Lecture 4 - Finite State Machines

Modeling Finite State Machines (FSMs)

- "Manual" FSM design \& synthesis process:

1. Design state diagram (behavior)
2. Derive state table
3. Reduce state table
4. Choose a state assignment
5. Derive output equations
6. Derive flip-flop excitation equations

- Steps 2-6 can be automated, given a state diagram

1. Model states as enumerated type
2. Model output function (Mealy or Moore model)
3. Model state transitions (functions of current state and inputs)
4. Consider how initial state will be forced

FSM structure

Mealy Machine and Moore Machine

Moore Machine

FSM example - Mealy model

entity seqckt is
port (x : in std_logic; -- FSM input
z: out std_logic; -- FSM output clk: in std_logic); -- clock
end seqckt;

FSM example - behavioral model

architecture behave of seqckt is
type states is (A, B, C); -- symbolic state names
(enumerate)
signal state: states; --state variable
begin
-- Output function (combinational logic)
$z<=$ ' 1 ' when ((state $=B$) and $(x=‘ 1$ ')) --all conditions
or ((state $=C$) and ($x=$ ' 1 ')) $\quad--$ for which $z=1$.
else '0';
--otherwise z=0
-- State transitions on next slide

FSM example - state transitions

```
process (clk) - trigger state change on clock transition
    begin
    if rising_edge(clk) then -- change state on rising clock edge
        case state is -- change state according to \(x\)
            when \(\mathrm{A}=>\) if ( \(\mathrm{x}=\) ' 0 ') then
                state <=A;
            else -- if ( \(\mathrm{x}=\) = 1 ')
                state <= B;
            end if;
            when \(B=>\) if ( \(x={ }^{\prime} 0^{\prime}\) ) then
                                    state <= A;
            else -- if ( \(\mathrm{x}=\) = 1 ')
                        state \(<=C\);
            end if;
        when \(\mathrm{C}=>\) if ( \(\mathrm{x}={ }^{\prime} \mathrm{O}^{\prime}\) ) then
                                    state <= C;
                    else -- if ( \(x={ }^{\prime} 1\) ')
                        state <=A;
                    end if;
                        end case;
    end if;
end process;
```


FSM example - alternative model

architecture behave of seqckt is
type states is (A,B,C); -- symbolic state names
(enumerate)
signal pres_state, next_state: states;
begin
-- Model the memory elements of the FSM
process (clk)
begin
if (clk'event and clk='1') then pres_state <= next_state;
end if;
end process;

(continue on next slide)

FSM example (alternate model, continued)

-- Model next-state and output functions of the FSM
-- as combinational logic process (x, pres_state) -- function inputs begin
case pres_state is -- describe each state when $A=>$ if ($x=$ ' 0 ') then z <= '0'; next_state <= A;
else -- if $(x=' 1$ ')
z <= ' 0 ';
next_state <= B;
end if;
(continue on next slide for pres_state = B and C)

FSM example (alternate model, continued)

```
when \(B\) => if ( \(x={ }^{\prime} 0^{\prime}\) ) then
                        z <= '0';
    next_state <=A;
    else
    z <= '1';
    next_state <= C;
    end if;
when \(\mathrm{C}=>\) if ( \(\mathrm{x}={ }^{\prime} \mathrm{O}^{\prime}\) ) then
    z <= '0';
    next_state <= C;
else
    z <= '1';
    next_state <=A;
end if;
end case;
end process;
```


Alternative form for output and next state

 functions (combinational logic)-- Next state function (combinational logic) next_state <=A when ((curr_state $=A$) and $(x=$ ' 0 '))

$$
\begin{aligned}
& \text { or }\left((\text { curr_state }=B) \text { and }\left(x=‘ 0^{\prime}\right)\right) \\
& \text { or }((\text { curr_state }=C) \text { and }(x=‘ 1 ’)) \text { else }
\end{aligned}
$$

$$
B \text { when }((\text { curr_state }=1) \text { and }(x=‘ 1 ')) \text { else }
$$ C;

-- Output function (combinational logic)
z <= '1' when ((curr_state = B) and ($\mathrm{x}=\times 1$ ')) --all conditions or ((curr_state $=C)$ and $(x=‘ 1$ ')) --for which $z=1$. else ' 0 ';

Moore model FSM

Write a VHDL code using three process blocks!

How Verilog Explicit FSM Works

- The nonblocking and blocking assignments are scheduled in the same time step of the simulation in a particular order

1. The nonblocking assignments in the edge-sensitive behavior are sampled first at the beginning of the time step (i.e. before any assignments are made)
2. The blocking assignments in level-sensitive behavior are then executed (with the previous register value because there is no assignment done in Step 1)
3. After Step 2, the nonblocking assignments are completed by assigning LHS variables with the values that were sampled at Step 1

Verilog Explicit FSM Design and Synthesis Tips

- Use 2 cyclic behaviors for an explicit state machine
- One level-sensitive behavior for combinational logic to describe the next state and output logic
- One edge-sensitive behavior for state flip-flops to synchronize state transition
- In the level-sensitive behavior for N/S and O/P
- Use blocked assignments/procedural assignments "="
- Completely specify all outputs
$>$ Can be achieved by initializing all outputs in the beginning
- In the edge-sensitive behavior for state transition
- Use nonblocking assignments "<="
> For state transition
> For register transfer of a data path
- Always decode all possible states in the level sensitive behavior
- To avoid unnecessary latches

Decode All Possible States!

- Matching simulation results between behavioral model and a synthesized circuit does NOT guarantee that an implementation is correct!
- Unless exercising all possible input sequences
$>$ Which is almost impossible to do
- Because, if the testbench exercises the circuit only allowable input sequences, then it is not sufficient to verify the circuit's behaviors that are not covered by the exercise of the testbench

Verilog: Mealy Machine

Verilog: Mealy Machine- Cont.

```
module mealy_2processes(input clk,
input reset, input x, output reg
parity);
reg state, nextstate;
parameter S0=0, S1=1;
always @(posedge clk or posedge
reset)
if (reset)
    state <= S0;
else
state <= nextstate;
```



```
always @(state or x)
```

always @(state or x)
begin
begin
parity = 1'b0;
parity = 1'b0;
case(state)
case(state)
S0: if(x)
S0: if(x)
begin
begin
parity = 1; nextstate = S1;
parity = 1; nextstate = S1;
end
end
else
else
nextstate = S0;
nextstate = S0;
S1: if(x)
S1: if(x)
nextstate = S0;
nextstate = S0;
else
else
begin
begin
parity = 1; nextstate = S1;
parity = 1; nextstate = S1;
end
end
default:
default:
nextstate = S0;
nextstate = S0;
endcase
endcase
end
end
endmodule

```
endmodule
```

 *Xilinx Documentation

Verilog: Mealy Machine- Cont.

module mealy_3processes(input clk, input reset, input x, output reg parity); reg state, nextstate;
parameter $\mathrm{S} 0=0, \mathrm{~S} 1=1 ;$

```
always @(posedge clk or posedge reset)
if (reset)
    state <= S0;
else state <= nextstate;
```

*Xilinx Documentation

always @(state or x) //Output Logic begin
parity = 1'b0;
case(state)
S0: if(x)
parity = 1;
S1: if(!x)
parity = 1;
endcase
end

```
always @(state or x) // Nextstate Logic
begin
    nextstate = S0;
    case(state)
    S0: if(x) nextstate = S1;
    S1: if(!x) nextstate = S1;
    endcase
end
endmodule
```


Verilog: Moore Machine


```
module mealy_3processes(input clk, input
reset, input x, output reg parity);
reg state, nextstate;
parameter S0=0, S1=1;
always @(posedge clk or posedge reset)
if (reset)
    state <= S0;
else state <= nextstate;
```

*Xilinx Documentation

Moore Machine


```
always @(state) // Output Logic
begin
    case(state)
        S0: parity = 0;
        S1: parity = 1;
    endcase
end
```

```
always @(state or x) // Nextstate Logic
begin
    nextstate = S0;
    case(state)
    S0: if(x) nextstate = S1;
    S1: if(!x) nextstate = S1;
    endcase
end
endmodule
```


FSM Example: BCD-to-Excess-3 Code Converter (Mealy)

- BCD-to-Excess-3 Code Converter for manual design
- A serially-transmitted BCD (8421 code) word is to be converted into an Excess-3 code
$>\mathrm{B}_{\text {in }}$ transmitted in sequence, LSB first
- An Excess-3 code word is obtained by adding 3 to the decimal value and taking the binary equivalent.
$>$ Excess-3 code is self-complementing

| Decimal
 Digit | $8-4-2-1$
 Code
 (BCD) | Excess-3
 Code |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0000 | 0011 |
| 1 | 0001 | 0100 |
| 2 | 0010 | 0101 |
| 3 | 0011 | 0110 |
| 4 | 0100 | 0111 |
| 5 | 0101 | 1000 |
| 6 | 0110 | 1001 |
| 7 | 0111 | 1010 |
| 8 | 1000 | 1011 |
| 9 | 1001 | 1100 |

BCD-to-Excess-3 Code Converter (cont.)

BCD-to-Excess-3 Code Converter (cont.)

```
module BCD_to_Excess_3b (B_out, B_in, clk, reset_b);
    output B out;
    input B_in, clk, reset_b;
    parameter
    S_0 = 3'b000, // State assignment, which may be omitted
    S_1 = 3'b001, // If omitted, allow synthesis tool to assign
    S_2 = 3'b101,
    S_3 = 3'b111,
    S_4 = 3'b011,
    S_5 = 3'b110,
    S_6 = 3'b010,
    dont_care_state \(=3\) 'bx,
    dont_care_out = 1'bx;
reg[2: 0] state, next_state;
    reg B_out;
```


BCD-to-Excess-3 Code Converter (cont.)

always @ (posedge clk or negedge reset_b) // edge-sensitive behavior with NBAs
if (reset_b == 0) state <= S_0; else state <= next_state;
always @ (state or B_in) begin // level-sensitive behavior with blocking assignments
B_out = 0; // initialize all outputs here
case (state) // explicit states
S_0: if (B_in == 0) begin next_state = S_1; B_out = 1; end else if (B _in == 1) begin next_state = S_2; end // Mealy machine
S_1: if (B_in == 0) begin next_state = S_3; B_out = 1; end
else if (B _in == 1) begin next_state = S_4; end
S_2: begin next_state = S_4; B_out = B_in; end
S_3: begin next_state = S_5; B_out = B_in; end
S_4: if (B_in == 0) begin next_state = S_5; B_out = 1; end
else if (B _in == 1) begin next_state = S_6; end
S_5: begin next_state = S_0; B_out = B_in; end
S_6: begin next_state = S_0; B_out = 1; end
/* default: begin next_state = dont_care_state;
B_out = dont_care_out; end */
endcase
end
endmodule

State Encoding

- The task of assigning a code to the states of an FSM - Also described as "state assignment"
- Number of flip-flops that are required to represent a state
- Influence the complexity of the combinational logic for the next state and outputs

General Guidelines for State Encoding

- If two states have the same next state for a given input
- Give them logically adjacent state assignments
- Assign logically adjacent state codes to the next state of a given state
- Assign logically adjacent state codes to the states that have the same outputs for a given input
- Designers can choose state assignments or allow synthesis tool to determine state encoding

State Assignment Codes

$\#$	Binary	One-Hot	Gray	Johnson
0	0000	0000000000000001	0000	00000000
1	0001	0000000000000010	0001	00000001
2	0010	0000000000000100	0011	00000011
3	0011	0000000000001000	0010	00000111
4	0100	0000000000010000	0110	00001111
5	0101	0000000000100000	0111	00011111
6	0110	0000000001000000	0101	00111111
7	0111	0000000010000000	0100	01111111
8	1000	000000010000000	1100	11111111
9	1001	000000100000000	1101	11111110
10	1010	000001000000000	1111	11111100
11	1011	0000100000000000	1110	11111000
12	1100	0001000000000000	1010	11110000
13	1101	0010000000000000	1011	11100000
14	1110	0100000000000000	1001	11000000
15	1111	1000000000000000	1000	10000000

State Assignment Codes (cont.)

- Binary coded decimal (BCD) format
- Uses the minimal number of flip-flops
- Does not necessarily lead to an optimal realization of the combinational logic used to decode the next state and output of the machine.
> Example: If a machine has more than 16 states, a binary code will result in a relatively large amount of next-state logic
- The machine's speed will also be slower than alternative encoding.
- Gray code
- Uses the same number of bits as a binary code
- Has the feature that two adjacent codes differ by only one bit
> Can reduce the electrical noise in a circuit.
> Gray encoding is recommended for machines having more than 32 states because it requires fewer flip-flops than one-hot encoding, and is more reliable than binary encoding because fewer bits change simultaneously
- Johnson code
- Has the same property as Gray code
> Two adjacent codes differ by only one bit
- Uses more bits.

A code that changes by only one bit between adjacent codes will reduce the simultaneous switching of adjacent physical signal lines in a circuit, thereby minimizing the possibility of electrical crosstalk.

- These codes also minimize transitions through intermediate states.

One-Hot Encoding (or One-Cold)

- One flip-flop for each state
- Usually more than minimum numbers of flip-flops
- Reduces the decoding logic for next state and output > Hence offset the extra flip-flops
- One-hot encoding usually does not correspond to the optimal state assignment
> Combination usage of FF and decoding logic
- Complexity does not increase as states are added to the machine
- Tradeoff: speed is not compromised by the time required to decode the state
- Cost: area of the additional flip flops and signal routing

One-Hot Encoding (or One-Cold) (cont.)

- A one-hot encoding with an "if" statement that tests individual bits might provide simpler decoding logic than decoding with a "case" statement
- Because "case" implicitly references all bits
- While "if" only references to individual bits
- In FPGA, saving flip-flops may not beneficial
- Because FF already built inside FPGA
> Even don't use them, you do not save FF
- If decoding logic requires more logic that are more than on a configurable logic block (CLB)
$>$ Then on-hot is preferred
$>$ Because no interconnection required between CLBs
- Hence, use one-hots in FPGAs to reduce the use of CLBs
- Note: in large machines, one-hot encoding will have several unused states, in addition to requiring more registers than alternative encoding
- Caution: if a state assignment does not exhaust the possibilities of a code, then additional logic will be required to detect and recover from transitions into unused states.

Zero Detector

- Asserting its output when a 0 is detected in a stream of 1s.

Present State		$\frac{\text { Input }}{x}$	Next State		Output y
A	B		A	B	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Present State		Next State				Output	
		$x=0$		$x=1$		$x=0$	$x=1$
A	B	A	B	A	B	y	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Zero Detector: Mealy Machine

Zero Detector: Mealy Machine

//Verilog 2001, 2005 syntax
module Mealy_Zero_Detector (
output reg y_out,
input x_in, clock, reset
);
reg [1: 0] state, next_state;
parameter S0 = 2'b00, S1 = 2'b01,
S2 = 2'b10, S3 = 2'b11;
always @ (state, x_in) // Mealy output case (state)
S0: y_out = 0;
S1, S2, S3: y_out = ~x_in;
endcase
endmodule
always @ (posedge clock, negedge reset)
if (reset == 0) state <= SO; else state <= next_state;
always @ (state, x_in) // Next state
case (state)
S0: if (x_in) next_state = S1; else next_state = S0;
S1: if (x_in) next_state = S3; else next_state = S0;
S2: if ($(x$ _in) next_state = S0; else next_state = S2;
S3: if (x_in) next_state = S2; else next_state = S0; endcase

Binary Counter: Moore Machine

Binary Counter: Moore Machine

- Write a Verilog code for Binary Counter (Moore Machine).

