164047612.unknown

_1164047620.unknown

_1164047624.unknown

_1164047627.unknown

_1164047622.unknown

_1164047616.unknown

_1164047618.unknown

_1164047614.unknown

_1164047603.unknown

_1164047607.unknown

_1164047610.unknown

_1164047605.unknown

_1164045263.unknown

_1164047599.unknown

_1164047601.unknown

_1164045268.unknown

_1164047597.unknown

_1164045270.unknown

_1164045265.unknown

_1164045259.unknown

_1164045261.unknown

_1164045257.unknown

_1164045237.unknown

_1164045246.unknown

_1164045250.unknown

_1164045252.unknown

_1164045248.unknown

_1164045241.unknown

_1164045244.unknown

_1164045239.unknown

_1164045228.unknown

_1164045233.unknown

_1164045235.unknown

_1164045230.unknown

_1164045224.unknown

_1164045226.unknown

_1164045222.unknown

