Gavin Palmer
12/03/07

Part5

This project helped my understanding of the basic CPU. I understand the core parts which are brought together to create a simple processor.

If I were to do this again, I would start with a multi-cycle implementation and try to work backwards so that I fully understand the FPGA hardware before I begin. I found that the original ISA was not capable of performing the ‘c’ operations required. I then had to change my ISA and some of the architecture.

I recommend to others who do this project to begin early and keep in mind the actual implementation on hardware in ‘real-time’ rather than relying solely on simulation. I had everything working in simulation, but this did not carry over into the FPGA implementation.

I first implemented a single-cycle controller for my design. This controller basically assigned the signals per instruction. After re-thinking this approach, I realized that I had to change signals in between each fetch, decode, and execute states. I also realized that a multi-cycle implementation would be much easier to use for changing states. I then began the process of changing the controller.

I created the controller to change states from fetch to decode to execute, and depending upon the opcode, I would set the next state. I truly believed that I had figured out all of the state requirements to achieve running the desired program from memory because the simulation appeared to work perfectly. All of the registers were filled as desired and the pc incremented and jumped as directed by the program. However, I could not get the FPGA to run my implementation correctly.

I did research, and I found that because there was only one memory, I needed to have an instruction register to hold the instruction and another memory register to hold the data. I also needed to set the signals correctly in the controller so that all of the MUX’s fed the correct signals everywhere so that the registers were filled correctly. I also added an ALU register to store the output from the ALU to be used as needed. I again ran simulation and found that the implementation simulated as desired. However, I once again failed at implementing on the FPGA.

I configured signals to be run to output led’s on the FPGA and found that my first instruction (which is load) would not load correctly. I guessed that the address to memory for the load was not correct, because one register was being loaded with an odd 16 bit value. I tried in vein to fix the problem by changing timing of signals so that the memory would read the correct address. I did not have time, but I would have tried reading the actual instruction register along with the address going into memory. I tried very hard, but I failed to correct the timing problem corresponding with my controller.

