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ABSTRACT


The battery life of portable electronics today makes power and energy consumption important considerations.  This paper presents an overview of instruction set architecture design to reduce power consumption.  The methods described involve increasing code density by using reduced instruction word lengths.  An idea for further increasing code density is also presented.
1.  INTRODUCTION

Designs today increasingly move toward targeting portable and battery powered systems rather than traditional desktop systems, increasing the importance of low power consideration during the design process.  For the increasing portable electronics demand today, low power design techniques not only increase the system’s battery life, but can also decrease system cost by allowing for smaller, light weight packaging, smaller, low cost batteries, and a reduction in managing heat dissipation [2].  In order to lower power consumption, existing low power design techniques sacrifice performance, showing the general tradeoff between performance and power consumption.  Low power design may sacrifice too much performance, making it important to consider the designs effect on performance as well as its effect on power consumption [1]. 

The design of most instruction set architectures today only consider performance, without considering power dissipation, resulting in designs that are generally power hungry.  An instruction set architecture (ISA) designed for a portable system should consider lowering power consumption during the design process [5].  The specification of the ISA has a large impact on both hardware and software (compiler) designs, both of which have a large effect on power consumption.  When designing an ISA, we define three main characteristics of the ISA:  the register organization, the memory organization, and the instruction set [6].  


Register organization defines the number of registers and their sizes [6].  The size of the register file in hardware design, and the number of memory accesses in software and compiler design are both determined by an ISA’s register organization.  A small to moderate size register file consumes less power per register access, but more memory accesses are required, increasing the power consumed from overall memory accesses.  The number of memory accesses is reduced by using a larger register file (register windows), reducing the power consumed by overall memory accesses, but the power required per register access is significantly increased [1].


Memory organization defines the address space and addressablity of the ISA.  The address space is the number of memory locations addressable, which plays a large role in determining register and bus width.  The addressablity is the number of bits stored at each address [6].  For a larger addressablity, more power is consumed per memory access, but more data is transferred, reducing the power consumed by overall memory accesses.  A memory organization with a smaller addressablity requires more memory accesses, but less power is consumed per memory access.

The instruction set specifies the list of opcodes, the addressing modes, and the instruction formats for the ISA.  The list of opcodes define the instructions supported by the ISA, and the addressing modes define how operand values are obtained.  Instruction formats specify the binary format for encoding instructions, given the opcodes and addressing modes.  The instruction format specification specifies the instruction width, which is traditionally a fixed width for RISC designs [7].  The instruction width has a large effect on the resulting design’s code density, which is explained in more detail in section 2.  

This paper explores how reducing instruction word width and code compression techniques can lower power consumption.  Section 2 describes code density and it’s effect power consumption.  Section 3 describes the idea of reducing code density by reducing instruction widths.  Section 4 proposes an idea for further code compression.  Section 5 discusses future work and concludes the paper. 

2.   CODE DENSITY

Code density is a measurement of the number of bytes of code required to implement an application.  A higher code density means that less memory is required to store program code, and less code density means that more memory is required to store program code [5].  The goal with code density is to improve the density of fixed length 32-bit RISC architectures and avoid the complexity of CISC architectures [7].

A complex ISA design (CISC design) generally has more complex instructions, resulting in a higher code density than a simpler ISA design (RISC design) [1].  In CISC design, the higher code density reduces the power consumed by instruction fetches, but increases the power consumed by required control logic and instruction decoding.  The RISC approach reduces power consumed by its simpler instruction decoding and control logic, but results in lower code density.  The power consumed by instruction fetches is generally more with the RISC approach, because more instructions are fetched for a given application [1] [2] [3].


3.   INCREASING CODE DENSITY


One approach to save power in 32-bit RISC architectures involves increasing code density.  The following two methods to increase code density involve reducing instruction word length.     


3.1 Instruction Width Reduction

Instruction word length effects the power consumption per instruction fetch.  For a larger instruction width, more power is consumed fetching that instruction.  Less power is consumed during an instruction fetch of smaller width instructions [1] [2].


Reducing instruction width is one approach to increasing code density and decreasing the power consumption.  Most general purpose processors today utilize a 32-bit architecture in order to meet memory address space requirements [1].  One approach to improving power for these 32-bit architectures is to reduce instruction widths to a fixed length of 16-bits [4] [5].  This approach is used by Hitachi’s SuperH and Motorola’s M·CORE architectures [7].  The size of memory read during a 16-bit instruction fetch is half of the memory read for a 32-bit instruction, which generally can reduce the energy consumed by that memory read by up to 50% [1].  


The M·CORE architecture is an example of reducing the instruction width of a RISC design to save power.  The M·CORE is a 32-bit Load/Store RISC architecture that attempts to achieve high code density by utilizing a 16-bit instruction set [2] [4] [5].


The M·CORE reduces instruction memory traffic by 40% of 32-bit instruction designs, reducing power consumed by instruction fetches [2].  Benchmark results show this design’s resulting code density is generally higher than the code density of many CISC designs [4].

3.2 ARM Code Compression Scheme

The ARM 32-bit embedded processors, like some MIPS and PowerPC chips, increase code density using a code compression scheme [3] [8].  The first code compression scheme by ARM used a subset of reduced width instructions called Thumb.  The second code compression scheme is called Thumb 2.      

      3.2.1 Thumb


 The Thumb instruction set is a subset of the most commonly used 32-bit ARM instructions.  Thumb enables very high code density because each Thumb instruction is only 16 bits wide.  After a Thumb instruction is fetched, it’s decoded into its equivalent 32-bit ARM instruction and executed [8] [3].  Both Thumb and ARM instruction sets are implemented in the same architecture, and switching between Thumb mode and ARM mode is done at runtime.  This mode switching is controlled by a bit in a status register [3], and can decrease speed by 15% [9].  


Not all ARM instructions have an equivalent Thumb instruction.  This means the Thumb instruction set is more limited than the ARM instruction set, so ARM instructions must be used with the thumb set from an application view [3] [8] [9].  Thumb instructions cannot be conditionally executed, cannot handle interrupts, and use only 8 of the 16-register register file [3] [9].


The code density of using only the ARM instruction set is improved by up to 30% when using Thumb along with the ARM instructions.  Thumb code reduces the external memory power of ARM by 30%, but requires the user to switch between modes, decreasing performance [8] [9].    

      3.2.2 Thumb 2


The Thumb 2 scheme does not require switching between modes.  Both 16 and 32-bit instructions are combined into a single instruction set.  Unlike the Thumb scheme, the user or the compiler can mix 16 and 32-bit instructions.

Thumb 2 achieves 26% less code density than ARM, and 25% better performance than Thumb [9].  This single instruction set improves the code density of the Thumb scheme by 5% and runs 2-3% faster [8].

4.   PROPOSED CODE COMPRESSION IDEA


The idea behind this proposed compression scheme is to lower power from fetching program code by reducing the amount of code stored for an application.  The scheme is similar to Thumb in that two instruction sets would be implemented on the same architecture, and uncompressed set similar to the ARM set and a compressed set similar to the Thumb set.  

The uncompressed set consists of both 16 and 32-bit instructions without the need for mode switching, similar to the Thumb 2 scheme.  Using this set for the uncompressed set will hopefully achieve the code density achieved by Thumb 2.


The compressed instruction set consists of a subset of 8-bit instructions of the uncompressed set.  These 8-bit instructions would be limited to simple accumulator based functions, requiring only one operand.  The instructions should be chosen as the most commonly used instructions that can be used in an accumulation manner.  

Operands would be limited to register values or very small immediate values.  This scheme hopes to improve code density overall for heavy, non-conditional, iterative computational applications.  
5.   CONCLUSION:  FUTURE WORK


Future research for this idea takes three parts.  The first thing to research is if a typical application can be broken down into enough sequential accumulator-based simple functions to improve code density.  The code density achieved would have to be more than that of using strictly the uncompressed set of instructions.  The second thing to look into would be the effect on performance.  The power savings would have to be achieved without an unreasonable decrease in performance.  The third thing to research is to define which functions of the uncompressed set would be encoded into the compressed 8-bit set.  Instruction encoding for both the compressed 8-bit set and the uncompressed set of 16 and 32 bit instructions need to be defined before researching both the effect on performance and the code density achievable.

The main goal of further research is to determine whether or not this idea would be a realistic energy efficient solution for designing a low power instruction set architecture.
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