HILLARY GRIMES III – ELEC 7770 TERM PROJECT


CPU Design Project:  Test Generation
1.  Introduction

Automatic Test Pattern Generation (ATPG) is the process of generating a set of test patterns to be used during device testing.  After each VLSI device is fabricated, it is tested to ensure it is defect-free.  The basic testing process is shown in figure 1.  After applying a set of inputs, the circuit response is measured and compared with a set of known good responses.  If the circuit's response to any set of inputs differs from the known good response for that set of inputs, the device is considered to be defective and thrown out.

[image: image1.png]Apply
Inpit
stimulus

7

Actual Good
Circuit (Circuit

Ny

Compare
Response

|

Different?

Yes/ \No

Circuit | |Repeat

G N





Figure 1:  Basic Testing Process

This project's CPU design was synthesized in 0.18μ CMOS technology.  The result of the synthesis step produced two designs, one optimized for area (areaOpt), and the other optimized for delay (delayOpt).  Both designs turned out to be very similar, with 16,264 gates in the areaOpt design, and 16,280 gates in the delayOpt design.


The complexity of sequential ATPG is much higher than the complexity of combinational ATPG, because memory elements (flip-flops) cause difficulty in controlling and observing internal signals.  In order to simplify ATPG complexity, a full scan DFT (Design for Testability) scheme was used in this project, which is discussed in section 2.  Section 3 describes the fault models used for test generation, and section 4 shows the results of ATPG.
2.  Full Scan Design


  Full scan is a DFT scheme which reduces ATPG complexity by allowing memory elements to be controlled and observed during testing and test generation.  A gate level design is converted to a full scan design by replacing all flip-flops (FFs) with scan FFs, and connecting the scan FFs (SFFs) to create a scan chain [1,2].  Mentor Graphics DFTAdvisor tool was used to insert scan chains into both optimized designs for this project.  In both designs, 1,346 flip-flops were replaced with scan flip-flops.

2.1  Scan Chains


A typical scan flip-flop is shown in figure 2.  Each inserted SFF has two extra inputs, scan_in and scan_enable, and an extra fanout, scan_out.  To form a scan chain, the SFFs are linked together as shown in figure 3, and three signals are routed to I/O pins, scan_enable, scan_in, and scan_out.  The scan chain can be set to either normal or scan mode by setting the scan_enable primary input.  In normal mode, SFFs capture data from their data input.  When the circuit is set to scan mode, the scan chain forms a shift register that can be loaded and unloaded serially using scan_in and scan_out I/O pins, allowing memory elements to be both controllable and observable [1,2].  After inserting scan circuitry into both areaOpt and delayOpt designs, two I/O pins were added, a scan in pin and a scan enable pin.  The most significant bit of the Memory_Address output is used for scan out in both cases.

[image: image2.png]Data — >_ MUX

Scan_En . >_ )v

Scan_In

Clk





Figure 2:  Typical Scan Flip-Flop

[image: image3.png]b N0 UedS

F ..... ajqeuy uess

---uf uess





Figure 3:  Scan Chain

When scan mode is enabled, flip-flop values can be controlled or observed

2.2  Scan Testing


Scan testing begins by testing the scan chain itself.  The circuit is set to scan mode, and the sequence “00110011...”is shifted through the scan chain.  If the length of the sequence is equal to the number of SFFs + 4, every SFF sees all four transitions (steady 0, rising, steady 1, falling), and most single stuck-at faults in the scan chain are detected [1].  The length of the scan chain test sequence for this project is:


[image: image4.wmf]SFFs

of

number

n

FF

_

_

346

,

1

=

=



[image: image5.wmf]4

_

+

=

FF

n

length

sequence



[image: image6.wmf]350

,

1

_

=

length

sequence


(both areaOpt and delayOpt)


 After the scan circuitry is tested, the combinational logic is tested using a set of scan sequences.  In the first step, the circuit under test is set to scan mode, and values are shifted into the scan chain to initialize SFF states.  This step requires 
[image: image7.wmf]346

,

1

=

FF

n

 clock cycles.  The scan chain is then set to normal mode, and values are applied to primary inputs.  Primary outputs are then measured, and the circuit is clocked to capture flip-flop values, resulting in a scan sequence length of  
[image: image8.wmf]347

,

1

1

=

+

FF

n

 clock cycles so far.  The circuit is then set to scan mode again, and data is shifted out of the scan chain for measurement while SFF values for the next scan sequence are loaded.  This process continues for every scan pattern, requiring 
[image: image9.wmf]PIVecs

FF

n

n

)

1

(

+

 clock cycles plus 
[image: image10.wmf]FF

n

 for scanning out the last SFF values, where 
[image: image11.wmf]PIVecs

n

 is the number of primary input vectors.  The scan sequence length is then:


[image: image12.wmf]FF

PIVecs

FF

n

n

n

+

+

]

)

1

[(


Adding the sequence length required to test the scan chain, the overall length of a scan test set for full scan design with 
[image: image13.wmf]FF

n

 scan flip-flops and 
[image: image14.wmf]PIVecs

n

 primary input vectors is:


[image: image15.wmf]4

]

)

1

[(

+

+

+

+

FF

FF

PIVecs

FF

n

n

n

n



During a scan operation, the inputs of combinational logic can see many changes which can produce excessive switching activity in the chip.  This excessive logic switching can cause power dissipation to exceed the chip's power rating.  After test vectors are generated, the power consumption of scan testing should be analyzed, and if it is found to be excessive, the test vectors may need to be redesigned to reduce power consumption [1].

2.3  Scan Design Overhead


A significant disadvantage of full scan design is an added area overhead.  Each inserted SFF adds a gate overhead of four gates for the two input multiplexer shown in figure 2.  Assuming each flip-flop consists of 10 gates, the total gate overhead of the areaOpt design can be estimated by:


[image: image16.wmf]g

FF

n

n

Overhead

Gate

*

4

_

=



[image: image17.wmf]SFFs

of

number

n

FF

_

_

346

,

1

=

=



[image: image18.wmf]gates

of

number

total

n

g

_

_

_

=


(non-scan, including FFs)


[image: image19.wmf]264

,

16

346

,

1

*

4

_

=

Overhead

Gate



[image: image20.wmf]%

33

_

=

Overhead

Gate


Routing resources required to connect SFFs to form a scan chain can also have a significant impact on chip area.  Full scan design also has a performance overhead, which can impact clock speeds by 5-10%.  Each inserted SFF adds two gate delays at FF inputs, and capacitive loading is increased by adding the SFF's scan_out fanout [1].

3.  Fault Models

ATPG tools generate test sets that detect as many faults as possible using a particular fault model.  The fault models used for test generation in this design are the single stuck-at fault model, the transition delay fault model, and the pseudo stuck-at fault model.

3.1  Stuck-At Fault Model

The single stuck-at fault model models a faulty line as permanently stuck at logic 1 (sa1) or stuck-at logic 0 (sa0), and assumes only one line is faulty.  Fault locations are at the inputs and outputs of gates (figure 4).  A test for a stuck-at fault requires a vector that places the appropriate value at the fault site (logic 1 for a sa0, and logic 0 for a sa1), and propagates the effect to an observable point (a primary output or SFF) [1,2].  Figure 5 shows a simple stuck-at test to test for a sa0 fault at the output of the AND gate.  After applying the input vector “110”, if the observed output is logic 0, then the circuit is faulty.

[image: image21.png]



Figure 4:  Stuck-At Fault Locations

There are 2(n+1) possible stuck-at faults for an n-input, single output gate.

[image: image22.png]Stuck-At 0
(sa0)




Figure 5:  Stuck-At Test


Many faults in a circuit behave identically to other faults.  Faults that are indistinguishable and have exactly the same set of tests are called equivalent faults.  Fault collapsing is a process that groups equivalent faults together.  Fault collapsing for the stuck-at fault model in both FastScan and Flextest uses the following rules:

Buffer:  
input sa0 is equivalent to output sa0


input sa1 is equivalent to output sa1

Inverter:
input sa0 is equivalent to output sa1


input sa1 is equivalent to output sa0

And:
output sa0 is equivalent to any input

sa0

Or:
output sa1 is equivalent to any input
sa1

Nand:
output sa1 is equivalent to any input
sa0

Nor:
output sa0 is equivalent to any input

sa1

The areaOpt design resulted in 69,732 uncollapsed and 49,871 collapsed stuck-at faults.  The delayOpt design resulted in 70,112 uncollapsed and 49,921 collapsed stuck-at faults.

3.2  Transition Delay Fault Model

The transition delay fault model models defects that cause large delays at internal nodes.  Transition faults are similar to stuck-at faults in that fault locations are the inputs and outputs of gates, and each location has two faults, a slow-to-rise and a slow-to-fall fault (figure 6). 

A test to detect a transition delay fault requires two vectors.  The first vector initializes the fault site to logic 0 for a slow-to-rise and logic 1 for a slow-to-fall transition delay fault.  The second vector is a stuck-at test for a sa1 for the slow-to-rise, and a sa0 for the slow-to-fall transition faults, which produces the appropriate transition at the fault site, and propagates its effect to an observable point (a primary output or a SFF).  Figure 7 shows a simple test to detect a slow-to-rise transition delay fault at the output of the AND gate.  The first vector, “010”, initializes a 0 at the fault site, and the second vector, “110” produces a rising transition at the fault site and propagates its effect to the output.  If the output transition is delayed beyond the time it is observed, the transition delay fault is detected.

[image: image23.png]slow slow
to rise

slow *" slow
to rise  to fall




Figure 6:  Transition Fault Locations

[image: image24.png]



Figure 7:  Transition Delay Fault Test

Fault collapsing for the stuck-at fault model in both FastScan and Flextest uses the following rules:

Buffer:  
input fault is equivalent to output fault of the same transition
Inverter:
input fault is equivalent to output fault of the opposite transition
The areaOpt design resulted in 69,732 uncollapsed and 59,242 collapsed transition delay faults.  The delayOpt design resulted in 70,112 uncollapsed and 59,292 collapsed transition delay faults.

3.3  IDDQ Testing


In IDDQ testing, after a set of inputs are applied, the IDDQ current is measured through either the VDD or VSS bus.  IDDQ current is the quiescent current, which is the drain current that flows after CMOS circuit switching completes.  Figure 8 shows an example of a CMOS inverter and a graph of drain current.  The drain current spikes during switching and should fall below a negligible value after switching completes.  If the measured IDDQ current is found to be excessive, the circuit is considered defective.


The pseudo stuck-at fault model is used by FastScan and FlexTest for IDDQ testing.  The pseudo stuck-at fault model is similar to the stuck-at fault model, except that fault effects do not need to be propagated to observable points.  As long as the fault effect is propagated to the input of a gate connected to the faulty gate's output, the fault should produce excessive IDDQ current.  Because fault effects to not need to be propagated to observable points, IDDQ testing can detect a high percentage of faults with a compact test set [1, 2].

[image: image25.png]VDD





[image: image26.png]IDD ]
Excessive
. Measurement

Threshold

_j Good Measurement





Figure 8:  CMOS Inverter Drain Current

IDDQ Testing is expensive because measuring current takes much longer than measuring voltage.  In this project, after a set of tests are generated, a set of IDDQ vectors are selected from the test set and marked for current measurement to increase the number of detected faults.

	Stuck-At Faults
	Optimized For Area
	Optimized For Delay

	Uncollapsed
	69,732
	70,112

	Collapsed
	49,871
	49,921

	Test Vectors
	745
	735

	Compressed Vectors
	687
	687

	Fault Coverage
	98.98%
	98.98%

	CPU Time
	542 sec
	547 sec


Table 1:  Stuck-At Fault ATPG Results

	Transition Delay Faults
	Optimized For Area
	Optimized For Delay

	Uncollapsed
	69,732
	70,112

	Collapsed
	59,242
	59,292

	Test Vectors
	1,574
	1,574

	Compressed Vectors
	1,403
	1,378

	Fault Coverage
	96.79%
	96.20%

	CPU Time
	406 sec
	412 sec


Table 2:  Transition Delay Fault ATPG Results

4.  Results
Tables 1 and 2 show ATPG results obtained from FastScan for stuck-at test generation and transition delay fault test generation for both full scan designs.  Results turned out to be very similar for both the area optimized design and the delay optimized design.  

A final set of results was obtained using both the stuck-at and transition delay fault models to obtain a single test set (Table 3).  This ATPG run began by generating a transition delay test set, then simulating to find the stuck-at coverage of the transition delay test vectors.  The ATPG tool then added test vectors to improve stuck-at fault coverage.  This run resulted in a test set with the same stuck-at fault coverage with fewer vectors after compressing the test set.  Transition fault coverage dropped approximately 2% for both designs.

Scan test length for the area optimized design’s final test set can be calculated using the formula from section 2.2:

[image: image27.wmf]4

]

)

1

[(

+

+

+

+

FF

FF

PIVecs

FF

n

n

n

n



[image: image28.wmf]346

,

1

=

FF

n



[image: image29.wmf]640

=

PIVecs

n



[image: image30.wmf]776

,

864

_

_

=

Length

Test

Scan


The scan test length for the delay optimized design can be calculated as 902,492 clock cycles.


In the area optimized design, 149 vectors were selected for IDDQ testing, bringing the fault coverage up to 99.21%.  In the delay optimized design, 144 vectors were selected, bringing the fault coverage up to 99.20%.
	Stuck-At & Transition Faults
	Optimized For Area
	Optimized For Delay

	Test Vectors
	1,413
	1,394

	Compressed Vectors
	640
	668

	Stuck-At Fault Coverage
	98.98%
	98.98%

	Transition Fault Coverage
	94.07%
	94.22%

	CPU Time
	659 sec
	665 sec


Table 3:  Both Stuck-At and Transition ATPG Results

To compare scan and non-scan designs, ATPG was performed on the delay optimized non-scan design using FlexTest.  The delayOpt non-scan design has 64,724 uncollapsed stuck-at faults, and 44,689 collapsed stuck-at faults.  After an ATPG run lasting 12 hours, 1,517 test vectors were generated obtaining a stuck-at fault coverage of 73.61%.  To augment stuck-at testing with IDDQ testing, 164 vectors were selected for an IDDQ measurement, bringing fault coverage up to 88.89%.  Running fault simulation on the area optimized design with the same set of test vectors gave a fault coverage of 73.54%, showing the similarity of both designs.  When areaOpt was simulated with the 164 selected IDDQ vectors, fault coverage increased to 88.82%.

5.  References

[1]  M. L. Bushnell & V. D. Agrawal, “Essentials of Electronic Testing”, Textbook, Kluwer Academic Publishers, 2000.

[2]  Mentor Graphics Documentation:  Scan and ATPG Process Guide

_1239741791.unknown

_1239742690.unknown

_1239742807.unknown

_1239748151.unknown

_1239748264.unknown

_1239748310.unknown

_1239742902.unknown

_1239742752.unknown

_1239742625.unknown

_1239741808.unknown

_1239741959.unknown

_1239741643.unknown

_1239741747.unknown

_1239741435.unknown

_1239741573.unknown

_1239741609.unknown

_1239741531.unknown

_1239741375.unknown

