George Starr
ELEC 6200

Project Part 5

April 20, 2009
I would recommend this course to any graduate or undergraduate student who is interested in learning about both the basic and intermediate operation of a microprocessor core. The instruction in processor history, innovation, and technology is superb, but the practical application of building your own processor is enlightening. The project with this class will be as difficult as you make it, because it is you that has to design the instruction set. This project starts off slow by logically building the datapath and its components, but the practical application and integration of elements is much more complicated. I cannot put a value on the information about concurrency in processors and dividing portions of the datapath into sub circuits to increase overall instruction rate of a processor. Before this class, I had a fairly strong understanding of the process of how higher language level code was translated into assembly and then machine code, but I thought that all processors used single cycle processes. But from this project, I have definitively learned that single cycle processors are infinity simpler than other designs except for the coordination of timed components. This single obstacle has caused more complications in my design than all other design flaws combined. Once resolved, my project worked as designed and was able to successfully perform my demonstration program.
Given the opportunity to try this project again, I am torn between attempting a harder design using a pipelined processor or improving the designs of my original single cycle design. If I was to improve my single cycle design, I would change the number of registers in my architecture. Currently there are only 8 registers of which 7 are editable. This is not enough registers to implement impressive structures and code loops without relying on data memory. I would have selected 16 registers for a more robust architecture. In addition, this would make editing my programs on-the-fly in the in-system content editor much easier as the information is organized in hexadecimal instead of octal. This way I could easily visually interpret my program and make modifications in hexadecimal without having to write it out in binary first. Another change I would make is to have created a test entity within the processor that could pass in a set of test vectors as control lines and register sets that would emulate real use, but would monitor and record unexpected results. This would have saved me hours of debugging.
For those who would have a similar project, I would suggest to them first and foremost, do not wait to the last minute. This project is more time consuming and complicated then it may seem at first. Many hours need to be put into simulation to verify that every part works. It is with simulations using ModelSim or any other preferred simulation tool that you will find the source of the majority of your mistakes. Though keep in mind that ModelSim does not account for most timing issues, which is where the majority of all your other mistakes occur. These will only appear once you first download and test these functions out. My second word of advice would be to plan ahead early. When you have to start the project, plan every aspect out. Even though you know you may not be able to keep to your plans, just having them laid out in advance will allow you to see flaws in your design early. The later you have to make chances, the harder they will be to integrate into your design. My third and final suggestion is to do all your VHDL modeling in Quartus II. This is because there are subtle differences in VHDL synthesis engines, so stick to what the project requires you to use in the end.
