
Lecture 3 – Sequential Logic
Circuits

Reference: Roth/John Text: Chapter 2

1

VHDL “Process” Construct

 Allows conventional programming language structures
to describe circuit behavior – especially sequential
behavior
 Process statements are executed in sequence
 Process statements are executed once at start of simulation
 Process is suspended at “end process” until an event occurs on

a signal in the “sensitivity list”

[label:] process (sensitivity list)
declarations

begin
sequential statements

end process;
2

Modeling combinational logic as a process

-- All signals referenced in process must be in the sensitivity list.
entity And_Good is

port (a, b: in std_logic; c: out std_logic);
end And_Good;
architecture Synthesis_Good of And_Good is

begin
process (a,b) -- gate sensitive to events on signals a and/or b
begin

c <= a and b; -- c updated (after delay on a or b “events”
end process;

end;
-- Above process is equivalent to simple signal assignment statement:
-- c <= a and b;

3

Bad example of combinational logic
-- This example produces unexpected results.
entity And_Bad is

port (a, b: in std_logic; c: out std_logic);
end And_Bad;
architecture Synthesis_Bad of And_Bad is

begin
process (a) -- sensitivity list should be (a, b)
begin

c <= a and b; -- will not react to changes in b
end process;

end Synthesis_Bad;
-- synthesis may generate a flip flop, triggered by signal a

4

-- Edge-triggered flip flop/register
entity DFF is
port (D,CLK: in bit;

Q: out bit);
end DFF;
architecture behave of DFF is
begin

process(clk) -- “process sensitivity list”
begin

if (clk’event and clk=‘1’) then -- rising edge of clk
Q <= D; -- optional “after x” for delay
QB <= not D;

end if;
end process;

end;

 clk’event is an “attribute” of signal clk (signals have several
attributes)
 clk’event = TRUE if an event has occurred on clk at the current simulation

time
FALSE if no event on clk at the current simulation time

 clk‘stable is a complementary attribute (TRUE of no event at this time)

Modeling sequential behavior

D Q

CLK QB

5

Edge-triggered flip-flop
 Special functions in package std_logic_1164 for std_logic types

• rising_edge(clk) = TRUE for 0->1, L->H and several other
“rising-edge” conditions

• falling_edge(clk) = TRUE for 1->0, H->L and several other
“falling-edge” conditions

Example:
signal clk: std_logic;
begin

process (clk) -- trigger process on clk event
begin

if rising_edge(clk) then -- detect rising edge of clk
Q <= D ; -- Q and QB change on rising edge
QB <= not D;

end if;
end process;

6

Common error in processes
 Process statements are evaluated only at time instant T, at which an

event occurs on a signal in the sensitivity list
• Statements in the process use signal values that exist at time T.
• Signal assignment statements “schedule” future events.

Example:
process (clk) -- trigger process on clk event
begin

if rising_edge(clk) then -- detect rising edge of clk
Q <= D ; -- Q and QB change δ time after rising edge
QB <= not Q;

end if;
end process;

As written above, if clk edge occurs at time T:
Q will change at time T+δ, to D(T)

QB will change at time T+δ, to “not Q(T)” – using Q(T) rather than new Q(T+δ)

7

-- Timing error here!!
-- Desired QB appears one clock period late!
-- Should be: QB <= not D;

Alternative to sensitivity list
process -- no “sensitivity list”
begin

wait on clk; -- suspend process until event on clk
if (clk=‘1’) then

Q <= D after 1 ns;
end if;

end process;

 BUT - sensitivity list is preferred for sequential circuits!

 Other “wait” formats: wait until (clk’event and clk=‘1’)
wait for 20 ns;

 This format does not allow for asynchronous controls
 Cannot have both sensitivity list and wait statement
 Process executes endlessly if neither sensitivity list nor wait

statement provided!

D Q

CLK

8

entity Dlatch is
port (D,CLK: in bit;

Q: out bit);
end Dlatch;

architecture behave of Dlatch is
begin

process(D, clk)
begin

if (clk=‘1’) then
Q <= D after 1 ns;

end if;
end process;

end;

Qlatch can change when CLK becomes ‘1’ and/or when D changes
while CLK=‘1’ (rather than changing only at a clock edge)

Level-Sensitive D latch vs. D flip-flop

D Q

CLK

CLK

D

Qlatch

Qflip-flop

9

RTL “register” model (not gate-level)
entity Reg8 is
port (D: in std_logic_vector(0 to 7);

Q: out std_logic_vector(0 to 7);
LD: in std_logic);

end Reg8;
architecture behave of Reg8 is
begin

process(LD)
begin

if rising_edge(LD) then
Q <= D;

end if;
end process;

end;
D and Q can be any abstract data type

Reg8

D(0 to 7)

Q(0 to 7)

LD

10

RTL “register” with clock enable

--Connect all system registers to a common clock
--Select specific registers to be loaded
entity RegCE is
port (D: in std_logic_vector(0 to 7);

Q: out std_logic_vector(0 to 7);
EN: in std_logic; --clock enable
CLK: in std_logic);

end RegCE;

architecture behave of RegCE is
begin

process(CLK)
begin

if rising_edge(CLK) then
if EN = ‘1’ then

Q <= D; --load only if EN=1 at the clock transition
end if;

end if;
end process;

end;

RegCE

D(0 to 7)

Q(0 to 7)

CLK
EN

11

Synchronous vs asynchronous inputs

process (clock, asynchronous_signals)
begin

if (boolean_expression) then
asynchronous signal_assignments

elsif (boolean_expression) then
asynchronous signal assignments

elsif (clock’event and clock = constant) then
synchronous signal_assignments

end if ;
end process;

 Synchronous inputs are synchronized to the clock.
 Asynchronous inputs are not and cause immediate change.

 Asynchronous inputs normally have precedence over sync. inputs

12

Synchronous vs. Asynchronous Flip-Flop Inputs
entity DFF is
port (D,CLK: in std_logic; --D is a sync input

PRE,CLR: in std_logic; --PRE/CLR are async inputs
Q: out std_logic);

end DFF;

architecture behave of DFF is
begin

process(clk, PRE, CLR)
begin

if (CLR=‘0’) then -- async CLR has precedence
Q <= ‘0’;

elsif (PRE=‘0’) then -- then async PRE has precedence
Q <= ‘1’;

elsif rising_edge(clk) then -- sync operation only if CLR=PRE=‘1’
Q <= D;

end if;
end process;

end;

CLR
D Q

CLK
PRE

What happens if CLR = PRE = 0 ??
13

Sequential Constructs: if-then-else

General format: Example:

if (condition) then if (S = “00”) then
do stuff Z <= A;

elsif (condition) then elsif (S = “11”) then
do more stuff Z <= B;

else else
do other stuff Z <= C;

end if; end if;

elsif and else clauses are optional, BUT incompletely
specified if-then-else (no else) implies memory element

14

Sequential Constructs: case-when

General format: Example:

case expression is case S is
when value => when “00” =>

do stuff Z <= A;
when value => when “11” =>

do more stuff Z <= B;
when others => when others =>

do other stuff Z <= C;
end case; end case;

15

Sequential Constructs: for loop

General format: Example:

[label:] for identifier in range loop init: for k in N-1 downto 0 loop
do a bunch of junk Q(k) <= ‘0’;

end loop [label]; end loop init;

Note: variable k is “implied” in the for-loop and does not
need to be declared

16

Sequential Constructs: while loop

General format: Example:

[label:] while condition loop init: while (k > 0) loop
do some stuff Q(k) <= ‘0’

end loop [label]; k := k – 1;
end loop init;

Note: Variable k must be declared as a process
“variable”, between sensitivity list and begin, with
format:
 variable variable_name : type := initial_value;
 variable k: integer := N-1;

17

Verilog: Abstract Modeling with Cyclic Behaviors
 Abstract
 Do not use hardware to specify values

 Cyclic behaviors
 Verilog keyword always, followed by an event-control expression
 e.g. always @ (posedge clk)

 Execute procedural statements to generate values of variables
 Assign values to register variables to describe the behavior of

hardware
 Do not expire after the last procedural statement

 re-execute after executing the last procedural statement executes (subject to
timing controls)

 Model both level-sensitive and edge-sensitive behaviors
 Depending on the event-control expression

 Synthesis tool selects the hardware

18

Cyclic Behavior Ex: DFF with Sync. Set/Reset
 Edge-triggered
 Synchronous set/reset
 Signals set/reset not in the event-control expression
 No influence until posedge clk

 Non-blocking assignments (<=) within CB
module df_behav (q, q_bar, data, set_n, reset_n, clk);
input data, set_n, clk, reset_n;
output q, q_bar;
reg q;

assign q_bar = ~ q;

always @ (posedge clk) // Flip-flop with synchronous set/reset
begin

if (reset_n == 0) q <= 0; // <= is the nonblocking assignment operator
else if (set_n ==0) q <= 1;
else q <= data;

end
endmodule19

Cyclic Behavior Example: DFF (cont.)

 A variable that is assigned values by a procedural
assignment operator in a single-pass (i.e., init) or
cyclic behavior (i.e. always) must be declared as a
register type variable to store information during
simulation
 Not necessarily imply a hardware register after synthesis
 Such as the variable q
 Happen to be a DFF in the example

 Procedural statement is executed sequentially
 Event-control expression is re-evaluated after all

procedural statements are executed

20

Example: DFF with Asynchronous Set/Reset
 Signals set/reset are in the event-control

expression

module asynch_df_behav (q, q_bar, data, set_n, clk, reset_n);
input data, set_n, reset_n, clk;

output q, q_bar;
reg q;

assign q_bar = ~q;

always @ (negedge set_n or negedge reset_n or posedge clk)
begin

if (reset_n == 0) q <= 0;
else if (set_n == 0) q <= 1;
else q <= data; // synchronized activity

end
endmodule

21

Ex: DFF with Asynchronous Set/Reset (Cont.)
 Good practice to place the synchronous signal (i.e. clock)

of the asynchronous behavior in the last conditional
clause in the event control expression
 Made easy to identify the synchronous signal
 Either by human for readability or by synthesis tool

 Made easy to infer the need of a flip-flop to hold the value
between two active edges of the synchronous signal

 Verilog allows mixture of level-sensitive and edge-qualified
variables in the same event-control expression
 BUT, synthesis tools do not support such models of

behavior
 Hence, event-control expression must be
 Entirely level-sensitive, or
 Entirely edge-sensitive

22

Example: Transparent-Latch Using Cyclic Behavior

module t_latch (q_out, enable, data);
output q_out;
input enable, data;
reg q_out;

always @ (enable or data)
begin
if (enable) q_out = data;
// Note: no “else” assignment for q_out
// hence, the value of q_out is implied to be kept, i.e. latched

end
endmodule

data

enable

q_out

23

	Lecture 3 – Sequential Logic Circuits
	VHDL “Process” Construct
	Modeling combinational logic as a process
	Bad example of combinational logic
	Modeling sequential behavior
	Edge-triggered flip-flop
	Common error in processes
	Alternative to sensitivity list
	Level-Sensitive D latch vs. D flip-flop
	RTL “register” model (not gate-level)
	RTL “register” with clock enable
	Synchronous vs asynchronous inputs
	Synchronous vs. Asynchronous Flip-Flop Inputs
	Sequential Constructs: if-then-else
	Sequential Constructs: case-when
	Sequential Constructs: for loop
	Sequential Constructs: while loop
	Verilog: Abstract Modeling with Cyclic Behaviors
	Cyclic Behavior Ex: DFF with Sync. Set/Reset
	Cyclic Behavior Example: DFF (cont.)
	Example: DFF with Asynchronous Set/Reset
	Ex: DFF with Asynchronous Set/Reset (Cont.)
	Example: Transparent-Latch Using Cyclic Behavior

