
Modeling Digital Systems

with VHDL and Verilog
Reference: Roth & John text – Chapter 2

Michael Smith text – Chapters 8 & 10

Hardware Description Languages

 VHDL = VHSIC Hardware Description Language

(VHSIC = Very High Speed Integrated Circuits)

 Developed by DOD from 1983 – based on ADA language

 IEEE Standard 1076-1987/1993/2002/2008

 Gate level through system level design and verification

 Verilog – created in 1984 by Phil Moorby and Prabhu Goel of
Gateway Design Automation (merged with Cadence)

 IEEE Standard 1364-1995/2001/2005

 Based on the C language

 IEEE P1800 “System Verilog” in voting stage & will be merged
with 1364

 Primarily targeted for design of ASICs (Application-Specific
ICs)

Related VHDL Standards

 1076.1–1999: VHDL-AMS (Analog & Mixed-
Signal Extensions)

 1076.2–1996: Std. VHDL Mathematics Packages

 1076.3-1997: Std. VHDL Synthesis Packages

 1076.4-1995: Std. VITAL Modeling Specification
(VHDL Initiative Towards ASIC Libraries)

 1076.6-1999: Std. for VHDL Register Transfer
Level (RTL) Synthesis

 1164-1993: Std. Multi-value Logic System for
VHDL Model Interoperability

HDLs in Digital System Design

 Model and document digital systems

 Behavioral model

 describes I/O responses & behavior of design

 Register Transfer Level (RTL) model

 data flow description at the register level

 Structural model

 components and their interconnections (netlist)

 hierarchical designs

 Simulation to verify circuit/system design

 Synthesis of circuits from HDL models

 using components from a technology library

 output is primitive cell-level netlist (gates, flip flops,

etc.)

Typical Product Development & Design

Verification Cycle Using HDLs

Specifications

Architectural

design

Register-level

design

Physical

design

Gate-level

design

Behavioral

Simulation

RTL

Simulation

Logic and

Timing

Timing

Implementation – ASIC, FPGA, etc.

Benefits of HDLs

 Early design verification via high level design verification

 Evaluation of alternative architectures

 Top-down design (w/synthesis)

 Reduced risk to project due to design errors

 Design capture (w/synthesis; independent of

implementation)

 Reduced design/development time & cost (w/synthesis)

 Base line testing of lower level design representations

 Example: gate level or register level design

 Ability to manage/develop complex designs

 Hardware/software co-design

 Documentation of design (depends on quality of designer

comments)

Designer concerns about HDLs

 Loss of control of detailed design

 Synthesis may be inefficient

 Quality of synthesis varies between synthesis tools

 Synthesized logic might not perform the same as the

HDL

 Learning curve associated with HDLs & synthesis

tools

 Meeting tight design constraints (time delays, area,

etc.)

Design Space Issues

 Area (chip area, how many chips, how much board

space)

 Speed/performance

 Cost of product

 Production volume

 Design time (to meet market window & development

cost)

 Risk to project (working, cost-effective product on

schedule)

 Reusable resources (same circuit - different modes of

operation)

 Implementation technology (ASIC, FPGA, PLD, etc.)

 Technology limits

 Designer experience

 CAD tool availability and capabilities

DoD requirements on VHDL in mid 80s:

 Design & description of hardware

 Simulation & documentation (with designer comments)

 Design verification & testing

 Concurrency to accurately reflect behavior & operation of

hardware (all hardware operates concurrently)
 as a result, all VHDL simulation is event-driven

 Hierarchical design – essential for efficient, low-risk design

 Library support – for reuse of previously verified

components

 Generic design - independent of implementation media

 Optimize - for area and/or performance

 Timing control – to assign delays for more accurate

simulation

 Portability between simulators & synthesis tools (not always

true)

Anatomy of a VHDL model

 “Entity” describes the external view of a component

 “Architecture” describes the internal behavior and/or

structure of the component

 Example: 1-bit full adder

A

B

Cin

Sum

Cout

Full Adder

Input

“ports”

Output

“ports”

This view is captured by the VHDL “entity” (next slide)

Example: 1-Bit Full Adder

entity full_add1 is

port (-- I/O ports

a: in bit; -- addend input

b: in bit; -- augend input

cin: in bit; -- carry input

sum: out bit; -- sum output

cout: out bit); -- carry output

end full_add1 ;

Comments follow double-dash

Signal type

Signal direction (mode)Signal name

I/O Port
Declarations

(keywords in green)

Port Format - Name: Direction Signal_type;

 Direction

 in - driven into the entity by an external source

(can read, but not drive, within the architecture)

 out - driven from within the entity

(can drive, but not read, within the architecture)

 buffer – like “out” but can read and drive

 inout – bidirectional; signal driven both by external source

and within the architecture

(can read or drive within the architecture)

 Signal_type: any scalar or aggregate signal data type

Driving signal types

must match

driven signal type

Built-in Data Types

 Scalar (single-value) signal types:
 bit – values are ‘0’ or ‘1’

 boolean – values are TRUE and FALSE

 integer - values [-231 … +(231-1)] on 32-bit host

 Aggregate of multiple scalar signal types:
 bit_vector – array of bits;

- must specify “range” of elements

Examples:

signal b: bit_vector(7 downto 0);

signal c: bit_vector(0 to 7);

b <= c after 1 ns; --drive b with value of c

c <= “01010011”; --drive c with constant value

8-bit adder - entity

-- Internally - cascade 8 1-bit adders for 8-bit adder

entity Adder8 is

port (A, B: in BIT_VECTOR(7 downto 0); -- or (0 to 7)

Cin: in BIT;

Cout: out BIT;

Sum: out BIT_VECTOR(7 downto 0));

end Adder8;

A

B

Sum
Full

Adder

Cout

Cin

8

8
8

-- IEEE std_logic_1164 package defines nine logic states for signal values

-- models states/conditions that cannot be represented with the BIT type

-- VHDL “package” similar to a C “include” file

package Part_STD_LOGIC_1164 is

type STD_ULOGIC is ('U', -- Uninitialized/undefined value

'X', -- Forcing Unknown

'0', -- Forcing 0 (drive to GND)

'1', -- Forcing 1 (drive to VDD)

'Z', -- High Impedance (floating, undriven, tri-state)

'W', -- Weak Unknown

'L', -- Weak 0 (resistive pull-down)

'H', -- Weak 1 (resistive pull-up)

'-' -- Don't Care (for synthesis minimization)

);

subtype STD_LOGIC is resolved STD_ULOGIC; --see next slide

type STD_LOGIC_VECTOR is array (NATURAL range <>) of STD_LOGIC;

STD_LOGIC/STD_LOGIC_VECTOR generally used instead of BIT/BIT_VECTOR

IEEE std_logic_1164 package

Bus resolution function

std_logic includes a “bus resolution function” to

determine the signal state where there are multiple

drivers

‘0’ ‘1’ ‘Z’ ‘X’

‘0’ ‘0’ ‘X’ ‘0’ ‘X’

‘1’ ‘X’ ‘1’ ‘1’ ‘X’

‘Z’ ‘0’ ‘1’ ‘Z’ ‘X’

‘X’ ‘X’ ‘X’ ‘X’ ‘X’

Driver

A

Driver

B
Driver B value

Driver A

value

Resolved

Bus

Values

for signal

L

function resolved (s : STD_ULOGIC_VECTOR) return
STD_ULOGIC;

Driver A:

L <= A;

Driver B:

L <= B;

L

Example: 1-Bit Full Adder (VHDL)

library ieee; --supplied library

use ieee.std_logic_1164.all; --package of
definitions

entity full_add1 is

port (-- I/O ports

a: in std_logic; -- addend input

b: in std_logic; -- augend input

cin: in std_logic; -- carry input

sum: out std_logic; -- sum output

cout: out std_logic); -- carry output

end full_add1 ;

Architecture defines function/structure

ARCHITECTURE architecture_name OF entity_name IS

-- data type definitions (ie, states, arrays, etc.)

-- internal signal declarations

-- component declarations

-- function and procedure declarations

BEGIN

-- behavior of the model is described here using:

-- component instantiations

-- concurrent statements

-- processes

END; --optionally: END ARCHITECTURE architecture_name;

ELEC2200-001 Fall 2010,
Nov 2

19

entity Half_Adder is

port (X, Y : in STD_LOGIC := '0';

Sum, Cout : out STD_LOGIC); -- formals

end;

-- behavior specified with logic equations

architecture Behave of Half_Adder is

begin

Sum <= X xor Y; -- use formals from entity

Cout <= X and Y; -- “operators” are not “gates”

end Behave;

--operators and,or,xor,not applicable to bit/std_logic signals

Architecture defines function/structure

Half Adder (Verilog)

// module half_adder (Sum, Cout, X, Y); // Verilog 1995

syntax

// output Sum, Cout;

// input X, Y;

module half_adder (output Sum, Cout, input X,

Y); // Verilog 2001, 2005 syntax

assign Sum=X^Y; // ^ is the XOR operator

assign Cout=X&Y; // & is the AND operator

endmodule

1-Bit Full Adder (VHDL)

library ieee; --supplied library

use ieee.std_logic_1164.all; --package of
definitions

entity full_add1 is

port (-- I/O ports

a: in std_logic; -- addend input

b: in std_logic; -- augend input

cin: in std_logic; -- carry input

sum: out std_logic; -- sum output

cout: out std_logic); -- carry output

end full_add1 ;

Full Adder

Ai Bi Ci S Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

0 1

1 0

0 1

1 0

00

01

11

10

0 1AiBi
Ci

0 0

0 1

1 1

0 1

00

01

11

10

0 1AiBi
Ci

S=A’iB’iCi+ A’iBiC’i+

AiBiCi+ AiB’iC’i
=(A’iBi+AiB’i)C’i+

(A’iB’i+AiBi)Ci

=(A’iBi+AiB’i)C’i+

(A’iBi+AiB’i)’Ci

=Ai⊕Bi⊕Ci

Co=AiBi+ BiCi+ AiCi

Ai

Bi

Ci

S

Ai

Bi

Ci

SCo

Full adder behavioral architectures
(no circuit structures specified)

-- behavior expressed as logic equations

architecture dataflow of full_add1 is

begin

sum <= a xor b xor cin;

cout <= (a and b) or (a and cin) or (b and cin);

end;

-- equivalent behavior, using an internal signal

architecture dataflow of full_add1 is

signal x1: std_logic; -- internal signal

begin

x1 <= a xor b; -- drive x1

sum <= x1 xor cin; -- reference x1

cout <= (a and b) or (a and cin) or (b and cin);

end;

1 bit Full Adder (Verilog)

//module full_adder (sum, cout, a, b, cin); // Verilog 1995

syntax

//output sum, cout;

//input a, b, cin;

module full_adder (output sum, cout, input a, b, cin); //

Verilog 2001, 2005 syntax

assign sum=a ^ b ^ cin;

assign cout=a & b | a & cin | b & cin; // | is the OR operator

endmodule

Example: 8-bit full adder (VHDL)

library ieee; -- supplied library

use ieee.std_logic_1164.all; -- package of
definitions

entity full_add8 is -- 8-bit inputs/outputs

port (a: in std_logic_vector(7 downto 0);

b: in std_logic_vector(7 downto 0);

cin: in std_logic;

sum: out std_logic _vector(7 downto 0);

cout: out std_logic);

end full_add8 ; Can use (0 to 7) if desired.

Example: 8-bit full adder (Verilog)
//module full_add8 (sum, cout, a, b, cin); // Verilog

1995 syntax

//output [7:0] sum;

//output cout;

//input [7:0] a, b;

//input cin;

module full_add8

(output [7:0] sum,

output cout,

input [7:0] a, b,

input cin); // Verilog 2001, 2005 syntax

Event-driven simulation (VHDL)

 Signal “event” = change in signal value at a specified time

k <= b and c after 1 ns;

 Creates a “driver” for signal k, with scheduled events

 “Event” = (value, time) pair

 One driver per signal (unless a bus resolution function
provided)

 Data types must match (strongly typed)

 Delay, from current time, can (optionally) be specified, as above

 If no delay specified, infinitesimally-small delay “delta” inserted

k <= b and c;

(To reflect that signals cannot change in zero time!)

 Delays are usually unknown in behavioral models and therefore
omitted

Concurrent Statements and

Event-Driven Simulation

 Statements appear to be evaluated concurrently

 To model behavior of actual hardware elements

 Each statement affected by a signal event at time

T is evaluated

 Time T is held constant while statements are

evaluated

 Any resulting events are “scheduled” in the affected

signal driver, to occur at time T + delay

 After all statements evaluated, T is advanced to the

time of the next scheduled event (among all the

drivers)

 New values do not take effect until simulation time

advances to the scheduled event time, T + delay

Event-Driven Simulation Example

a <= b after 1ns;

c <= a after 1ns;

Time a b c

T ‘0’ ‘0’ ‘0’ - assume initial values all ‘0’ at time T

T+1 ‘0’ ‘1’ ‘0’ - external event changes b at time T+1

T+2 ‘1’ ‘1’ ‘0’ - resulting event on a

T+3 ‘1’ ‘1’ ‘1’ - resulting event on c

a

b

c

T T+1 T+2 T+3

Event-Driven Simulation Example

a <= b; -- delay δ inserted

c <= a; -- delay δ inserted

Time a b c

T-1 ‘0’ ‘0’ ‘0’ - assume initial values all ‘0’

T ‘0’ ‘1’ ‘0’ - external event changes b at time T

T+δ ‘1’ ‘1’ ‘0’ - resulting event on a after δ delay

T+2δ ‘1’ ‘1’ ‘1’ - resulting event on c after 2nd δ delay

VHDL simulators generally show time and ∂ delays

a

b

c

T-1 T T+δ T+2δ

