Project part 5
 Chao Han Yu Zhang

 E6200 Project Part 5

 Through the project and by applying what was learned in class to the actual design of a RISC cpu in FPGA my knowledge of computer architecture was greatly enhanced. The project is necessary to get some insight of different computer architectures, without which, I think, most of the students, at least me, will forget many abstract concepts in a short period of time.
In the project we implemented a pipelined architecture, which is not as hard as it looks. While debugging in modelsim, the concept, such as hazard, forwarding, and stall became more and more clear. While keeping a simple structure we tried to boost the performance of our design by adding some changes to the example in the text book. If I were to do this project again I will focus on the “big picture”, that is, do not spend too much time on the details trying to figure out an optimum design by constantly changing some details. Just start with something simple and make it work first and then tuning it to increase performance. If you spend too much time in the first stage just want to figure out a “perfect” design you will end up arguing with your partner with red face. Actually in the beginning you cannot know the optimum design and a lot more potential problems will only show up through the following stages. Maybe you will find out later that the perfect design isn’t perfect at all. So just start early and while fixing problems together with your improving knowledge of computer architecture (believe me, your knowledge will be greatly improved during the process.) your design will be shaped towards perfection.
In addition, it is always better to find a partner to do the project together. Sometimes when one runs into some problem, it is almost impossible to find out the solution (although it might be really simple) without someone else’s help. The discussion between each other would offer great help for the project. However, do not spend too much time just discussing. If the solution is somewhat clear then hurry up to implement it into the design to see if it works; sometimes you never know unless it is implemented. Another suggestion is that if you want to use VHDL code to describe your design, find some way to name your internal signal clearly and easy to understand, otherwise when you started debugging your design and it did not work as expected, it would be difficult to find the problem because you forgot what the names stood for.
 All in all, I suggest that start with something simple, master the designing tools (VHDL, Verilog, modelsim), and then work on the details and debug. And keep one thing in mind: “It’s not that hard, try it and don’t give up!”
Final datapath diagram
[image: image1.png]ump
0-11
Branchj
L E-1 =1
0-7 > %
f T > MEM/WB
5 * < oex EX/IMEM
°
= 2
£ =2
% ALU flags] &
s © .g
= E] s
iord 2 =
1100000000?000% o > : J
i
PC Mem S &I]
iord 7 Q > |
£
ford i
iore L sign -I, o |
ext_pla ATTor |] 5
4-7ol I-type Iw| I %
0-3 fgr R{ype RegDst 4
0-3

This is the final datapath we used in our design except a minor difference: the multiplexer beside the IF/ID pipeline register is actually implemented inside the pipeline register as you can see in the VHDL code for the register.
We use two instructions to execute branch: Cmp $t0, $t1 and followed by a branch instruction (the opcodes for different branches are the same; the type of branch is determined by condition code). So the whole execution of branch will finish in the third stage of Cmp, meanwhile the second stage of branch. The execution of jump instruction is finished in the second stage. The Ll (load the lower 8 bits) and Lh (load the higher 8 bits) are implemented by adding the MUX2 beside Reg file and another sign extension unit.

Control signals

	
	Opcode
	Iord
	Reg

dst
	Alu

src
	Mem

toreg
	Reg

write
	Mem

write
	Bra

nch
	Alu

op
	Jump
	Reg

src

	Jal
	0000
	0
	11
	xx
	11
	1
	0
	x
	xxx
	01
	0

	J
	0001
	0
	xx
	xx
	xx
	0
	0
	x
	xxx
	01
	0

	Jr
	0010
	0
	xx
	xx
	xx
	0
	0
	x
	xxx
	11
	0

	Add
	0011
	0
	01
	00
	00
	1
	0
	0
	000
	00
	0

	Sub
	0100
	0
	01
	00
	00
	1
	0
	0
	001
	00
	0

	And
	0101
	0
	01
	00
	00
	1
	0
	0
	010
	00
	0

	Or
	0110
	0
	01
	00
	00
	1
	0
	0
	011
	00
	0

	Addi
	0111
	0
	00
	10
	00
	1
	0
	0
	000
	00
	0

	Lw
	1000
	1
	00
	10
	01
	1
	0
	0
	000
	00
	0

	Sw
	1001
	1
	xx
	10
	xx
	0
	1
	0
	000
	00
	0

	Lh
	1010
	0
	01
	01
	00
	1
	0
	0
	000
	00
	1

	Ll
	1011
	0
	01
	01
	00
	1
	0
	0
	100
	00
	0

	Nop
	1100
	0
	xx
	xx
	xx
	0
	0
	0
	xxx
	00
	0

	Halt
	1101
	0
	xx
	xx
	xx
	0
	0
	x
	xxx
	01
	0

	Cmp
	1110
	0
	xx
	00
	xx
	0
	0
	0
	001
	00
	0

	Branch
	1111
	0
	xx
	xx
	xx
	0
	0
	1
	xxx
	00
	0

Test program:

00: 0011001000000100; --add R4, R2, zero (R2=>R4; R1, R2 accepts the value from the switches)

01: 0011000100000011; --add R3, R1, zero (R1=>R3; R1, R2 accepts the value from the switches)
02: 0011000000000101; --add R5, zero, zero (R5 = 0, initialize to 0)
03: 1110010000000000; --cmp R4, zero (if R4 = 0 set flags)
04: 1111000000000110; --beq (according to cmp flag branch to finish)
05: 1100000000000000; --nop
06: 0011010100110101; --add R5, R5, R3 (calculate a*b by constantly add a to R5)
07: 0111010001001111; --addi R4, R4, -1 (b = b – 1)
08: 1100000000000000; --nop
09: 0001000000000011; --j repeat (jump back 0x3)
0A: 1100000000000000; --nop
0B: 0011010100000110; --add R6, R5, zero (store final result in R6)
0C: 0000000000010000; --jal 16 (jump and link; jump to procedure which store max[a, b] in R3
0D: 1100000000000000; --nop
0E: 0001000000001110; --Halt (program stops here)
0F: 1100000000000000; --nop
10: 1110000100100000; --cmp R1, R2
11: 1111001000000100; --blt (if R1 < R2 branch)
12: 1100000000000000; --nop
13: 0011000100000011; --add R3, R1, zero (store R1 in R3)
14: 0001000000010111; --j 23 (jump to 0x17)
15: 1100000000000000; --nop
16: 0011001000000011; --add R2, R3, zero (store R2 in R3)
17: 0010111100000000; --jr (procedure return)
18: 1100000000000000; --nop

The test program calculates R1 * R2 and stores the result in R6. The value of R1 and R2 are given by 8 switches, 4 each. The maximum number can be inputted is 15 and the maximum result is 225. And then max[R1, R2] is stored in R3. When using lw, sw we add bubble into the pipeline as shown in the diagram.
Further improvement: adding branch prediction, forwarding, hazard control etc.

Problem occurred during Debug:

 Jump type instruction behind lw or sw maybe discarded.

Solution: adding bubble.
