ELEC 5200-001/6200-001 Computer Architecture and Design 
Fall 2008
Homework 9 Problems
Assigned 12/1/08, due 12/8/08
Problem 1: 
a. Consider a processor connected directly to the main memory. Each memory access (either read or write) requires 10 cycles. Besides the instruction fetch, needed for every instruction, 30% instructions require an additional memory access. What is the average number of cycles an instruction uses for memory access?



b. To improve the performance, we use separate one-level caches for instruction and data, with access times of 1 cycle each. The cache sizes and organizations are such that the hit rates for both instructions and data are 0.9. The miss penalty (time to refresh and access the cache) is 15 cycles for both caches. What is the average number of memory access cycles per instruction now?

c. If we were to reduce the miss penalty of just one of the caches, which one should it be – the instruction cache or the data cache? Why?

Problem 2:

(a) Consider a two-level cache system in which all caches have the same hit rate h. The access time to bring data from L2 cache to L1 cache is ten times that for accessing data from L1 cache. The access time to bring data from the main memory to L2 cache is ten times that for L2 to L1 data transfer. The access time from the L1 cache is one clock cycle. Show that the average time for a memory operation is 111 – 210h + 100h2.

(b) What is the average number of clock cycles the processor will require for a memory access when h = 0.9?

(c) What should be the hit rate h if an average memory access time of two cycles is desired?

Problem 3: Suppose we model the influence of physical clustering of data in memory on the cache by a locality parameter C, 0 < C ≤ 1, such that the hit ratio is expressed as h = (m/M)C, where m is the size of the one-level cache and M that of the main memory. Assuming that the cycle time of memory hardware reduces in proportion to the size of the memory, determine the cache size that will minimize the average data access time. Find cache sizes and hit rates for highly localized (C << 1) and highly unclustered (C ≈ 1) data.













































































































































































































