
Modeling Digital Systems
with VHDL and Verilog

Reference: Roth & John text – Chapter 2
Michael Smith text – Chapters 8 & 10

Hardware Description Languages
 VHDL = VHSIC Hardware Description Language

(VHSIC = Very High-Speed Integrated Circuits)
 Developed by DOD from 1983 – based on ADA language
 IEEE Standard 1076-1987/1993/2002/2008
 Gate level through system level design and verification

 Verilog – created in 1984 by Phil Moorby and Prabhu Goel of
Gateway Design Automation (merged with Cadence)
 IEEE Standard 1364-1995/2001/2005
 Based on the C language
 Primarily targeted for design of ASICs (Application-Specific

ICs)

Related VHDL Standards
 1076.1–1999: VHDL-AMS (Analog & Mixed-

Signal Extensions)
 1076.2–1996: Std. VHDL Mathematics Packages
 1076.3-1997: Std. VHDL Synthesis Packages
 1076.4-1995: Std. VITAL Modeling Specification

(VHDL Initiative Towards ASIC Libraries)
 1076.6-1999: Std. for VHDL Register Transfer

Level (RTL) Synthesis
 1164-1993: Std. Multi-value Logic System for

VHDL Model Interoperability

HDLs in Digital System Design
 Model and document digital systems
 Behavioral model

 describes I/O responses & behavior of design
 Register Transfer Level (RTL) model

 data flow description at the register level
 Structural model

 components and their interconnections (netlist)
 hierarchical designs

 Simulation to verify circuit/system design
 Synthesis of circuits from HDL models
 using components from a technology library
 output is primitive cell-level netlist (gates, flip flops,

etc.)

Typical Product Development & Design
Verification Cycle Using HDLs

Specifications

Architectural
design

Register-level
design

Physical
design

Gate-level
design

Behavioral
Simulation

RTL
Simulation

Logic and
Timing

Timing

Implementation – ASIC, FPGA, etc.

Benefits of HDLs
 Early design verification via high level design verification
 Evaluation of alternative architectures
 Top-down design (w/synthesis)
 Reduced risk to project due to design errors
 Design capture (w/synthesis; independent of

implementation)
 Reduced design/development time & cost (w/synthesis)
 Base line testing of lower level design representations
 Example: gate level or register level design

 Ability to manage/develop complex designs
 Hardware/software co-design
 Documentation of design (depends on quality of designer

comments)

Designer concerns about HDLs
 Loss of control of detailed design
 Synthesis may be inefficient
 Quality of synthesis varies between synthesis tools
 Synthesized logic might not perform the same as the

HDL
 Learning curve associated with HDLs & synthesis

tools
 Meeting tight design constraints (time delays, area,

etc.)

Design Space Issues
 Area (chip area, how many chips, how much board space)
 Speed/performance
 Cost of product
 Production volume
 Design time (to meet market window & development cost)
 Risk to project (working, cost-effective product on

schedule)
 Reusable resources (same circuit - different modes of

operation)
 Implementation technology (ASIC, FPGA, PLD, etc.)
 Technology limits
 Designer experience
 CAD tool availability and capabilities

DoD requirements on VHDL in mid 80s:
 Design & description of hardware
 Simulation & documentation (with designer comments)
 Design verification & testing
 Concurrency to accurately reflect behavior & operation of

hardware (all hardware operates concurrently)
 as a result, all VHDL simulation is event-driven

 Hierarchical design – essential for efficient, low-risk design
 Library support – for reuse of previously verified components
 Generic design - independent of implementation media
 Optimize - for area and/or performance
 Timing control – to assign delays for more accurate simulation
 Portability between simulators & synthesis tools (not always

true)

Anatomy of a VHDL model
 “Entity” describes the external view of a component
 “Architecture” describes the internal behavior

and/or structure of the component
 Example: 1-bit full adder

A

B

Cin

Sum

Cout

Full Adder

Input
“ports”

Output
“ports”

This view is captured by the VHDL “entity” (next slide)

Example: 1-Bit Full Adder
entity full_add1 is

port (-- I/O ports
a: in bit; -- addend input
b: in bit; -- augend input
cin: in bit; -- carry input
sum: out bit; -- sum output
cout: out bit); -- carry output

end full_add1 ;
Comments follow double-dash

Signal type

Signal direction (mode)Signal name

I/O Port
Declarations

(keywords in green)

Port Format - Name: Direction Signal_type;
 Direction
 in - driven into the entity by an external source

(can read, but not drive, within the architecture)
 out - driven from within the entity

(can drive, but not read, within the architecture)
 buffer – like “out” but can read and drive
 inout – bidirectional; signal driven both by external source

and within the architecture
(can read or drive within the architecture)

 Signal_type: any scalar or aggregate signal data type

Driving signal types
must match
driven signal type

Built-in Data Types
 Scalar (single-value) signal types:
 bit – values are ‘0’ or ‘1’
 boolean – values are TRUE and FALSE
 integer - values [-231 … +(231-1)] on 32-bit host

 Aggregate of multiple scalar signal types:
 bit_vector – array of bits;

- must specify “range” of elements
Examples:

signal b: bit_vector(7 downto 0);
signal c: bit_vector(0 to 7);
b <= c after 1 ns; --drive b with value of c
c <= “01010011”; --drive c with constant value

8-bit adder - entity
-- Internally - cascade 8 1-bit adders for 8-bit adder
entity Adder8 is
port (A, B: in BIT_VECTOR(7 downto 0); -- or (0 to 7)

Cin: in BIT;
Cout: out BIT;
Sum: out BIT_VECTOR(7 downto 0));

end Adder8;

A

B
SumFull

Adder

Cout

Cin

8

8
8

-- IEEE std_logic_1164 package defines nine logic states for signal values
-- models states/conditions that cannot be represented with the BIT type
-- VHDL “package” similar to a C “include” file
package Part_STD_LOGIC_1164 is
type STD_ULOGIC is ('U', -- Uninitialized/undefined value

'X', -- Forcing Unknown
'0', -- Forcing 0 (drive to GND)
'1', -- Forcing 1 (drive to VDD)
'Z', -- High Impedance (floating, undriven, tri-state)
'W', -- Weak Unknown
'L', -- Weak 0 (resistive pull-down)
'H', -- Weak 1 (resistive pull-up)
'-' -- Don't Care (for synthesis minimization)
);

subtype STD_LOGIC is resolved STD_ULOGIC; --see next slide
type STD_LOGIC_VECTOR is array (NATURAL range <>) of STD_LOGIC;

STD_LOGIC/STD_LOGIC_VECTOR generally used instead of BIT/BIT_VECTOR

IEEE std_logic_1164 package

Bus resolution function

std_logic includes a “bus resolution function” to
determine the signal state where there are multiple
drivers

‘0’ ‘1’ ‘Z’ ‘X’
‘0’ ‘0’ ‘X’ ‘0’ ‘X’
‘1’ ‘X’ ‘1’ ‘1’ ‘X’
‘Z’ ‘0’ ‘1’ ‘Z’ ‘X’
‘X’ ‘X’ ‘X’ ‘X’ ‘X’

Driver
A

Driver
B Driver B value

Driver A
value

Resolved
Bus
Values
for signal
L

function resolved (s : STD_ULOGIC_VECTOR) return
STD_ULOGIC;

Driver A:
L <= A;

Driver B:
L <= B;

L

Example: 1-Bit Full Adder (VHDL)
library ieee; --supplied library
use ieee.std_logic_1164.all; --package of

definitions

entity full_add1 is
port (-- I/O ports

a: in std_logic; -- addend input
b: in std_logic; -- augend input
cin: in std_logic; -- carry input
sum: out std_logic; -- sum output
cout: out std_logic); -- carry output

end full_add1 ;

Architecture defines function/structure
ARCHITECTURE architecture_name OF entity_name IS

-- data type definitions (ie, states, arrays, etc.)
-- internal signal declarations
-- component declarations
-- function and procedure declarations

BEGIN
-- behavior of the model is described here using:

-- component instantiations
-- concurrent statements
-- processes

END; --optionally: END ARCHITECTURE architecture_name;

ELEC2200-001 Fall 2010,
Nov 2

19

entity Half_Adder is
port (X, Y : in STD_LOGIC := '0';

Sum, Cout : out STD_LOGIC); -- formals
end;

-- behavior specified with logic equations
architecture Behave of Half_Adder is
begin

Sum <= X xor Y; -- use formals from entity
Cout <= X and Y; -- “operators” are not “gates”

end Behave;

--operators and,or,xor,not applicable to bit/std_logic signals

Architecture defines function/structure

Half Adder (Verilog)
// module half_adder (Sum, Cout, X, Y); // Verilog 1995
syntax
// output Sum, Cout;
// input X, Y;

module half_adder (output Sum, Cout, input X,
Y); // Verilog 2001, 2005 syntax

assign Sum=X^Y; // ^ is the XOR operator
assign Cout=X&Y; // & is the AND operator

endmodule

1-Bit Full Adder (VHDL)
library ieee; --supplied library
use ieee.std_logic_1164.all; --package of

definitions

entity full_add1 is
port (-- I/O ports

a: in std_logic; -- addend input
b: in std_logic; -- augend input
cin: in std_logic; -- carry input
sum: out std_logic; -- sum output
cout: out std_logic); -- carry output

end full_add1 ;

Full Adder
Ai Bi Ci S Co
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

0 1
1 0
0 1
1 0

00
01
11
10

0 1AiBi
Ci

0 0
0 1
1 1
0 1

00
01
11
10

0 1AiBi
Ci

S=A’iB’iCi+ A’iBiC’i+
AiBiCi+ AiB’iC’i

=(A’iBi+AiB’i)C’i+
(A’iB’i+AiBi)Ci

=(A’iBi+AiB’i)C’i+
(A’iBi+AiB’i)’Ci
=Ai⊕Bi⊕Ci

Co=AiBi+ BiCi+ AiCi

Ai

Bi

Ci

S

Ai

Bi

Ci
SCo

Full adder behavioral architectures
(no circuit structures specified)
-- behavior expressed as logic equations
architecture dataflow of full_add1 is
begin

sum <= a xor b xor cin;
cout <= (a and b) or (a and cin) or (b and cin);

end;
-- equivalent behavior, using an internal signal
architecture dataflow of full_add1 is

signal x1: std_logic; -- internal signal
begin

x1 <= a xor b; -- drive x1
sum <= x1 xor cin; -- reference x1
cout <= (a and b) or (a and cin) or (b and cin);

end;

1 bit Full Adder (Verilog)
//module full_adder (sum, cout, a, b, cin); // Verilog 1995
syntax
//output sum, cout;
//input a, b, cin;

module full_adder (output sum, cout, input a, b, cin); //
Verilog 2001, 2005 syntax

assign sum=a ^ b ^ cin;
assign cout=a & b | a & cin | b & cin; // | is the OR operator

endmodule

Example: 8-bit full adder (VHDL)
library ieee; -- supplied library
use ieee.std_logic_1164.all; -- package of

definitions

entity full_add8 is -- 8-bit inputs/outputs
port (a: in std_logic_vector(7 downto 0);

b: in std_logic_vector(7 downto 0);
cin: in std_logic;
sum: out std_logic _vector(7 downto 0);
cout: out std_logic);

end full_add8 ; Can use (0 to 7) if desired.

Example: 8-bit full adder (Verilog)
//module full_add8 (sum, cout, a, b, cin); // Verilog
1995 syntax
//output [7:0] sum;
//output cout;
//input [7:0] a, b;
//input cin;
module full_add8
(output [7:0] sum,
output cout,
input [7:0] a, b,
input cin); // Verilog 2001, 2005 syntax

Event-driven simulation (VHDL)
 Signal “event” = change in signal value at a specified time

k <= b and c after 1 ns;
 Creates a “driver” for signal k, with scheduled events

 “Event” = (value, time) pair
 One driver per signal (unless a bus resolution function

provided)
 Data types must match (strongly typed)
 Delay, from current time, can (optionally) be specified, as above
 If no delay specified, infinitesimally-small delay “delta” inserted

k <= b and c;
(To reflect that signals cannot change in zero time!)

 Delays are usually unknown in behavioral models and therefore
omitted

Concurrent Statements and
Event-Driven Simulation
 Statements appear to be evaluated concurrently
 To model behavior of actual hardware elements

 Each statement affected by a signal event at time
T is evaluated
 Time T is held constant while statements are

evaluated
 Any resulting events are “scheduled” in the affected

signal driver, to occur at time T + delay
 After all statements evaluated, T is advanced to the

time of the next scheduled event (among all the
drivers)

 New values do not take effect until simulation time
advances to the scheduled event time, T + delay

Event-Driven Simulation Example

a <= b after 1ns;
c <= a after 1ns;

Time a b c
T ‘0’ ‘0’ ‘0’ - assume initial values all ‘0’ at time T
T+1 ‘0’ ‘1’ ‘0’ - external event changes b at time T+1
T+2 ‘1’ ‘1’ ‘0’ - resulting event on a
T+3 ‘1’ ‘1’ ‘1’ - resulting event on c

a

b

c
T T+1 T+2 T+3

Event-Driven Simulation Example
a <= b; -- delay δ inserted
c <= a; -- delay δ inserted

Time a b c
T-1 ‘0’ ‘0’ ‘0’ - assume initial values all ‘0’
T ‘0’ ‘1’ ‘0’ - external event changes b at time T
T+δ ‘1’ ‘1’ ‘0’ - resulting event on a after δ delay
T+2δ ‘1’ ‘1’ ‘1’ - resulting event on c after 2nd δ delay

VHDL simulators generally show time and ∂ delays
a

b

c
T-1 T T+δ T+2δ

	Modeling Digital Systems with VHDL and Verilog
	Hardware Description Languages
	Related VHDL Standards
	HDLs in Digital System Design
	Typical Product Development & Design Verification Cycle Using HDLs
	Benefits of HDLs
	Designer concerns about HDLs
	Design Space Issues
	DoD requirements on VHDL in mid 80s:
	Anatomy of a VHDL model
	Example: 1-Bit Full Adder
	Port Format - Name: Direction Signal_type;
	Slide Number 13
	Built-in Data Types
	8-bit adder - entity
	IEEE std_logic_1164 package
	Bus resolution function
	Example: 1-Bit Full Adder (VHDL)
	Architecture defines function/structure
	Architecture defines function/structure
	Half Adder (Verilog)
	1-Bit Full Adder (VHDL)
	Full Adder
	Full adder behavioral architectures �(no circuit structures specified)
	1 bit Full Adder (Verilog)
	Example: 8-bit full adder (VHDL)
	Example: 8-bit full adder (Verilog)
	Event-driven simulation (VHDL)
	Concurrent Statements and �Event-Driven Simulation
	Event-Driven Simulation Example
	Event-Driven Simulation Example

