
Lecture 5 - Modeling for Synthesis
Register Transfer Level (RTL) Design

1 11/9/2020

Register Transfer Language (RTL) Design
A system is viewed as a structure comprising

registers, functions and their control signals
Show dataflow

through the system
 Instructions, Data,

Addresses
Functions store and

manipulate data

No gates!!!

2 11/9/2020

RTL register model
-- Model register to hold one datum of some type
-- Individual bits are not manipulated
library ieee; use ieee.std_logic_1164.all;

entity Reg8 is
port (D: in std_logic_vector(7 downto 0);

Q: out std_logic_vector(7 downto 0);
LD: in std_logic);

end Reg8;

architecture behave of Reg8 is
begin

process(LD)
begin

if (LD’event and LD=‘1’) then
Q <= D; -- load data into the register

end if;
end process;

end;

Reg8

D(0 to 7)

Q(0 to 7)

LD

3 11/9/2020

Asynchronous control inputs
library ieee; use ieee.std_logic_1164.all;

entity Reg8 is
port (D: in std_logic_vector (7 downto 0);

CLK,PRE,CLR: in bit; --Async PRE/CLR
Q: out std_logic_vector (7 downto 0));

end Reg8;

architecture behave of Reg8 is
begin

process(clk, PRE, CLR)
begin

if (CLR=‘0’) then -- async CLR has precedence
Q <=“00000000”; -- force register to all 0s

elsif (PRE=‘0’) then -- async PRE has precedence if CLR=‘0’
Q <= (others => ‘1’); -- force register to all 1s

elsif rising_edge (clk) then -- sync operation only if CLR=PRE=‘1’
Q <= D; -- load D on clock transition

end if;
end process;

end;

CLR
D Q

CLK
PRE

4 11/9/2020

Synchronous reset/set
--Reset function triggered by clock edge
process (clk)
begin

if (clk’event and clk = ‘1’) then
if reset = ‘1’ then

Q <= “00000000” ;
else

Q <= D ;
end if;

end if;
end process;

5 11/9/2020

Register with clock enable
-- “enable” effectively enables/disables clock
process (clk)
begin

if rising_edge(clk) then -- detect clock transition
if enable = ‘1’ then -- enable load on clock transition

Q <= D ;
end if;

end if;
end process;

6 11/9/2020

-- One model of a given function with variable data size
library ieee; use ieee.std_logic_1164.all;

entity REGN is
generic (N: integer := 8); -- N specified when REG used
port (CLK, RST, PRE, CEN: in std_logic;

DATAIN: in std_logic_vector (N-1 downto 0); -- N-bit data in
DOUT: out std_logic_vector (N-1 downto 0) -- N-bit data out
);

end entity REGN;

architecture RTL of REGN is
begin
process (CLK) begin

if (CLK'event and CLK = '1') then
if (RST = '1') then DOUT <= (others => '0'); --reset to all 0s
elsif (PRE = '1') then DOUT <= (others => '1'); --preset to all 1s
elsif (CEN = '1') then DOUT <= DATAIN; --load data
end if;

end if;
end process;
end architecture RTL;

Register with parameterized width

Vectors: “100” = (‘1’,’0’,’0’) = (‘1’, others => ‘0’)
Arbitrarily long: “00…0” = (others => ‘0’)

7 11/9/2020

library ieee; use ieee.std_logic_1164.all;
entity TOP is

port (CLK,X,Y,A,B,C: in std_logic;
DIN: in std_logic_vector(5 downto 0);
Q1: out std_logic_vector(5 downto 0);
Q2: out std_logic_vector(4 downto 0);
Q3: out std_logic_vector(3 downto 0)
);

end entity TOP;

architecture HIER of TOP is
component REGN is

generic (N: integer := 8);
port (CLK, RST, PRE, CEN: in std_logic;

DATAIN: in std_logic_vector (N-1 downto 0);
DOUT: out std_logic_vector (N-1 downto 0)
);

end component REGN;
begin
R1: REGN generic map (6) port map --6-bit register

(CLK, A, B, C, DIN, Q1);
R2: REGN generic map (5) port map --5-bit register (low 5 bits of DIN)

(CLK, Y, X, C, DIN(4 downto 0),Q2);
R3: REGN generic map (4) port map --4-bit register (low 4 bits of DIN)

(CLK=>CLK, RST=>A, PRE=>B, CEN=>C, DATAIN=>DIN(3 downto 0), DOUT=>Q3);
end architecture HIER;

Instantiating the parameterized register

8 11/9/2020

2-to-1 mux with parameterized data size
entity muxN is

generic (N: integer := 32); -- data size parameter
port (A,B: in std_logic_vector(N-1 downto 0);

Y: out std_logic_vector(N-1 downto 0);
Sel: in std_logic);

end muxN;
architecture rtl of muxN is
begin

Y <= A when Sel = ‘0’ else B; -- A,B,Y same type
end;
-- specify parameter N at instantiation time
M: muxN generic map (16)

port map(A=>In1, B=>In2, Y=>Out1);
9 11/9/2020

Other types of generic parameters
entity and02 is

generic (Tp : time := 5 ns); -- gate delay
parameter

port (A,B: in std_logic;
Y: out std_logic);

end and02;
architecture eqn of and02 is
begin

Y <= A and B after Tp; -- gate with delay Tp
end;
…..
A_tech1: and02 generic map (2 ns) port map (M,N,P);
A_tech2: and02 generic map (1 ns) port map (H,K,L);

Gates with
different delays.

10 11/9/2020

IEEE Std. 1076.3 Synthesis Libraries
 Supports arithmetic models

• ieee.numeric_std (ieee library package)
defines UNSIGNED and SIGNED types as arrays of

std_logic
type SIGNED is array(NATURAL range <>) of STD_LOGIC;
type UNSIGNED is array(NATURAL range <>) of STD_LOGIC;

defines arithmetic/relational operators on these types
• Supports RTL models of functions

 Lesser-used packages:
• ieee.numeric_bit
 same as above except SIGNED/UNSIGNED are arrays of type bit

• ieee.std_logic_arith (from Synopsis)
Non-standard predecessor of numeric_std/numeric_bit

11 11/9/2020

NUMERIC_STD package contents
 Arithmetic functions: + - * / rem mod

• Combinations of operand types for which operators are defined:
 SIGNED + SIGNED return SIGNED
 SIGNED + INTEGER return SIGNED
 INTEGER + SIGNED return SIGNED
 SIGNED + STD_LOGIC return SIGNED

• PLUS: above combinations with UNSIGNED and NATURAL

 Other operators for SIGNED/UNSIGNED types:
• Relational: = /= < > <= >=
• Shift/rotate: sll, srl, sla, sra, rol, ror
• Maximum(a,b), Minimum(a,b)

 Convert between types:
• TO_INTEGER(SIGNED), TO_INTEGER(UNSIGNED)
• TO_SIGNED(INTEGER,#bits), TO_UNSIGNED(NATURAL,#bits)
• RESIZE(SIGNED or UNSIGNED,#bits) – changes # bits in the vector

12 11/9/2020

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity Adder4 is

port (in1, in2 : in UNSIGNED(3 downto 0) ;
mySum : out UNSIGNED(3 downto 0)) ;

end Adder4;

architecture Behave_B of Adder4 is
begin

mySum <= in1 + in2; -- overloaded '+‘ operator
end Behave_B;

Arithmetic with NUMERIC_STD package

UNSIGNED = UNSIGNED + UNSIGNED

13 11/9/2020

Conversion of “closely-related” types
 STD_LOGIC_VECTOR, SIGNED, UNSIGNED:

• All arrays of STD_LOGIC elements
• Example: How would one interpret “1001” ?
STD_LOGIC_VECTOR: simple pattern of four bits
SIGNED: 4-bit representation of number -7 (2’s complement #)
UNSIGNED: 4-bit representation of number 9 (unsigned #)

 Vectors of same element types can be “converted”
(re-typed/re-cast) from one type to another

signal A: std_logic_vector(3 downto 0) := “1001”;
signal B: signed(3 downto 0);
signal C: unsigned(3 downto 0);
B <= signed(A); -- interpret A value “1001” as number -7
C <= unsigned(A); -- interpret A value “1001” as number 9
A <= std_logic_vector(B); -- interpret B as bit pattern “1001”

14 11/9/2020

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity Adder4 is

port (in1, in2 : in STD_LOGIC_VECTOR(3 downto 0) ;
mySum : out STD_LOGIC_VECTOR(3 downto 0)) ;

end Adder4;

architecture Behave_B of Adder4 is
begin

mySum <=
STD_LOGIC_VECTOR(SIGNED(in1) + SIGNED(in2));

end Behave_B;

Conversion of “closely-related” types

Interpret STD_LOGIC_VECTOR as SIGNED
Function: SIGNED = SIGNED + SIGNED

Interpret SIGNED result as STD_LOGIC_VECTOR.

SIGNED result

For arrays of same dimension, having elements of same type

15 11/9/2020

Example – binary counter
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
ENTITY counter IS

port(Q: out std_logic_vector(3 downto 0);
….

END counter;

ARCHITECTURE behavior OF counter IS
signal Qinternal: unsigned(3 downto 0);

begin

Qinternal <= Qinternal + 1; -- UNSIGNED = UNSIGNED + NATURAL
Q <= std_logic_vector(Qinternal); -- re-type unsigned as std_logic_vector

From NUMERIC_STD package

16 11/9/2020

Using a “variable” to describe sequential
behavior within a process

-- Assume Din and Dout are std_logic_vector
-- and numeric_std package is included
cnt: process(clk)

variable count: integer; -- internal counter state
begin -- valid only within a process

if clk=‘1’ and clk’event then
if ld=‘1’ then

count := to_integer(unsigned(Din)); --update immediately
elsif cnt=‘1’ then

count := count + 1; --update immediately
end if;

end if;
Dout <= std_logic_vector(to_unsigned(count,32)); --schedule Dout

end process;

17 11/9/2020

Counting to some max_value (not 2n)
-- full-sized comparator circuit generated to check count =

max
process begin

wait until clk’event and clk=’1’ ;
if (count = max_value) then

count <= 0 ; --roll over from max_value to 0
else

count <= count + 1 ; --otherwise increment
end if ;

end process ;

18 11/9/2020

Decrementer and comparator
process begin

wait until clk’event and clk=’1’ ;
if (count = 0) then

count <= max_value ; -- roll over from 0 to max_value
else

count <= count - 1 ; -- otherwise decrement
end if ;

end process ;

19 11/9/2020

Verilog Modeling Trap
 The order of execution of procedural statements in

a cyclic behavior may depend on the order in which
the statements are listed

 Procedural assignments are called “blocked”
assignments (or blocking assignments)

• Execute sequentially
• A procedural assignment must complete execution before

the next statement can be executed
• i.e. the statements that follow a procedural statement are

“blocked” till the current one completes execution
 Expression substitution is recognized by synthesis

tools

module shiftreg_PA_rev (E, A, clk, rst);
output A;
input E;
input clk, rst;
reg A, B, C, D;

always @ (posedge clk or posedge rst)
begin

if (rst) begin
A = 0; B = 0; C = 0; D = 0; end

else begin
D = E;
C = D;
B = C;
A = B;

end
end

endmodule

Example:Modeling Trap of a Shift Register
E

rst

clk

C B A

R

QD

R

QD

R

QD

R

QD
D

E

rst

clk
R

QD
A

A=E

module shiftreg_PA (E, A, clk, rst);
output A;
input E;
input clk, rst;
reg A, B, C, D;

always @ (posedge clk or posedge rst)
begin

if (rst) begin
A = 0; B = 0; C = 0; D = 0; end

else begin
A = B;
B = C;
C = D;
D = E;

end
end

endmodule

Nonblocking Assignment (<=) in Cyclic Behavior
 Effectively execute concurrently rather than sequentially

by blocked assignments
• Independent of the order where they are listed
 Simulator must

• Sample all variables referenced by RHS with nonblocking
assignments

• Held them in memory
• Use them to update LHS variables concurrently
 Before the assignments are evaluated

• Nonblocking makes NO dependency between statements
 Avoid having multiple behaviors assigning values to be

the same variable
• Otherwise, software race condition makes outcome

indeterminate
• For example, multi-driver case

Blocked (=) v.s. Nonblocking (<=)
 If no data dependency, results of blocked and

nonblocking assignments are identical
 Strongly recommend

• Blocked assignment for combinational logic using level
sensitive behavior

• Nonblocking assignments for edge sensitive behavior

Shift Register Using Nonblocking Assignments
module shiftreg_nb (A, E, clk, rst);

output A;
input E;
input clk, rst;
reg A, B, C, D;

always @ (posedge clk or posedge rst)
begin

if (rst)
begin A <= 0; B <= 0; C <= 0; D <= 0;

end
else
begin

A <= B; // D <= E;
B <= C; // C <= D;
C <= D; // B <= C;
D <= E; // A <= B;

end
end

endmodule

Linear-Feedback Shift Register (Type II LFSR) Dataflow

+ ++

cN-1

Clock

Y[1] Y[N-2] Y[N-1] Y[N]

Reset

cN= 1 c2 c1

R

Clk

D Q
R

Clk

D Q
R

Clk

D Q
R

Clk

D Q

0 01 1 0 0 0 1 91H

c[8:1] = [1100_1111]

Y[8]Y[1]

c[7] c[1]

++ + + +

Y[1: 8]

t

0 01 0 0 1 1 1 87H++ + + +

0 01 0 1 1 0 0 8CH++ + + +

1 00 0 0 1 1 0 46H++ + + +

LFSR --- RTL Dataflow
module Auto_LFSR_RTL (Y, Clock, Reset);

parameter Length = 8;
parameter [1: Length] initial_state = 8'b1001_0001; // 91h
parameter [1: Length] Tap_Coefficient = 8'b1111_0011;

input Clock, Reset;
output [1: Length] Y;
reg [1: Length] Y;

always @ (posedge Clock)
if (!Reset) Y <= initial_state; // Active-low reset to initial state

else begin
Y[1] <= Y[8];
Y[2] <= Tap_Coefficient[7] ? Y[1] ^ Y[8] : Y[1];
Y[3] <= Tap_Coefficient[6] ? Y[2] ^ Y[8] : Y[2];
Y[4] <= Tap_Coefficient[5] ? Y[3] ^ Y[8] : Y[3];
Y[5] <= Tap_Coefficient[4] ? Y[4] ^ Y[8] : Y[4];
Y[6] <= Tap_Coefficient[3] ? Y[5] ^ Y[8] : Y[5];
Y[7] <= Tap_Coefficient[2] ? Y[6] ^ Y[8] : Y[6];
Y[8] <= Tap_Coefficient[1] ? Y[7] ^ Y[8] : Y[7];

end
endmodule

LFSR --- RTL Repetitive Algorithm
module Auto_LFSR_ALGO (Y, Clock, Reset);

parameter Length = 8;
parameter [1: Length] initial_state = 8'b1001_0001;
parameter [1: Length] Tap_Coefficient = 8'b1111_0011;
input Clock, Reset;
output [1: Length] Y;
integer Cell_ptr;
reg Y;

always @ (posedge Clock)
begin

if (Reset == 0) Y <= initial_state; // Arbitrary initial state, 91h
else

begin
for (Cell_ptr = 2; Cell_ptr <= Length; Cell_ptr = Cell_ptr +1)

if (Tap_Coefficient [Length - Cell_ptr + 1] == 1)
Y[Cell_ptr] <= Y[Cell_ptr -1]^ Y [Length]; // ^ is xor

else
Y[Cell_ptr] <= Y[Cell_ptr -1];

Y[1] <= Y[Length];
end

end
endmodule

Verilog Repetitive Statements
 for, repeat, while, forever

• All activities of all iterations are done in one time step
• “disable” to terminate a named block
• Some logic synthesis tools can only synthesize “for” loop
 i.e., repeat, while, forever are not synthesizable in these tools

Verilog Statement
 Statement can be

• a single statement or
• a block statement

begin
statement1
statement2
...

end

 A named block statement
begin: <block_name>

statement1
statement2
...

end

Ones Counter
 Verilog bitwise right-shift operator (>>),filling with ‘0’

• Arithmetic right-shift (>>>)
 Compare the following two designs

// count_of_1s declares a named block of statements
// Original design
begin: count_of_1s

reg [7: 0] temp_reg;

count = 0;
temp_reg = reg_a; // load a data word
while (temp_reg)

begin
if (temp_reg[0])

count = count + 1;
temp_reg = temp_reg >> 1;

end
end

// Alternative
begin: count_of_1s

reg [7: 0] temp_reg;

count = 0;
temp_reg = reg_a; // load a data word
while (temp_reg)

begin
count = count + temp_reg[0];
temp_reg = temp_reg >> 1;

end
end

Find_First_One
 Find the location of the first 1 in a 16-bit word

• The word is assumed to contain at least one 1

module find_first_one (index_value, A_word, trigger);
output [3: 0] index_value;
input [15: 0] A_word;
input trigger;
reg [3: 0] index_value;

always @ (trigger)
begin: search_for_1

index_value = 0;
for (index_value = 0; index_value <= 15; index_value = index_value + 1)

if (A_word[index_value] == 1)
disable search_for_1;

end
endmodule

Multicycle Operations -- 4-cycle Adder
 Some digital machines have repetitive operations

distributed over multiple clock cycles
• Can be modeled in Verilog by a synchronous cyclic

behavior that has as many nested edge-sensitive event
control expressions as needed to complete the operations

• May not be synthesizable
 Example: 4-cycle adder

• To form the sum of four successive samples of a datapath
Store the samples in registers then use multiple adders
Or, one adder to accumulate the sum sequentially
 One FSM to control the 4-cycle operation and only one adder

 The resulting synthesized implementation

• To ensure proper re-initialization, “disable” is in each clock
cycle
Regardless when the “reset” is asserted

4-cycle Adder
module add_4cycle (sum, data, clk, reset);

output [5: 0] sum;
input [3: 0] data;
input clk, reset;
reg sum;

always @ (posedge clk) begin: add_loop
if (reset) disable add_loop; else sum <= data;

@ (posedge clk) if (reset) disable add_loop; else sum <= sum + data;
@ (posedge clk) if (reset) disable add_loop; else sum <= sum + data;

@ (posedge clk) if (reset) disable add_loop; else sum <= sum + data;
end

endmodule

dffrgpqb_a

sum[5:0]

+

esdpupd

esdpupd

esdpupd

mux_2a

mux_2a

mux_2a

mux_2a

dffspqb_a

dffrgpqb_a

dffrgpqb_a

dffrgpqb_a

dffrgpqb_a

dffrgpqb_a

dffspqb_a

reset

data[3:0]

esdpupd

esdpupd

esdpupd

esdpupd

esdpupd

One adder

Flip-Flops to
store SUM

Flip-Flops in
FSM, 4 states

Algorithmic State Machine (ASM) Charts
 State Transition Graphs (STGs)

• Indicate the transitions that result from inputs applied to the state machine
in a particular state

• Do not directly display the evolution of states under the application of
input data

 ASM Charts
• Abstraction of functionality of a sequential machine
 Reveal the sequential steps of a machine's activity

• Focus on activities rather than content of storage elements
 Example: the counter to be introduced shortly

 Three states: idle, incrementing and decrementing
 Independent of counter word width

• ASM chart elements
 state box
 decision box
 conditional box

• Clock governs transitions between states
• Linked ASM charts describe complex machines
 ASM charts represent both Mealy and Moore machines

ASM Chart Elements
 State box

• Each state box represents the state of the machine between
synchronizing clock events

 Decision box
 Conditional box

State Box
Decision Box

Conditional Output or
Register Operation Box

ASM Block

Asyn/Synchronous Reset in ASM

 Asynchronous reset: a RESET input to the reset
state box

 Synchronous reset: one decision box of RESET
input

S_running

count <= count + 1

0,3 1

2

count <= count - 1

reset_ count <= 0

up_dwn

S_running

reset_

count <= count + 1

0,3 1

2

count <= count - 1

count <= 0

up_dwn

1

ASM Chart (cont.)
 Only paths leading to a change in states are shown

in ASM
• If a variable not appear in a decision box on a path

leaving a state, then the path is independent of the value
of the variable

ASM Chart Example: Tail Light Controller
A Mealy Machine with Synchronous Reset

S_stop

rst

1
brake

S_slow

accel

1
brake

accel

S_med

1
brake

S_high

accel

1
brake

1

1

1

Tail_Lite

Tail_Lite

1

Tail_Lite

Tail_Lite

ASM and Datapath (ASMD) Charts
 To form an ASMD: modify ASM (i.e. controller) by annotating each

of its paths to indicate the concurrent register operations (i.e.
datapath operations) when the controller makes a transition along
the path

• Not in conditional boxes
• Not in state boxes
• Because the datapath registers are not part of the controller
 Fact: output generated by the controller controls the datapath register

 Clarify a design of a sequential machine by separating the design
of its datapath from the design of the controller

 ASMD chart maintains a clear relationship between a datapath and
its controller

• Outputs generated by the controller control the datapath register
• Outputs generated by datapath report the status of datapath back to the

controller

2:1 Decimator Using 2-stage Pipeline
 Used to move data from a high clock rate datapath to a

lower data rate datapath
• Can also used to convert data from a parallel format to a serial

format
 ASMD of the 2:1 decimator

• A Mealy machine with synchronous reset to S_idle
• An incomplete ASMD
Because no conditional outputs
 i.e., the output of the controller to control how datapath works

 Such as adding an output for load-register

• E.g. “Ld” state represents load to R0 since R0<={P1,P0} on the
path leaving the state when Ld=1

• Note that datapath register operations made with a nonblocking
assignment are concurrent
Hence no race between R0<={P1,P0} and {P1,P0}<={0,0}

2:1 Decimator Using 2-stage Pipeline (cont.)

P1 <= Data
P0 <= P1

Ld

Ld 1

R0 <= {P1, P0}

S_1

En

S_full

P1 <= Data
P0 <= P1

S_wait

1

1

1rst

S_idle
{P1, P0} <= {0, 0}

En

1

{P1, P0} <= {0, 0}

P1 <= Data
P0 <= P1

8 8 8

Data

R0[15: 0]P1[7: 0] P0[7: 0]

P1[7: 0] P0[7: 0]

Synthesis of Sequence Recognizer
 Example: detect 3 consecutive 1s

• Assert D_out when a given pattern of consecutive bits
has been received in its serial input stream, D_in

• Apply data on the rising edge of the clock if the state
transitions are to occur on the falling edge of the clock,
and visa-versa
Recall the general rule for exercising FSM

Sequence
Recognizer

clk

D_in
D_out

clk
reset

En

clk

Conventions to Describe Sequence Recognizers

 The output of a Mealy machine is valid immediately
before the active edge of the clock controlling the
machine

• Data must be stable prior to active edge for at least the
setup time

 Successive values inputs are received in
successive clock cycles.

 A non-resetting machine continues to assert its
output if the input bit pattern is overlapping

 A resetting machine asserts for one cycle after
detecting the input sequence, and then de-asserts
for one cycle before detecting the next sequence of
bits

S_idle

reset
1

En

1

D_in

S_1

S_0 D_in

1 1

D_in

S_2

D_in

1

1

D_out

Mealy
Machine

S_idle

reset
1

En

1

D_in

S_1

S_0 D_in

1 1

D_in

S_2

D_in

S_3
/ D_out

1

D_in

1

1

Moore
Machine

Mealy and Moore ASMs (3 Consecutive 1s)

Mealy and Moore for 3 Consecutive 1s (cont.)

 Both are non-resetting
• How to modify them into resetting sequence recognizers?
 Moore has one more state than Mealy
 The Mealy machine anticipates D_in and asserts

D_out before the third clock
 The Moore machine does not anticipate D_in

• That is, the Moore machine asserts D_out in the state
reached after the third active edge of the clock

Sequence Recognizer for 3 Consecutive 1s (cont.)
module Seq_Rec_3_1s_Mealy

(D_out, D_in, En, clk, reset);
output D_out;
input D_in, En;
input clk, reset;
// Binary coding for states
parameter S_idle = 0;
parameter S_0 = 1;
parameter S_1 = 2;
parameter S_2 = 3;
reg[1: 0] state, next_state;

always @ (negedge clk)
if (reset == 1) state <= S_idle; else state <= next_state;

always @ (state or D_in) begin
case (state) // Partially decoded
S_idle: if ((En == 1) && (D_in == 1)) next_state = S_1;

else if ((En == 1) && (D_in == 0)) next_state = S_0;
else next_state = S_idle;

S_0: if (D_in == 0) next_state = S_0;
else if (D_in == 1) next_state = S_1;
else next_state = S_idle;

S_1: if (D_in == 0) next_state = S_0;
else if (D_in == 1) next_state = S_2;
else next_state = S_idle;

S_2: if (D_in == 0) next_state = S_0;
else if (D_in == 1) next_state = S_2;
else next_state = S_idle;

default: next_state = S_idle;
endcase

end

always @ (state or D_in) begin
D_out = ((state == S_2) && (D_in == 1)); // Mealy output

end
endmodule

S_idle

reset 1

En

1

D_in

S_1

S_0 D_in
1 1

D_in

S_2

D_in

1

1
D_out

Mealy
Machine

Sequence Recognizer for 3 Consecutive 1s (cont.)
module Seq_Rec_3_1s_Moore

(D_out, D_in, En, clk, reset);
output D_out;
input D_in, En;
input clk, reset;
// Binary coding for states
parameter S_idle = 0;
parameter S_0 = 1;
parameter S_1 = 2;
parameter S_2 = 3;
parameter S_3 = 4;
reg[2: 0] state, next_state;

always @ (negedge clk)
if (reset == 1) state <= S_idle; else state <= next_state;

always @ (state or D_in) begin
case (state)
S_idle: if ((En == 1) && (D_in == 1)) next_state = S_1; else

if ((En == 1) && (D_in == 0)) next_state = S_0;
else next_state = S_idle;

S_0: if (D_in == 0) next_state = S_0; else
if (D_in == 1) next_state = S_1;
else next_state = S_idle;

S_1: if (D_in == 0) next_state = S_0; else
if (D_in == 1) next_state = S_2;
else next_state = S_idle;

S_2, S_3:if (D_in == 0) next_state = S_0; else
if (D_in == 1) next_state = S_3;
else next_state = S_idle;

default: next_state = S_idle;
endcase

end

always @ (state) begin
D_out = (state == S_3); // Moore output

end
endmodule

S_idle

reset 1

En
1

D_in

S_1

S_0 D_in
1 1

D_in

S_2

D_in

S_3
/ D_out

1

D_in

1

1

Moore
Machine

Alternative Design for Sequence Recognizer
 Alternative approach: Shift input bits through a

register and detect contents
• Consider sequence recognizer as a datapath unit
• Such as a shift register
• Then compare the content of shift register with the

expected pattern
 Note: an explicit state machine implementation of

the alternative design for a sequence recognizer is
not necessarily the most efficient implementation

Alternative Design for Sequence Recognizer (cont.)

 The Mealy/Moore machines below are gated the
datapath with En

• What happens if En=0?
Register content will be lost

 Mealy has one less FF than Moore

D_out

QD

clk

QD

clk

clk

D_in
En

Mealy
QD

clk

D_in

D_out

QD

clk

QD

clk

clk

reset

En

Moore

Alternative Design for Sequence Recognizer (cont.)

module Seq_Rec_3_1s_Mealy_Shft_Reg (D_out, D_in, En, clk, reset);
output D_out;
input D_in, En;
input clk, reset;
parameter Empty = 2'b00;
reg [1: 0] Data;
always @ (negedge clk)

if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[1]};
assign D_out = ((Data == 2'b11) && (D_in == 1)); // Mealy output depends on primary input

endmodule

module Seq_Rec_3_1s_Moore_Shft_Reg (D_out, D_in, En, clk, reset);
output D_out;
input D_in, En;
input clk, reset;
parameter Empty = 3’b000;
reg [2: 0] Data;
always @ (negedge clk)

if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[2:1]};
assign D_out = (Data == 3'b111); // Moore output depends on state only

endmodule

Design of a Datapath Controller
1. Understand the problem

• Especially the register operations that must execute on a given datapath architecture
2. Define ASM

• A state machine controlled by primary inputs and status of datapath register (i.e. the
feedback linkage from datapath to controller)

3. Create ASMD
• Annotating ASM with datapath operations associated with state transitions (i.e. path) of

the controller
• Register operation of ASMD written in register transfer notations with NONBLOCKING

assignments
 since they are executed concurrently in the datapath

4. Controller outputs to datapath
• For Moore machines: Annotate state of the controller with unconditional output signals

(i.e. outputs of a state)
• For Mealy machines: Include conditional boxes for controller output signals to control

datapath
5. Feedback linkage from datapath to controller

• If there are signals reports status of datapath back to the controller, then use decision
box

6. Integration
• Integrate the verified datapath module and the verified controller module with one

parent module to verify the overall functionality

Counters and Registers
 Storage elements of counters and registers usually

have the same synchronizing and control signals
• One exception: ripple counter
Connects the output of a stage to the clock input of an adjacent

stage

 Counters with asynchronous reset
 Ring counter
 Up/down/load counter
 Shift register
 Parallel load register
 Universal shift register
 Register file

Counters
 The ASM/ASMD have no indication of the bit-width of

the counter
 Three states: S_idle, S_incr and S_decr

• May be further simplified to a single state, S_running
 2-bit input up_down to count up(1), count down(2) and

hold the count (0 and 3)
 Active low asynchronous reset

Counters(3 states) with Async Reset_

S_idle

S_incrup_dwn up_dwn

1

2

up_dwn

2

S_decr
12

0,31

0,30,3

reset_

Counters (cont.)

Counters (3 states) with Async Reset_ (cont.)

module Up_Down_Implicit1 (count, up_dwn, clock, reset_);
output [2: 0] count;
input [1: 0] up_dwn;
input clock, reset_;
reg [2: 0] count;

always @ (negedge clock or negedge reset_)
if (reset_ == 0)

count <= 3'b0;
else if (up_dwn == 2'b00 || up_dwn == 2'b11)

count <= count;
else if (up_dwn == 2'b01)

count <= count + 1;
else if (up_dwn == 2'b10)

count <= count –1;

endmodule

• It is an implicit state machine
– No explicit states (S_idle, S_incr, S_decr) used in the design
– Implemented using if-then-else within edge-sensitive

behavior

Simplified Counter ASMDs with Async/Sync Reset_

S_running

count <= count + 1

0,3 1

2

count <= count - 1

reset_ count <= 0

up_dwn

S_running

reset_

count <= count + 1

0,3 1

2

count <= count - 1

count <= 0

up_dwn

1

Ring Counter
 Ring counter asserts a single bit that circulates

through the counter in a synchronous manner

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1

0 00 0 0 0 1

0 0 00 0 0 1

0 0 0 00 0 1

0 0 0 0 00 1

0 0 0 0 0 01

0

0

0

0

0

0

0

count [7:0]

t

0 0 0 0 0 0 0 1

Ring Counter (cont.)
 Activity of the machine is the same in every clock

cycle
 This implementation is an implicit state machine

module ring_counter (count, enable, clock, reset);
output [7: 0] count;
input enable, reset, clock;
reg [7: 0] count;

always @ (posedge reset or posedge clock)
if (reset == 1'b1) count <= 8'b0000_0001; else

if (enable == 1'b1) count <= {count[6: 0], count[7]}; // Concatenation operator
endmodule

VHDL:: count <= count[6: 0] & count[7];

Up/Down/Load Counter

module up_down_counter (Count, Data_in, load, count_up, counter_on, clk, reset);
output [2: 0] Count;
input load, count_up, counter_on, clk, reset,;
input [2: 0] Data_in;
reg [2: 0] Count;

always @ (posedge reset or posedge clk)
if (reset == 1'b1) Count <= 3'b0; else

if (load == 1'b1) Count <= Data_in; else
if (counter_on == 1'b1) begin

if (count_up == 1'b1) Count <= Count +1;
else Count <= Count –1;

end
endmodule

D_inu/d

ld

rst

cnt

clk count

3

3

count_up

load

reset

counter_on

clk

Data_in

Count

Shift Register
 Remember the “model trap”

• Must use nonblocking assignments in this design
module Shift_reg4 (Data_out, Data_in, clock, reset);

output Data_out;
input Data_in, clock, reset;
reg [3: 0] Data_reg;

assign Data_out = Data_reg[0];

always @ (negedge reset or posedge clock)
begin

if (reset == 1'b0) Data_reg <= 4'b0;
else Data_reg <= {Data_in, Data_reg[3:1]}; //shift right

end
endmodule

clock

Data_in

R

QD

R

QD

R

QD

R

QD

reset

Data_out

Parallel Load Register
 MUX is synthesized from “else if (load==1’b1)”

• How about “else” i.e. (load==1’b0)?
 If not specified, retain the previous value

module Par_load_reg4 (Data_out, Data_in, load, clock, reset);
input [3: 0] Data_in;
input load, clock, reset;
output [3: 0] Data_out; // Port size
reg Data_out; // Data type
always @ (posedge reset or posedge clock)

begin
if (reset == 1'b1)

Data_out <= 4'b0;
else if (load == 1'b1)

Data_out <= Data_in;
end

endmodule

clock

Data_in[3]

R

QD

R

QD

R

QD

R

QD

Data_in[2] Data_in[1] Data_in[0]

reset

Data_out[3] Data_out[2] Data_out[1] Data_out[0]

muxmuxmuxmux

load

Shift Registers
 Shift register with parallel load

• later
 Arithmetic shift register

• For signed number operation
MSB is preserved

• Shift-left: multiply by 2
• Shift-right: divide by 2

Universal Shift Register
module Universal_Shift_Reg

(Data_Out, MSB_Out, LSB_Out, Data_In, MSB_In, LSB_In, s1, s0, clk, rst);
output [3: 0] Data_Out;
output MSB_Out, LSB_Out;
input [3: 0] Data_In;
input MSB_In, LSB_In;
input s1, s0, clk, rst;
reg Data_Out;

assign MSB_Out = Data_Out[3];
assign LSB_Out = Data_Out[0];

always @ (posedge clk) begin
if (rst) Data_Out <= 0;
else case ({s1, s0})

0: Data_Out <= Data_Out; // Hold
1: Data_Out <= {MSB_In, Data_Out[3:1]}; // Serial shift from MSB
2: Data_Out <= {Data_Out[2: 0], LSB_In}; // Serial shift from LSB
3: Data_Out <= Data_In; // Parallel Load

endcase
end

endmodule

Universal_Shift_Reg

MSB_In

MSB_Out

LSB_In

LSB_Out

Data_In

Data_Out

clk
rst

s0

s1

Register File Read_Addr_1

Read_Addr_2
Data_Out_1

Data_Out_2

Write_Addr

Data_In

5

5

5

32

32
32

Register File

Write_Enable
Clock

Alu_Zero
Data_out

opcode

module Register_File (Data_Out_1,Data_Out_2,Data_in,
Read_Addr_1,Read_Addr_2,Write_Addr,Write_Enable,Clock);

output [31: 0] Data_Out_1, Data_Out_2;
input [31: 0] Data_in;
input [4: 0] Read_Addr_1, Read_Addr_2, Write_Addr;
input Write_Enable, Clock;
reg [31: 0] Reg_File [31: 0]; // 32bit x32 word memory declaration

assign Data_Out_1 = Reg_File[Read_Addr_1];
assign Data_Out_2 = Reg_File[Read_Addr_2];
always @ (posedge Clock) begin

if (Write_Enable) Reg_File [Write_Addr] <= Data_in;
end

endmodule
type Reg is array (0 to 31) of std_logic_vector(31 downto 0);
signal Reg_File : Reg;

“Concept of Memory” in Verilog
 Memory

• Declaration an array of words
• E.g. reg [31:0] data_out; // one 32-bit word

reg [31:0] Reg_file [31:0]; // 32x32 bit word memory
 Verilog does not support 2-dimensional array

• However, a word in a Verilog memory can be addressed directly
 E.g., Reg_file [12]

• A cell bit in a word can also be addressed indirectly by first loading
the word into a buffer register then addressing the bit of the word
 E.g. Data_out = Reg_file [12];

Data_out [1:0]
 Decoder are synthesized automatically by synthesis tool

in Reg_file[] to decode the address which locates a
specific register

	Lecture 5 - Modeling for Synthesis�Register Transfer Level (RTL) Design�
	Register Transfer Language (RTL) Design
	RTL register model
	Asynchronous control inputs
	Synchronous reset/set
	Register with clock enable
	Register with parameterized width
	Instantiating the parameterized register
	2-to-1 mux with parameterized data size
	Other types of generic parameters
	IEEE Std. 1076.3 Synthesis Libraries
	NUMERIC_STD package contents
	Arithmetic with NUMERIC_STD package
	Conversion of “closely-related” types
	Conversion of “closely-related” types
	Example – binary counter
	Using a “variable” to describe sequential behavior within a process
	Counting to some max_value (not 2n)
	Decrementer and comparator
	Verilog Modeling Trap
	Example:Modeling Trap of a Shift Register
	Nonblocking Assignment (<=) in Cyclic Behavior
	Blocked (=) v.s. Nonblocking (<=)
	Shift Register Using Nonblocking Assignments
	Linear-Feedback Shift Register (Type II LFSR) Dataflow
	LFSR --- RTL Dataflow
	LFSR --- RTL Repetitive Algorithm
	Verilog Repetitive Statements
	Verilog Statement
	Ones Counter
	Find_First_One
	Multicycle Operations -- 4-cycle Adder
	4-cycle Adder
	Algorithmic State Machine (ASM) Charts
	ASM Chart Elements
	Asyn/Synchronous Reset in ASM
	ASM Chart (cont.)
	ASM Chart Example: Tail Light Controller�A Mealy Machine with Synchronous Reset
	ASM and Datapath (ASMD) Charts
	2:1 Decimator Using 2-stage Pipeline
	2:1 Decimator Using 2-stage Pipeline (cont.)
	Synthesis of Sequence Recognizer
	Conventions to Describe Sequence Recognizers
	Mealy and Moore ASMs (3 Consecutive 1s)
	Mealy and Moore for 3 Consecutive 1s (cont.)
	Sequence Recognizer for 3 Consecutive 1s (cont.)
	Sequence Recognizer for 3 Consecutive 1s (cont.)
	Alternative Design for Sequence Recognizer
	Alternative Design for Sequence Recognizer (cont.)
	Alternative Design for Sequence Recognizer (cont.)
	Design of a Datapath Controller
	Counters and Registers
	Counters
	Counters(3 states) with Async Reset_
	Counters (cont.)
	Counters (3 states) with Async Reset_ (cont.)
	Simplified Counter ASMDs with Async/Sync Reset_
	Ring Counter
	Ring Counter (cont.)
	Up/Down/Load Counter
	Shift Register
	Parallel Load Register
	Shift Registers
	Universal Shift Register
	Register File
	“Concept of Memory” in Verilog

