Lecture 5 - Modeling for Synthesis
Register Transfer Level (RTL) Design

1 10/29/2021



Register Transfer Language (RTL) Design

" A system is viewed as a structure comprising

registers, functions and their control signals

= Show dataflow

through the system

" |nstructions, Data,
Addresses

® Functions store and

manipulate data

No gates!!!

—gua

Fead
addrase

Inasruction

memary

~
Ingtnuction [25-0]. | LR
o [B5-0), [ shitt

310 [*7%
Intruction |

Jump addaress [31-0]
., | bef 2 )
H.l @

A

E PC = 4 [31-28]
s add|
e

fr

Ingtruction [31-24]
B . ~ ]

sxtend

10/29/2021

D I—!—' 1
M M
u u

i X

. - .\:“



RTL register model

-- Model register to hold one datum of some type
-- Individual bits are not manipulated
library ieee; use ieee.std logic 1164 .all;

entity Reg8 is D(0 to 7)
port (D: in std_logic_vector(7 downto 0); @
Q: out std_logic_vector(7 downto 0);
LD: in std_logic);
end Regs; LD—> Reg8
architecture behave of Reg8 is u
begin
process(LD) Q0 to 7)
begin
if (LD’event and LD=1") then
Q <=D; --load data into the register
end if;

end process;
end;

3

10/29/2021




Asynchronous control inputs

library ieee; use ieee.std logic 1164 .all;

entity Reg8 is CLR
port (D: in std_logic_vector (7 downto 0); - D Qr—
CLK,PRE,CLR: in bit; --Async PRE/CLR
Q: out std_logic_vector (7 downto 0)); —>CLK
end Reg8; PRE

architecture behave of Reg8 is
begin
process(clk, PRE, CLR)
begin
if (CLR='0’) then
Q <="000000007
elsif (PRE=0’) then
Q <= (others => “1");
elsif rising_edge (clk) then
Q <=D;
end if;
end process;
end;

-- async CLR has precedence

-- force register to all Os

-- async PRE has precedence if CLR=0’
-- force register to all 1s

-- sync operation only if CLR=PRE="1"
-- load D on clock transition

10/29/2021



Synchronous reset/set

--Reset function triggered by clock edge
process (clk)
begin
if (clk’event and clk = “1’) then
if reset = “1’ then
Q <= “00000000";
else
Q<=D;
end if;
end if;
end process;

5 10/29/2021



Register with enable

process (clk)
begin
if rising_edge(clk) then -- detect clock transition
if enable = ‘1" then -- enable load on clock transition
Q<=D;
end if;
end if;
end process;

6 10/29/2021



Register with parameterized width

-- One model of a given function with variable data size
library ieee; use ieee.std logic 1164.all;

entity REGN is
generic (N: integer := 8); -- N specified when REG used
port ( CLK, RST, PRE, CEN: in std_logic;
DATAIN: in std_logic_vector (N-1 downto 0); -- N-bit data in
DOUT: out std_logic_vector (N-1 downto 0) -- N-bit data out
);
end entity REGN;

architecture RTL of REGN is
begin
process (CLK) begin
if (CLK'event and CLK ="'1") then
if (RST="1")then DOUT <= (others =>"'0"); --reset to all Os
elsif (PRE ="'1") then DOUT <= (others =>'1"); --preset o all 1s

elsif (CEN ="1") then DOUT <= DATAIN; --load data
?r_‘d if; Vectors: “100” = (“1°,0’,’0’) = (‘1’, others => ‘0")
end if, Arbitrarily long: “00...0” = (others => ‘0’)

end process;
end architecture RTL; 10/29/2021



Instantiating the parameterized register

library ieee; use ieee.std _logic_1164.all;
entity TOP is
port ( CLK,X,Y,A,B,C: in std_logic;

DIN: in std_logic_vector(5 downto 0
Q1: out std_logic_vector(5 downto 0
Q2: out std_logic_vector(4 downto 0
Q3: out std_logic_vector(3 downto 0
);

end entity TOP;

~— N —

architecture HIER of TOP is
component REGN is
generic (N: integer := 8);
port ( CLK, RST, PRE, CEN: in std_logic;
DATAIN: in std_logic_vector (N-1 downto 0);
DOUT: out std_logic_vector (N-1 downto 0)
);
end component REGN;
begin
R1: REGN generic map (6) port map --6-bit register
(CLK, A, B, C, DIN, Q1);
R2: REGN generic map (5) port map --5-bit register (low 5 bits of DIN)
(CLK., Y, X, C, DIN(4 downto 0),Q2);
R3: REGN generic map (4) port map --4-bit register (low 4 bits of DIN)

(CLK=>CLK, RST=>A, PRE=>B, CEN=>C, DATAIN=>DIN(3 downto 0), DOUT=>Q3);

end architecture HIER;
8

10/29/2021



2-to-1 mux with parameterized data size

entity muxN is
generic (N: integer := 32); -- data size parameter
port ( A,B: in std logic vector(N-1 downto 0);
Y: outstd logic vector(N-1 downto 0);
Sel: in std_logic);
end muxN;
architecture rtl of muxN is
begin
Y <=Awhen Sel='0"else B; --A,B,Y same type
end;
-- specify parameter N at instantiation time
M: muxN generic map (16)
port map(A=>In1, B=>In2, Y=>0ut1);

9 10/29/2021



Other types of generic parameters

entity and02 is

generic (Tp : time := 5ns); --gate delay
parameter

port (A,B: in std_logic;

Y: outstd _logic);

end and02;
architecture eqn of and02 is
begin

Y <=Aand B after Tp; -- gate with delay Tp

end; Gates with

----- / different delays.

A tech1: and02 generic map (2 ns) port map (M,N,P);
A tech2: and02 generic map (1 ns) port map (H,K,L);

10 10/29/2021



IEEE Std. 1076.3 Synthesis Libraries

®  Supports arithmetic models

® ieee.numeric_std (ieee library package)

» defines UNSIGNED and SIGNED types as arrays of
std_logic
type SIGNED is array(NATURAL range <>) of STD_LOGIC;
type UNSIGNED is array(NATURAL range <>) of STD LOGIC;

» defines arithmetic/relational operators on these types
® Supports RTL models of functions

" | esser-used packages:
® ieee.numeric_bit
» same as above except SIGNED/UNSIGNED are arrays of type bit
* jeee.std logic arith (from Synopsis)
» Non-standard predecessor of numeric_std/numeric_bit

11 10/29/2021



NUMERIC STD package contents

" Arithmetic functions: + - */ rem mod

* Combinations of operand types for which operators are defined:
» SIGNED + SIGNED return SIGNED
» SIGNED + INTEGER return SIGNED
» INTEGER + SIGNED return SIGNED
» SIGNED + STD_LOGIC return SIGNED

* PLUS: above combinations with UNSIGNED and NATURAL

= Other operators for SIGNED/UNSIGNED types:
®* Relational: = /= < > <= >=
* Shift/rotate: sll, srl, sla, sra, rol, ror
* Maximum(a,b), Minimum(a,b)

= Convert between types:
* TO INTEGER(SIGNED), TO INTEGER(UNSIGNED)
* TO SIGNED(INTEGER,#bits), TO UNSIGNED(NATURAL #bits)
* RESIZE(SIGNED or UNSIGNED.,#bits) — changes # bits in the vector

12 10/29/2021


Presenter
Presentation Notes
Natural Numbers: N ={1,2,3….}
Integers: Z={….,-2,-1,0,1,2,….}
Real Numbers: R
Complex numbers: C


Arithmetic with NUMERIC_STD package

library IEEE;
use IEEE.STD LOGIC 1164.all;
use IEEE.NUMERIC _STD.all;
entity Adder4 is
port (in1,in2 :in UNSIGNED(3 downto 0) ;
mySum : out UNSIGNED(3 downto 0) ) ;
end Adder4;

architecture Behave B of Adder4 is
begin

mySum <= in1 + in2; -- overloaded '+" operator
end Behave B;

UNSIGNED = UNSIGNED + UNSIGNED

13 10/29/2021



Conversion of “closely-related” types

= STD LOGIC VECTOR, SIGNED, UNSIGNED:
® All arrays of STD_LOGIC elements

®* Example: How would one interpret “1001” ?
»STD_LOGIC _VECTOR: simple pattern of four bits
» SIGNED: 4-bit representation of number -7 (2's complement #)
» UNSIGNED: 4-bit representation of number 9 (unsigned #)

®  Vectors of same element types can be “converted”

(re-typed/re-cast) from one type to another

signal A: std_logic vector(3 downto 0) := “10017;

signal B: signed(3 downto 0);

signal C: unsigned(3 downto 0);

B <= signed(A); -- interpret A value “1001” as number -7
C <= unsigned(A); -- interpret A value “1001” as number 9
A <= std logic vector(B); --interpret B as bit pattern “1001”

14 10/29/2021



Conversion of “closely-related” types

For arrays of same dimension, having elements of same type
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
entity Adder4 is
port (in1,in2 :in STD LOGIC VECTOR(3 downto 0) ;
mySum : out STD_LOGIC_VECTOR(3 downto 0) ) ;
end Adder4;

architecture Behave B of Adder4 is
begin SIGNED result
mySum <= | ‘ |
STD LOGIC _VECTOR( \SIGNED(in?) +\SIGNED(in2}) );

end Behave B; Y !
Interpret STD _LOGIC _VECTOR as SIGNED

Function: SIGNED = SIGNED + SIGNED

Interpret SIGNED result as STD LOGIC VECTOR.
15 10/29/2021



Example — binary counter

library IEEE;
use IEEE.STD_LOGIC 1164 .all;

use IEEE.NUMERIC_STD.all;
ENTITY counter IS
port( Q: out std logic vector(3 downto 0);

END counter;

ARCHITECTURE behavior OF counter IS
signal Qinternal: unsigned(3 downto 0);
begin '

From NUMERIC_STD package

Qinternal <= Qinternal + 1; -- UNSIGNED = UNSIGNED + NATURAL
Q <= std_logic_vector(Qinternal); -- re-type unsigned as std logic vector

16 10/29/2021



Using a “variable” to describe sequential
behavior within a process

-- Assume Din and Dout are std_logic_vector
-- and numeric_std package is included
cnt: process(clk)
variable count: integer; -- internal counter state

begin -- valid only within a process
if clk="1" and clk’event then
if Id="1" then

count := to_integer(unsigned(Din)); --update immediately
elsif cnt="1" then
count := count + 1; --update immediately
end if;
end if;
Dout <= std logic vector(to unsigned(count,32)); --schedule Dout
end process;

17 10/29/2021



Counting to some max_value (not 2")

-- full-sized comparator circuit generated to check count =
max

process begin
wait until clk'event and clk="1";
if (count = max_value) then

count <=0 ; --roll over from max_value to 0O
else

count <=count+ 1; --otherwise increment
end if ;

end process ;

18 10/29/2021



Decrementer and comparator

process begin
wait until clk’'event and clk="1";

if (count = 0) then

count <= max_value ; --roll over from 0 to max_value
else

count <=count-1; --otherwise decrement
end if ;

end process ;

19 10/29/2021



Verilog Modeling Trap

=" The order of execution of procedural statements in
a cyclic behavior may depend on the order in which
the statements are listed

" Procedural assignments are called “blocked”
assignments (or blocking assignments)
* Execute sequentially

® A procedural assignment must complete execution before
the next statement can be executed

* i.e. the statements that follow a procedural statement are
“blocked” till the current one completes execution

=  EXxpression substitution is recognized by synthesis
tools



Example:Modeling Trap of a Shift Register

D

C

D Q—i—

_._

A module shiftreg PA rev (E, A, clk, rst);

—a

E
—
>R >R >R >R
clk

rst
[ ] | | |

module shiftreg PA (E, A, clk, rst);
output A;
input E;
input clk, rst;
reg A, B, C, D;

always @ (posedge clk or posedge rst)
begin
if (rst) begin
A=0:B=0;C=0;D=0; end
else begin

mo oW

o0 wX>

end
end
endmodule

output A;

input E;

input clk, rst;

reg A, B, C, D;

always @ (posedge clk or posedge rst)
begin
if (rst) begin
A=0;B=0;C=0;D=0; end
else begin

D=E;

C=D;

s=c. A=E

A =B;

end
end E
endmodule B—D Q
> R

clk
._
rst
m




Nonblocking Assignment (<=) in Cyclic Behavior

= Effectively execute concurrently rather than sequentially
by blocked assignments

* Independent of the order where they are listed
= Simulator must

®* Sample all variables referenced by RHS with nonblocking
assignments

®* Held them in memory

®* Use them to update LHS variables concurrently
» Before the assignments are evaluated

®* Nonblocking makes NO dependency between statements
= Avoid having multiple behaviors assigning values to be
the same variable

®* Otherwise, software race condition makes outcome
indeterminate

®* For example, multi-driver case



Blocked (=) v.s. Nonblocking (<=)

" |f no data dependency, results of blocked and
nonblocking assignments are identical

= Strongly recommend

® Blocked assignment for combinational logic using level
sensitive behavior

®* Nonblocking assignments for edge sensitive behavior



Shift Register Using Nonblocking Assignments

module shiftreg _nb (A, E, clk, rst);
output A;
input E;
input clk, rst;
reg A, B, C, D;

always @ (posedge clk or posedge rst)

begin
if (rst)
beginA<=0;B<=0;C<=0;D<=0;
end
else
begin
A <=B: // D <=E;
B <=C; /l C <=D;
C <=D; /l B <=C;
D <=E: /] A <= B;
end
end

endmodule



Linear-Feedback Shift Register (Type Il LFSR) Dataflow

Reset

i ]
| @
R R R R
»D Q ° EEEE D Q D Q D Q
Y[1] Y[N-2] YIN-1] YN]
k

o

Py vor v vop e
|mde—mmdndudndde
FEPSSEESER Y wy wuy ey o
(1S9 SREETEL Sy Sy gupany gu T




LFSR --- RTL Dataflow

module Auto LFSR_RTL (Y, Clock, Reset);

parameter Length = 8;
parameter [1: Length] initial_state = 8'b1001_0001; // 91h
parameter [1: Length] Tap_Coefficient = 8'b1111_0011;
input Clock, Reset;
output [1: Length] Y;
reg [1: Length] Y;
always @ (posedge Clock)

if (IReset) Y <= initial_state; Il Active-low reset to initial state

else begin
Y[1] <=Y[8];

Y[2] <= Tap_Coefficient[7] ? Y[1] * Y[8] : Y[1];
Y[3] <= Tap_Coefficient[6] ? Y[2] * Y[8] : Y[2];
Y[4] <= Tap_Coefficient[5] ? Y[3] * Y[8] : Y[3];
Y[5] <= Tap_Coefficient[4] ? Y[4] * Y[8] : Y[4];
Y[6] <= Tap_Coefficient[3] ? Y[5] * Y[8] : Y[5];
Y[7] <= Tap_Coefficient[2] ? Y[6] * Y[8] : Y[6];
Y[8] <= Tap_Coefficient[1] ? Y[7] * Y[8] : Y[7];
end
endmodule



LFSR --- RTL Repetitive Algorithm

module Auto LFSR_ALGO (Y, Clock, Reset);

parameter Length = 8;
parameter [1: Length] initial _state = 8'b1001_0001;
parameter [1: Length] Tap_Coefficient = 8'b1111_0011;
input Clock, Reset;
output [1: Length] Y;
integer Cell_ptr;
reg Y;
always @ (posedge Clock)
begin
if (Reset == 0) Y <= initial_state; /[ Arbitrary initial state, 91h
else
begin

for (Cell_ptr = 2; Cell_ptr <= Length; Cell_ptr = Cell_ptr +1)
if (Tap_Coefficient [Length - Cell _ptr + 1] == 1)
Y[Cell _ptr] <= Y[Cell _ptr-1]* Y [Length]; // * is xor
else
Y[Cell_ptr] <= Y[Cell_ptr -1];
Y[1] <= Y[Length];
end
end
endmodule



Verilog Repetitive Statements

= for, repeat, while, forever
® All activities of all iterations are done in one time step
* “disable” to terminate a named block

®* Some logic synthesis tools can only synthesize “for” loop
> i.e., repeat, while, forever are not synthesizable in these tools




Verilog Statement

" Statement can be
® a single statement or
®* a block statement

begin
statement1
statement2

end

= A named block statement
begin: <block_name>
statement1
statement2

end



Ones Counter

= Verilog bitwise right-shift operator (>>),filling with ‘0’
* Arithmetic right-shift (>>>)
= Compare the following two designs

/[ count _of 1s declares a named block of statements

// Original design /I Alternative
begin: count_of 1s begin: count_of 1s
reg [7: 0] temp_reg; reg [7: 0] temp_reg;
count = 0; count = 0;
temp _reg =reg_a; // load a data word temp _reg =reg_a; // load a data word
while (temp_req) while (temp_req)
begin begin
if (temp_reg[0]) count = count + temp_reg|O0];
count = count + 1; temp_reg = temp_reg >> 1,
temp reg = temp_reg >> 1, end
end end

end



Find First One

" Find the location of the first 1 in a 16-bit word
® The word is assumed to contain at least one 1

module find_first_one (index_value, A_word, trigger);

output [3: 0] index_value;
input [15: 0] A_word;
input trigger;

reg [3: 0] index_value;

always @ (trigger)

begin: search for 1
index_value = 0;
for (index_value = 0; index_value <= 15; index_value = index_value + 1)

if (A_word[index_value] == 1)
disable search for 1;
end
endmodule



Multicycle Operations -- 4-cycle Adder

= Some digital machines have repetitive operations
distributed over multiple clock cycles
® Can be modeled in Verilog by a synchronous cyclic

behavior that has as many nested edge-sensitive event
control expressions as needed to complete the operations

®* May not be synthesizable

= Example: 4-cycle adder

* To form the sum of four successive samples of a datapath
» Store the samples in registers then use multiple adders

» Or, one adder to accumulate the sum sequentially

0 One FSM to control the 4-cycle operation and only one adder
O The resulting synthesized implementation

® To ensure proper re-initialization, “disable” is in each clock
cycle
» Regardless when the “reset” is asserted




4-cycle Adder

module add_4cycle (sum, data, clk, reset);

output [5: 0] sum;
input [3: O] data;
input clk, reset;
reg sum;

always @ (posedge clk) begin: add_loop
if (reset) disable add_loop; else sum <= data;
@ (posedge clk) if (reset) disable add_loop; else sum <= sum + data;
@ (posedge clk) if (reset) disable add_loop; else sum <= sum + data;
@ (posedge clk) if (reset) disable add _loop; else sum <= sum + data;

-—

end Flip-Flops to
endmodule store SUM
7,
D ] um[5:0]

> ) o] ]

= L e |
QE < mux_2a )

data[3:0] = 5 E Il D [ ,_: I
e@’ mux_2a i

<fapuy \ a— 11

F ] u{ T T
One adder- > 22 |

\ { e |/

= |



Algorithmic State Machine (ASM) Charts

=  State Transition Graphs (STGs)

* Indicate the transitions that result from inputs applied to the state machine
in a particular state

* Do not directly display the evolution of states under the application of
input data

= ASM Charts

* Abstraction of functionality of a sequential machine
» Reveal the sequential steps of a machine's activity
®* Focus on activities rather than content of storage elements

» Example: the counter to be introduced shortly
O Three states: idle, incrementing and decrementing
O Independent of counter word width

ASM chart elements

» state box

» decision box

» conditional box

Clock governs transitions between states

Linked ASM charts describe complex machines

» ASM charts represent both Mealy and Moore machines



ASM Chart Elements

= State box

® Each state box represents the state of the machine between
synchronizing clock events

= Decision box
O O

= Conditional box
State Box Conditional Output or
Register Operation Box

Decision Box

ASM Block




Asyn/Synchronous Reset in ASM

= Asynchronous reset: a RESET input to the reset
state box

= Synchronous reset: one decision box of RESET
iInput

reset_ _count <= 0 count <=0

count <= count + 1

count <= count + 1 v vlv

K’ 1 l v S_running

S_running

count <= count - 1

count <= count - 1




ASM Chart (cont.)

= Only paths leading to a change in states are shown

in ASM
* |f a variable not appear in a decision box on a path

leaving a state, then the path is independent of the value
of the variable



ASM Chart Example: Tail Light Controller
A Mealy Machine with Synchronous Reset

S_stop S_med

Tail_Lite

Tail_Lite

1
S_slow Tail_Lite
Tail_Lite

»



ASM and Datapath (ASMD) Charts

= To form an ASMD: modify ASM (i.e. controller) by annotating each
of its paths to indicate the concurrent register operations (i.e.
datapath operations) when the controller makes a transition along
the path
® Not in conditional boxes
®* Not in state boxes
* Because the datapath registers are not part of the controller
» Fact: output generated by the controller controls the datapath register
= Clarify a design of a sequential machine by separating the design
of its datapath from the design of the controller

= ASMD chart maintains a clear relationship between a datapath and

its controller
® OQutputs generated by the controller control the datapath register
* Outputs generated by datapath report the status of datapath back to the
controller




Control and Datapath

Input data
S A 1
| Control signals :

Input : > |
signals | | Control unit Datapath :
(external) | (FSM) unit :
| ——
< |
: Status signals :
|

Output data

= Most datapaths include arithmetic units. (e.g., adder,
multiplier)

®  The datapath unit manipulates data in registers
according to the system’s requirements.

=  The control unit issues a sequence of commands to the
datapath unit.

=  The control logic be a finite state machine (FSM).
40 10/29/2021



4-bit counter

A should resetto O

®* Reset signal (reset_b)
System should stop counting at

2'b1101

Control Signal to start and stop

Uses flip-flops to store data
Registers

® A[3:0] — Contains count value
®* E — Control Value Flip-Flop

®* F — Finished State Flip-Flop

* E, F, A[2], and A[3] are used to

41

determine when the counter will
stop counting

A3 —— Status signals

A2

Controller

cir E

set E

set_F

Cr A_F

Incr_A

AN
reset_b 41 [

—-

Block diagram of design

example

10/29/2021




Controller Description

42

v’ Start

input — Begin counter (take out of
reset state)

v reset b
input — Reset Counter
v clr E
Eisclearedto 0
v set E
Eissetto1
v set F
F is setto 1
v CIr A F
FandAaresettoO
v Incr A
Increment the counter (used to
pause the system)

A3 — Status signals

Start —*

——

Controller

A2
cir E

set E

Datapath

5 A
>

set_F

Cr_A_F

Incr_A

reset_b 41

I

—

]
0

clock

Block diagram of design
example

10/29/2021




Datapath Signals

v A2
if A[2] = 0 then E is assigned to O
on the next clock pulse and
system keeps counting

if A[2] = 1 then E is assigned to 1
on the next clock pulse and
If A[3] = 0, count continues
If A[3] = 1, count stops, and F
is assigned to 1

43

A3 —— Status signals

A2 |

cir E

Datapath

, A
J L]

set E

Controller set_F |i
Cir A F
Start —> » E
Incr_A D
— L A — LA
reset b 41 [
clock

Block diagram of design
example

10/29/2021



ASM and ASMD Charts

A<=0

E<=0

/
A<=A+1"

reset_b

|

—

S idle

F<=0
_\

S
T

|
1 ]
1

F<=1

/

ASM chart for controller stat
transitions, annotated with
datapath register operations,

asynchronous reset

44

:

S_idle

A<=0
F<=0

| 1

E<=0 51

ASM Chart for controller stat
transitions, annotated with
datapath register operations,
synchronous reset

ASMD chart for a completely
specified controller, identifying
datapath operations and
associated control signals,
asynchronous reset

10/29/2021



Verilog Code

//RTL Description of design example

module Design_Example RTL

A3 —— Status signals

(A,E,F,Start,clock, reset_b);

//Specify ports of the top-level module of
the design

Start —*

Output [3:0] A;

Controller

JAN

A2
cir E

set E

Datapath

, A
J L]

set_F

Cr A_F

Incr_A

Output E,F; -
Input Start, clock, reset_b; Y —

|

—

]
N

clock

/linstantiate controller and datapath units

Controller RTL MO (set_E, cIr_E, set F, clr A _F, incr_A, A[2], A[3],

Start, clock, reset_b);

Datapath RTL M1 (A, E, F, set_E, cIr_E, set F, clr_A _F, incr_A, clock);

endmodule

45

10/29/2021



Verilog: Controller

module Controller_RTL (set _E, cIr_E, set F, clr_A F, incr_A, A2, A3, Start, clock,
reset_b);

outputreg set_E, clr_E, set_F, clr_A_F, incr_A;

input Start, A2, A3, clock, reset_b;

reg [1:0] state, next_state;

parameter S_idle = 2’b00, S 1 =2'b01, S_2+2'b11; //State Codes

/] State transitions (edge sensitive)

always@ (posedge clock, negedge reset _b)
if (reset_b == 0) state <= S _idle;

else state <= next_state;

// Code next_state logic directly from ASMD chart
always @(state, Start, A2,A3) begin //Next_state logic (level sensitive)
next_state = S_idle;
case (state)
S _idle: if (Start) next_state = S_1; else next_state = S _idle;
S_1:if (A2& A3) next_state = S_2; else next_state =S _1;
S 2:
default: next_state = S_idle;
endcase
end

46

A<=0
F<=0 \

E<=0 1 h

reset b

S idle

1

\\ A
@’E incr_A

ASMD chart with
asynchronous reset signal

10/29/2021



Verilog: Controller — Cont.

reset b

//Code output logic directly from ASMD chart |
always @ (state, Start, A2) begin _
set E  =0; //Default assignments; assign by exception § /e

dr E =0 @
set F = 0; A<=0

cr A F =0; Pt N —H

incr A =0; (Lo J—

case (state) Ee=0 [ L
S idle: if (Start) cIr A F =1; rE)|  incrA
S 1. beginincr A=1;if (A2) set E=1; elseclr E=1; end
S 2: set F=1;

endcase
end
endmodule //End Controller Module

ASMD chart with
asynchronous reset signal

47 10/29/2021



Verilog: Datapath

reset b

module Datapath RTL (A, E, F, set E, cIr_E, set F, |
clr_A_F, incr_A, clock);
outputreg [3:0] A; //IRegister for the counter S_idle
output reg E, F; /IFlags
input set E, cIr_E, set_F, cIr_A_F, incr_A, clock; A<=0
F<=0 \ 1
/I Code register transfer operations directly from ASMD chart. @
E<= 0\ [ ] o [
Always @ (posedge clock) begin cr E) | incrA
if (set_E) E<=1;
if (C|I’_E) E <=0;
if (set_F) F<=1;
if (clr_A_F) begin A<= 0; F <= 0; end
if (incr_A) A<= A+1:
end
endmodule

ASMD chart with
asynchronous reset signal

48 10/29/2021



2:1 Decimator Using 2-stage Pipeline

=  Used to move data from a high clock rate datapath to a
lower data rate datapath

® Can also used to convert data from a parallel format to a serial
format

= ASMD of the 2:1 decimator

* A Mealy machine with synchronous reset to S_idle
®* An incomplete ASMD

» Because no conditional outputs

O i.e., the output of the controller to control how datapath works
O Such as adding an output for load-register

* E.g. “Ld” state represents load to RO since R0O<={P1,P0} on the
path leaving the state when Ld=1

* Note that datapath register operations made with a nonblocking
assignment are concurrent
» Hence no race between R0<={P1,P0} and {P1,P0}<={0,0}




2:1 Decimator Using 2-stage Pipeline (cont.)

Data
8

{P1, PO} <= {0, 0}

y
S idle

P1 <= Data
PO <= P1 En

P1 <= Data S 1
PO <= P1

/ {P1, PO} <= {0, 0}

P1 <= Data

| PO <=P1

S_wait

= PA1[7: 0] TS_»

P1[7: 0]

PO[7: 0]

RO[15: O]



Synthesis of Sequence Recognizer

= Example: detect 3 consecutive 1s

* Assert D out when a given pattern of consecutive bits
has been received in its serial input stream, D in

* Apply data on the rising edge of the clock if the state
transitions are to occur on the falling edge of the clock,
and visa-versa

» Recall the general rule for exercising FSM

“ 1

RaRaRaRS

En'—l

D in

l Sequence
Recognizer

clk ;=———
reset =

D _out
—>




Conventions to Describe Sequence Recognizers

" The output of a Mealy machine is valid immediately
before the active edge of the clock controlling the
machine

* Data must be stable prior to active edge for at least the
setup time

®  Successive values inputs are received in
successive clock cycles.

® A non-resetting machine continues to assert its
output if the input bit pattern is overlapping

= A resetting machine asserts for one cycle after
detecting the input sequence, and then de-asserts
for one cycle before detecting the next sequence of
bits



Mealy and Moore ASMs (3 Consecutive 1s)

v

S_idle

Moore
Machine




Mealy and Moore for 3 Consecutive 1s (cont.)

=  Both are non-resetting
®* How to modify them into resetting sequence recognizers?

" Moore has one more state than Mealy

" The Mealy machine anticipates D in and asserts
D out before the third clock

®" The Moore machine does not anticipate D in

®* That is, the Moore machine asserts D out in the state
reached after the third active edge of the clock



Sequence Recognizer for 3 Consecutive 1s (cont.)

module Seq Rec 3 1s Mealy
(D_out, D_in, En, clk, reset);

output D_out; always @ (negedge clk)
input D _in, En; if (reset == 1) state <= S _idle; else state <= next_state;
input clk, reset; _ .
/| Binary coding for states always @ (state or D_in) begin
parameter S_idle = 0: case (state) // Partially decoded
parameter S 0= 1 S_idle: if (En==1) && (D_in == 1))next_state = S_1;
parameter S 1= 2: else if (En ==1) && (D_in == 0)) next_state = S _0;
parameter S_2 = 3: else next_state = S_idle;
reg[1: 0] statg, next_state; S_OZ if (D_in == 0) next state = S_O;
else if (D_in==1) next_state =S_1;
else next_state = S_idle;
S 1. if(D_in==0) next_state = S_0;
else if (D_in==1) next_state = S_2;
else next_state = S_idle;
S 2: if(D_in==0) next_state = S_0;
else if (D_in==1) next_state = S_2;
else next_state = S_idle;
default: next_state = S_idle;
endcase

end

always @ (state or D_in) begin

D out = ((state == S_2) && (D_in == 1)); // Mealy output
end
endmodule




Sequence Recognizer for 3 Consecutive 1s (cont.)

module Seq Rec 3 1s_Moore
(D_out, D_in, En, clk, reset);
output D _out;
input D_in, En;
input clk, reset;
// Binary coding for states
parameter S idle = O;

parameter S 0 = 1;
parameter S 1 = 2;
parameter S 2 = 3;
parameter S_3 = 4

reg[2: 0] state, next_state;

always @ (negedge clk)
if (reset == 1) state <= S_idle; else state <= next_state;

always @ (state or D_in) begin

case (state)

S _idle: if (En ==
if (En ==
else

S 0: if(D_in==
if (D_in==
else

S 1. if(D_in==
if (D_in==
else

S 2,8 3iif (D _in=

if (D _in=
else
default:
endcase
end

) && (D_in == 1))
) &8& (D_in == 0))
)

)
)
)
= 0)

=1)

always @ (state) begin
D out = (state == S_3);

end
endmodule

next state =S _1; else
next_state =S _0;
next_state = S_idle;
next _state =S _0; else
next _state =S _1;
next_state = S_idle;
next_state =S _0; else
next_state =S _2;
next_state = S _idle;
next_state =S _0; else
next _state =S _3;
next_state = S _idle;
next_state = S_idle;

// Moore output



Alternative Design for Sequence Recognizer

= Alternative approach: Shift input bits through a
register and detect contents
® Consider sequence recognizer as a datapath unit
® Such as a shift register
®* Then compare the content of shift register with the
expected pattern
=  Note: an explicit state machine implementation of
the alternative design for a sequence recognizer is
not necessarily the most efficient implementation



Alternative Design for Sequence Recognizer (cont.)

"= The Mealy/Moore machines below are gated the

datapath with En
* What happens if En=07?

» Register content will be lost
" Mealy has one less FF than Moore

D_in-—
En =—

Mealy

clk =

j_.,

D

> clk

Q

Q -

|

[

Moore

D_in-—
En »m——

D Q

> clk

— -

D

> clk

Q

:

"

reset =
clk >—l




Alternative Design for Sequence Recognizer (cont.)

module Seq Rec 3 1s Mealy Shft Reg (D _out, D_in, En, clk, reset);
output D_out;

input D_in, En;
input clk, reset;
parameter Empty = 2'b00;
reg [1: 0] Data;

always @ (negedge clk)

if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[1]};
assign D_out = ((Data == 2'b11) && (D_in == 1))); // Mealy output depends on primary input
endmodule

module Seq _Rec 3 1s Moore Shft Reg (D _out, D _in, En, clk, reset);
output D_out;

input D_in, En;

input clk, reset;
parameter Empty = 3'b000;
reg [2: 0] Data;

always @ (negedge clk)

if (reset == 1) Data <= Empty; else if (En == 1) Data <= {D_in, Data[2:1]};
assign D_out = (Data == 3'b111); // Moore output depends on state only
endmodule



Design of a Datapath Controller

Understand the problem
®* Especially the register operations that must execute on a given datapath architecture

Define ASM

* Astate machine controlled by primary inputs and status of datapath register (i.e. the
feedback linkage from datapath to controller)

Create ASMD

* Annotating ASM with datapath operations associated with state transitions (i.e. path) of
the controller

®* Register operation of ASMD written in register transfer notations with NONBLOCKING
assignments

» since they are executed concurrently in the datapath
Controller outputs to datapath

®* For Moore machines: Annotate state of the controller with unconditional output signals
(i.e. outputs of a state)

®* For Mealy machines: Include conditional boxes for controller output signals to control
datapath

Feedback linkage from datapath to controller

* If there are signals reports status of datapath back to the controller, then use decision
box

Integration

* Integrate the verified datapath module and the verified controller module with one
parent module to verify the overall functionality




Counters and Registers

= Storage elements of counters and registers usually
have the same synchronizing and control signals

®* One exception: ripple counter

» Connects the output of a stage to the clock input of an adjacent
stage

= Counters with asynchronous reset
= Ring counter

= Up/down/load counter

= Shift register

= Parallel load register

= Universal shift register

= Register file



Counters

= The ASM/ASMD have no indication of the bit-width of
the counter

" Three states: S idle, S_incrand S_decr
* May be further simplified to a single state, S_running

= 2-bit input up_down to count up(1), count down(2) and
hold the count (0 and 3)

= Active low asynchronous reset



Counters(3 states) with Async Reset_

lvl
reset

p| S_idle

1t

—>
S decr up_dwn S incr
—>

0,3

—— 4 S.ide

count == count+1

—p

count == EDUHHD—.
—»

count == counts1

. )

count <= count-1

.1—

<—@::unt <= count-1

—

—{count <= count-1} 0.3
_ J




Counters (cont.)

0,3

count <= cnunt-1)‘

S_decr

| ——

l

reset_
_"( count <= EIH

S idle

count == count-1

count <= count+1

count <= count+1

—Gnunt <= cnunt-{}

count == count+1
\_ )




Counters (3 states) with Async Reset_ (cont.)

« |t is an implicit state machine
— No explicit states (S_idle, S_incr, S_decr) used in the design

— Implemented using if-then-else within edge-sensitive
behavior

module Up _Down_Implicit1 (count, up_dwn, clock, reset );
output [2: 0] count;
input [1: 0] up_dwn;
input clock, reset_;
reg [2: 0] count;

always @ (negedge clock or negedge reset )
if (reset_==0)
count <= 3'b0;
else if (up_dwn == 2'b00 || up_dwn == 2'b11)
count <= count;
else if (up_dwn == 2'b01)
count <= count + 1;
else if (up_dwn == 2'b10)
count <= count —1;

endmodule



Simplified Counter ASMDs with Async/Sync Reset

reset  _count<=0

— =

S_running

count <= count + 1

count <= count - 1

A

y

count<=0

A

y

1

S_running

count <= count + 1

count <= count - 1




Ring Counter

" Ring counter asserts a single bit that circulates
through the counter in a synchronous manner

count [7:0]
ojojof{o0fO0O]|O]O]1

ojojojofofof11]0

oOjojojofof1{0]0

oOojo0jo0jof1({0f{0]0




Ring Counter (cont.)

= Activity of the machine is the same in every clock
cycle

" This implementation is an implicit state machine

module ring_counter (count, enable, clock, reset);

output [7: 0] count;
input enable, reset, clock;
reg [7: 0] count;

always @ (posedge reset or posedge clock)
if (reset == 1'b1) count <= 8'b0000_0001; else
if (enable == 1'b1) count <= {count[6: 0], count[7]}; /I Concatenation operator
endmodule

VHDL.:: count <= count[6: 0] & count[7];



Up/Down/Load Counter

module up_down_counter (Count, Data_in, load, count_up, counter_on, clk, reset);
output [2: 0] Count;

input load, count_up, counter_on, clk, reset,;
input [2: 0] Data _in;
reg [2: 0] Count;

always @ (posedge reset or posedge clk)
if (reset == 1'b1) Count <= 3'b0; else
if (load == 1'b1) Count <= Data_in; else

Data_in
if (counter_on == 1'b1) begin
if (count_up == 1'b1) Count <= Count +1; I3
else Count <= Count —1; count up m—|u/d D_in
end
endmodule load  m—ld

reset B—rst
counter_onB—jcnt

Clk — Clk Count

Count



Shift Register

= Remember the “model trap”

®* Must use nonblocking assignments in this design

module Shift_reg4 (Data_out, Data_in, clock, reset);
output Data_out;
input Data_in, clock, reset;
reg [3: O] Data_reg;

assign Data_out = Data_reg[0];

always @ (negedge reset or posedge clock)
begin
if (reset == 1'b0) Data_reg <= 4'b0;
else Data_reg <= {Data in, Data_reg[3:1]}; //shift right
end
endmodule

Data_in Data_out
m—— D Q D Q D Q D Q —mn

o [ [T e rEs

reset =

——




Parallel Load Register

= MUX is synthesized from “else if (load==1'b1)"
®* How about “else” i.e. (load==1'b0)?
> If not specified, retain the previous value

module Par_load reg4 (Data out, Data in, load, clock, reset);
input [3: 0] Data_in;

input load, clock, reset;
output [3: 0] Data_out; I/ Port size
reg Data_out; // Data type
always @ (posedge reset or posedge clock)
begin Data_in[3] Data_in[2] Data_in[1] Data_in[0]
if (reset == 1'b1)
Data_out <= 4'b0; { [
else if (load == 1'b1) [ ] [ ] [ ]
Data_out <= Data in; [ mux L MHX L MHX L mHX
end load
endmodule ) )
L{ D Q | L{ D Q |— L1 D Q |—= L{ D Q |—
o o T R T R
clock = f f o
reset =

Data_out[3] Data_out[2] Data_out[1] Data_out[0]



Shift Registers

= Shift register with parallel load
* later

= Arithmetic shift register

® For sighed number operation
» MSB is preserved

* Shift-left: multiply by 2
* Shift-right: divide by 2



Universal Shift Register

module Universal _Shift Reg

(Data_Out, MSB_Out, LSB Out, Data_In, MSB_In, LSB_In, s1, sO, clk, rst);

output [3: O] Data_Out;

Data_In

,,l

output MSB_Out, LSB_Out;

input [3: 0] Data_In; SO u

input MSB_In, LSB_In; 1 -—
input s1, s0, clk, rst; il
reg Data_Out; MSB In =——m— !

assign MSB_Out = Data_Out[3];

Universal_Shift Reg

«—= | SB In

- » LSB_Out

N

assign LSB_Out = Data_Out[0]; MSB_Out «——
always @ (posedge clk) begin clk =m—
if (rst) Data_Out <= 0; rst =
else case ({s1, s0})
0: Data Out <= Data_Out; // Hold

Data_ Out

1: Data_Out <= {MSB_In, Data_Out[3:1]}; // Serial shift from MSB
2: Data Out <= {Data_Out[2: 0], LSB_In}; // Serial shift from LSB

3: Data Out <= Data_In; // Parallel Load
endcase
end

endmodule



R . t F'I 5 S Al Register File
egistier rie m—— Read Addr_
5 Data_Out_1
Bl Read_Addr_2
2
== Write_Addr
32
*
Data_In
.—> Clock Data_Out_2
Write_Enable
n

module Register_File (Data_Out_1,Data_Out_2,Data in,
Read_Addr_1,Read Addr_2,Write Addr,Write_Enable,Clock);
output [31:0] Data Out 1, Data Out_2;
input [31: 0] Data_in;
input [4: 0] Read Addr_1, Read Addr_2, Write_Addr;
input Write_Enable, Clock;
reg [31: O] Reg File [31:0];  // 32bit x32 word memory declaration

assign Data_Out_1 = Reg_File[Read_Addr_1];
assign Data Out_2 = Reg_File[Read_Addr_2];
always @ (posedge Clock) begin
if (Write_Enable) Reg_File [Write_Addr] <= Data_in;
end
endmodule
type Reg is array (0 to 31) of std_logic_vector(31 downto 0);

signal Reg_File : Reg;



“Concept of Memory” in Verilog

" Memory
® Declaration an array of words
* E.g. reg[31:0] data_out; /[ one 32-bit word
reg [31:0] Reg_file [31:0]; // 32x32 bit word memory

= Verilog does not support 2-dimensional array
®* However, a word in a Verilog memory can be addressed directly
> E.g., Reg_file [12]

® Acell bit in a word can also be addressed indirectly by first loading
the word into a buffer register then addressing the bit of the word

» E.g. Data_out = Reg_file [12];
Data_out [1:0]
"  Decoder are synthesized automatically by synthesis tool
in Reg_file[] to decode the address which locates a
specific register



	Lecture 5 - Modeling for Synthesis�Register Transfer Level (RTL) Design�
	Register Transfer Language (RTL) Design
	RTL register model
	Asynchronous control inputs
	Synchronous reset/set
	Register with enable
	Register with parameterized width
	Instantiating the parameterized register
	2-to-1 mux with parameterized data size
	Other types of generic parameters
	IEEE Std. 1076.3 Synthesis Libraries
	NUMERIC_STD package contents
	Arithmetic with NUMERIC_STD package
	Conversion of “closely-related” types
	Conversion of “closely-related” types
	Example – binary counter
	Using a “variable” to describe sequential behavior within a process
	Counting to some max_value  (not 2n)
	Decrementer and comparator
	Verilog Modeling Trap
	Example:Modeling Trap of a Shift Register
	Nonblocking Assignment (<=) in Cyclic Behavior
	Blocked (=) v.s. Nonblocking (<=)
	Shift Register Using Nonblocking Assignments
	Linear-Feedback Shift Register (Type II LFSR) Dataflow
	LFSR --- RTL Dataflow
	LFSR --- RTL Repetitive Algorithm
	Verilog Repetitive Statements
	Verilog Statement
	Ones Counter
	Find_First_One
	Multicycle Operations -- 4-cycle Adder
	4-cycle Adder
	Algorithmic State Machine (ASM) Charts
	ASM Chart Elements
	Asyn/Synchronous Reset in ASM
	ASM Chart (cont.)
	ASM Chart Example: Tail Light Controller�A Mealy Machine with Synchronous Reset
	ASM and Datapath (ASMD) Charts
	Control and Datapath
	4-bit counter
	Controller Description
	Datapath Signals
	ASM and ASMD Charts
	Verilog Code
	Verilog: Controller
	Verilog: Controller – Cont.  
	Verilog: Datapath
	2:1 Decimator Using 2-stage Pipeline
	2:1 Decimator Using 2-stage Pipeline (cont.)
	Synthesis of Sequence Recognizer
	Conventions to Describe Sequence Recognizers
	Mealy and Moore ASMs (3 Consecutive 1s)
	Mealy and Moore for 3 Consecutive 1s (cont.)
	Sequence Recognizer for 3 Consecutive 1s (cont.)
	Sequence Recognizer for 3 Consecutive 1s (cont.)
	Alternative Design for Sequence Recognizer
	Alternative Design for Sequence Recognizer (cont.)
	Alternative Design for Sequence Recognizer (cont.)
	Design of a Datapath Controller
	Counters and Registers
	Counters
	Counters(3 states) with Async Reset_
	Counters (cont.)
	Counters (3 states) with Async Reset_ (cont.)
	Simplified Counter ASMDs with Async/Sync Reset_
	Ring Counter
	Ring Counter (cont.)
	Up/Down/Load Counter
	Shift Register
	Parallel Load Register
	Shift Registers
	Universal Shift Register
	Register File
	“Concept of Memory” in Verilog

