Alexander Pfeiffenberger
"Programming Multiprocessors with Explicitly Managed Memory Hierarchies,"
S. Schneider, et al., Computer, vol. 42, no. 12, pp. 28-34, Dec 2009. Presentation by Xin Jin

Introduction: Throughout this semester various classes have touched on the concept of caching. In “Introduction to Operating Systems” the cache was treated as a transparent component of the virtual memory – while in “Embedded Computing Systems” caches were considered in terms of cost and performance. As ELEC5200 concerns itself with the underlying architecture of computing it makes sense to not only study existing technology but to also to look at what is on the horizon. The motivation for looking beyond the traditional hardware-managed cache is that this can provide a probabilistic performance boost. This is because of the nondeterministic memory access times created by the mix of cache hits and misses.
The first topic of this presentation is the software-managed cache -- which enables the programmer have direct control over the movement of data. Just as programmers already  choose optimal data structures for their programs, software managed caches allow the programmer to select an optimal caching policy as well. In fact under this software managed scheme the programmer would be responsible for explicitly managing locality and deciding what data gets replaced along with the data layout is in local memories. This takes a turn from the tradition of continued abstraction. For example multi-core processors featuring hardware-managed caches provide the abstraction of a single share address space while software-managed local memories produce disjoint address spaces, the management of which the programmer is responsible for.
Cell Processor Architecture: This cell processor is made up of one PowerPC processor and eight synergistic processing elements -- all of which use a high bandwidth bus to communicate with the Memory Interface Controller. Programmers must know the memory access patterns in their application and DMA data in and out as needed. This architecture makes use of small local storage, data alignment, and traditional direct memory access (DMA).
Application to be run: Fixedgrid: This application will serve as the benchmarking tool for comparing the three programming models. Calculations access non-contiguous data requires special handling on the SPEs in the form of DMA lists.
Programming Model 1: Cellgen: Features implicit locality management. Data sets used by each parallel section are annotated but the code inside these regions is not. 

Programming Model 2: Sequoia: Features explicit definitions for data and computation subdivision through independent notation. Takes significantly more code than Cellgen but provides a more general language.
Programming Model 3: SDK: “IBM programming model enable programmer to hand-tune parallelization, eliminate unnecessary data transfers and schedule data and computation on cores optimally.”
This presentation on various programming models shows that implicit management of parallelism and locality to be a means of producing code with performance comparable to what could be generated from explicit management of locality. Ultimately however manual optimization of data transfers is still necessary for maximum performance.
