
Lecture 3 – Sequential Logic
Circuits

Reference: Roth/John Text: Chapter 2

1

VHDL “Process” Construct

 Allows conventional programming language structures
to describe circuit behavior – especially sequential
behavior
 Process statements are executed in sequence
 Process statements are executed once at start of simulation
 Process is suspended at “end process” until an event occurs on

a signal in the “sensitivity list”

[label:] process (sensitivity list)
declarations

begin
sequential statements

end process;
2

Modeling combinational logic as a process

-- All signals referenced in process must be in the sensitivity list.
entity And_Good is

port (a, b: in std_logic; c: out std_logic);
end And_Good;
architecture Synthesis_Good of And_Good is

begin
process (a,b) -- gate sensitive to events on signals a and/or b
begin

c <= a and b; -- c updated (after delay on a or b “events”
end process;

end;
-- Above process is equivalent to simple signal assignment statement:
-- c <= a and b;

3

Bad example of combinational logic
-- This example produces unexpected results.
entity And_Bad is

port (a, b: in std_logic; c: out std_logic);
end And_Bad;
architecture Synthesis_Bad of And_Bad is

begin
process (a) -- sensitivity list should be (a, b)
begin

c <= a and b; -- will not react to changes in b
end process;

end Synthesis_Bad;
-- synthesis may generate a flip flop, triggered by signal a

4

-- Edge-triggered flip flop/register
entity DFF is
port (D,CLK: in bit;

Q: out bit);
end DFF;
architecture behave of DFF is
begin

process(clk) -- “process sensitivity list”
begin

if (clk’event and clk=‘1’) then -- rising edge of clk
Q <= D; -- optional “after x” for delay
QB <= not D;

end if;
end process;

end;

 clk’event is an “attribute” of signal clk (signals have several
attributes)
 clk’event = TRUE if an event has occurred on clk at the current simulation

time
FALSE if no event on clk at the current simulation time

 clk‘stable is a complementary attribute (TRUE of no event at this time)

Modeling sequential behavior

D Q

CLK QB

5

Edge-triggered flip-flop
 Special functions in package std_logic_1164 for std_logic types

• rising_edge(clk) = TRUE for 0->1, L->H and several other
“rising-edge” conditions

• falling_edge(clk) = TRUE for 1->0, H->L and several other
“falling-edge” conditions

Example:
signal clk: std_logic;
begin

process (clk) -- trigger process on clk event
begin

if rising_edge(clk) then -- detect rising edge of clk
Q <= D ; -- Q and QB change on rising edge
QB <= not D;

end if;
end process;

6

Common error in processes
 Process statements are evaluated only at time instant T, at which an

event occurs on a signal in the sensitivity list
• Statements in the process use signal values that exist at time T.
• Signal assignment statements “schedule” future events.

Example:
process (clk) -- trigger process on clk event
begin

if rising_edge(clk) then -- detect rising edge of clk
Q <= D ; -- Q and QB change δ time after rising edge
QB <= not Q;

end if;
end process;

As written above, if clk edge occurs at time T:
Q will change at time T+δ, to D(T)

QB will change at time T+δ, to “not Q(T)” – using Q(T) rather than new Q(T+δ)

7

-- Timing error here!!
-- Desired QB appears one clock period late!
-- Should be: QB <= not D;

Alternative to sensitivity list
process -- no “sensitivity list”
begin

wait on clk; -- suspend process until event on clk
if (clk=‘1’) then

Q <= D after 1 ns;
end if;

end process;

 BUT - sensitivity list is preferred for sequential circuits!

 Other “wait” formats: wait until (clk’event and clk=‘1’)
wait for 20 ns;

 This format does not allow for asynchronous controls
 Cannot have both sensitivity list and wait statement
 Process executes endlessly if neither sensitivity list nor wait

statement provided!

D Q

CLK

8

entity Dlatch is
port (D,CLK: in bit;

Q: out bit);
end Dlatch;

architecture behave of Dlatch is
begin

process(D, clk)
begin

if (clk=‘1’) then
Q <= D after 1 ns;

end if;
end process;

end;

Qlatch can change when CLK becomes ‘1’ and/or when D changes
while CLK=‘1’ (rather than changing only at a clock edge)

Level-Sensitive D latch vs. D flip-flop

D Q

CLK

CLK

D

Qlatch

Qflip-flop

9

RTL “register” model (not gate-level)
entity Reg8 is
port (D: in std_logic_vector(0 to 7);

Q: out std_logic_vector(0 to 7);
LD: in std_logic);

end Reg8;
architecture behave of Reg8 is
begin

process(LD)
begin

if rising_edge(LD) then
Q <= D;

end if;
end process;

end;
D and Q can be any abstract data type

Reg8

D(0 to 7)

Q(0 to 7)

LD

10

RTL “register” with clock enable

--Connect all system registers to a common clock
--Select specific registers to be loaded
entity RegCE is
port (D: in std_logic_vector(0 to 7);

Q: out std_logic_vector(0 to 7);
EN: in std_logic; --clock enable
CLK: in std_logic);

end RegCE;

architecture behave of RegCE is
begin

process(CLK)
begin

if rising_edge(CLK) then
if EN = ‘1’ then

Q <= D; --load only if EN=1 at the clock transition
end if;

end if;
end process;

end;

RegCE

D(0 to 7)

Q(0 to 7)

CLK
EN

11

Synchronous vs asynchronous inputs

process (clock, asynchronous_signals)
begin

if (boolean_expression) then
asynchronous signal_assignments

elsif (boolean_expression) then
asynchronous signal assignments

elsif (clock’event and clock = constant) then
synchronous signal_assignments

end if ;
end process;

 Synchronous inputs are synchronized to the clock.
 Asynchronous inputs are not and cause immediate change.

 Asynchronous inputs normally have precedence over sync. inputs

12

Synchronous vs. Asynchronous Flip-Flop Inputs
entity DFF is
port (D,CLK: in std_logic; --D is a sync input

PRE,CLR: in std_logic; --PRE/CLR are async inputs
Q: out std_logic);

end DFF;

architecture behave of DFF is
begin

process(clk, PRE, CLR)
begin

if (CLR=‘0’) then -- async CLR has precedence
Q <= ‘0’;

elsif (PRE=‘0’) then -- then async PRE has precedence
Q <= ‘1’;

elsif rising_edge(clk) then -- sync operation only if CLR=PRE=‘1’
Q <= D;

end if;
end process;

end;

CLR
D Q

CLK
PRE

What happens if CLR = PRE = 0 ??
13

Sequential Constructs: if-then-else

General format: Example:

if (condition) then if (S = “00”) then
do stuff Z <= A;

elsif (condition) then elsif (S = “11”) then
do more stuff Z <= B;

else else
do other stuff Z <= C;

end if; end if;

elsif and else clauses are optional, BUT incompletely
specified if-then-else (no else) implies memory element

14

Sequential Constructs: case-when

General format: Example:

case expression is case S is
when value => when “00” =>

do stuff Z <= A;
when value => when “11” =>

do more stuff Z <= B;
when others => when others =>

do other stuff Z <= C;
end case; end case;

15

Sequential Constructs: for loop

General format: Example:

[label:] for identifier in range loop init: for k in N-1 downto 0 loop
do a bunch of junk Q(k) <= ‘0’;

end loop [label]; end loop init;

Note: variable k is “implied” in the for-loop and does not
need to be declared

16

Sequential Constructs: while loop

General format: Example:

[label:] while condition loop init: while (k > 0) loop
do some stuff Q(k) <= ‘0’

end loop [label]; k := k – 1;
end loop init;

Note: Variable k must be declared as a process
“variable”, between sensitivity list and begin, with
format:
 variable variable_name : type := initial_value;
 variable k: integer := N-1;

17

Verilog: Abstract Modeling with Cyclic Behaviors
 Abstract
 Do not use hardware to specify values

 Cyclic behaviors
 Verilog keyword always, followed by an event-control expression
 e.g. always @ (posedge clk)

 Execute procedural statements to generate values of variables
 Assign values to register variables to describe the behavior of

hardware
 Do not expire after the last procedural statement

 re-execute after executing the last procedural statement executes (subject to
timing controls)

 Model both level-sensitive and edge-sensitive behaviors
 Depending on the event-control expression

 Synthesis tool selects the hardware

18

Cyclic Behavior Ex: DFF with Sync. Set/Reset
 Edge-triggered
 Synchronous set/reset
 Signals set/reset not in the event-control expression
 No influence until posedge clk

 Non-blocking assignments (<=) within CB
module df_behav (q, q_bar, data, set_n, reset_n, clk);
input data, set_n, clk, reset_n;
output q, q_bar;
reg q;

assign q_bar = ~ q;

always @ (posedge clk) // Flip-flop with synchronous set/reset
begin

if (reset_n == 0) q <= 0; // <= is the nonblocking assignment operator
else if (set_n ==0) q <= 1;
else q <= data;

end
endmodule19

Cyclic Behavior Example: DFF (cont.)

 A variable that is assigned values by a procedural
assignment operator in a single-pass (i.e., init) or
cyclic behavior (i.e. always) must be declared as a
register type variable to store information during
simulation
 Not necessarily imply a hardware register after synthesis
 Such as the variable q
 Happen to be a DFF in the example

 Procedural statement is executed sequentially
 Event-control expression is re-evaluated after all

procedural statements are executed

20

Example: DFF with Asynchronous Set/Reset
 Signals set/reset are in the event-control

expression

module asynch_df_behav (q, q_bar, data, set_n, clk, reset_n);
input data, set_n, reset_n, clk;

output q, q_bar;
reg q;

assign q_bar = ~q;

always @ (negedge set_n or negedge reset_n or posedge clk)
begin

if (reset_n == 0) q <= 0;
else if (set_n == 0) q <= 1;
else q <= data; // synchronized activity

end
endmodule

21

Ex: DFF with Asynchronous Set/Reset (Cont.)
 Good practice to place the synchronous signal (i.e. clock)

of the asynchronous behavior in the last conditional
clause in the event control expression
 Made easy to identify the synchronous signal
 Either by human for readability or by synthesis tool

 Made easy to infer the need of a flip-flop to hold the value
between two active edges of the synchronous signal

 Verilog allows mixture of level-sensitive and edge-qualified
variables in the same event-control expression
 BUT, synthesis tools do not support such models of

behavior
 Hence, event-control expression must be
 Entirely level-sensitive, or
 Entirely edge-sensitive

22

Example: Transparent-Latch Using Cyclic Behavior

module t_latch (q_out, enable, data);
output q_out;
input enable, data;
reg q_out;

always @ (enable or data)
begin
if (enable) q_out = data;
// Note: no “else” assignment for q_out
// hence, the value of q_out is implied to be kept, i.e. latched

end
endmodule

data

enable

q_out

23

	Lecture 3 – Sequential Logic Circuits
	VHDL “Process” Construct
	Modeling combinational logic as a process
	Bad example of combinational logic
	Modeling sequential behavior
	Edge-triggered flip-flop
	Common error in processes
	Alternative to sensitivity list
	Level-Sensitive D latch vs. D flip-flop
	RTL “register” model (not gate-level)
	RTL “register” with clock enable
	Synchronous vs asynchronous inputs
	Synchronous vs. Asynchronous Flip-Flop Inputs
	Sequential Constructs: if-then-else
	Sequential Constructs: case-when
	Sequential Constructs: for loop
	Sequential Constructs: while loop
	Verilog: Abstract Modeling with Cyclic Behaviors
	Cyclic Behavior Ex: DFF with Sync. Set/Reset
	Cyclic Behavior Example: DFF (cont.)
	Example: DFF with Asynchronous Set/Reset
	Ex: DFF with Asynchronous Set/Reset (Cont.)
	Example: Transparent-Latch Using Cyclic Behavior

