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Novel Low-Complexity Polynomial Multiplication
over Hybrid Fields for Efficient Implementation of

Binary Ring-LWE Post-Quantum Cryptography
Pengzhou He, Ujjwal Guin, Member, IEEE, and Jiafeng Xie, Senior Member, IEEE

Abstract—Post-quantum cryptography (PQC) refers to the
cryptosystem that can resist the attacks launched from mature
quantum computers in the not far future and has recently
gained intensive attention from the research community as
most of the existing public-key cryptosystems are vulnerable
to attacks from quantum computers. Ring-Learning-with-Errors
(Ring-LWE) scheme is an essential type of the lattice-based PQC
due to its strong security proof and ease of implementation. As
the latest variant of the Ring-LWE scheme, the binary Ring-
LWE (BRLWE) scheme possesses even smaller computational
complexity and thus is more suitable for resource-constrained
applications. However, the existing works have not well covered
various aspects related to this new scheme, especially on the low-
complexity hardware implementation. In this paper, we aim to
present a novel implementation of the BRLWE scheme on the
hardware platform with very low-complexity with this point of
view. To carry out the specified work in a successful manner,
we have proposed mainly four layers of coherent interdepen-
dent efforts: (i) we have provided the necessary algorithmic
derivation process in detail to formulate the desired algorithm
for the polynomial multiplication over hybrid fields, which is
the major arithmetic component of the BRLWE scheme; (ii)
we have presented the corresponding hardware architecture in
a thorough format with sufficient description of the internal
structures; (iii) we have also provided the complexity analysis and
implementation-based comparison to demonstrate the superior
performance of the proposed polynomial multiplication over
the state-of-the-art design; (iv) finally, we have extended the
proposed low-complexity polynomial multiplication to the major
operational phase of the BRLWE scheme. We have shown that the
proposed BRLWE structure involves significantly lower area-time
complexities over the existing design, e.g., the proposed design
has at least 66.01% less area-delay product (ADP) than the newly
reported [18] (Straix V device). Overall, the proposed design and
implementation strategies are highly efficient, and the proposed
BRLWE structure is desirable for many emerging applications.

Index Terms—Binary Ring-Learning-with-Errors (BRLWE)
scheme, field-programmable gate array (FPGA), hardware plat-
form, low-complexity, polynomial multiplication, post-quantum
cryptography (PQC).

I. INTRODUCTION

IT has been shown that the existing widely used public
key cryptosystems such as Rivest Shamir Adleman (RSA)
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and Elliptic Curve Cryptography (ECC) can be broken by
the Shor’s algorithm operated on a well-established quantum
computer in the polynomial time [1], [2]. Hence, alternative
solutions need to be proposed for this urgent challenge as
it is predicted that the mature quantum computers will be
available in the next 15-20 years (or even shorter) [3]. To
address this severe concerns over security, several types of
post-quantum cryptography (PQC) have been proposed re-
cently. These schemes includes lattice-based PQC, code-based
cryptography, isogeny-based cryptography, and hash-based
cryptosystem, where lattice-based PQC is regarded as the most
promising candidate due to its relatively implementational
ease, and strong security proof [4]–[6]. In fact, the National In-
stitute of Standards and Technology (NIST) has already started
the PQC standardization process, and the recently released
third round PQC candidates [7] have fully demonstrated the
great potentiality of lattice-based cryptography for possible
applications in the near future.

Most of the lattice-based schemes are based on the learning-
with-errors (LWE) and Ring-LWE (a variant of LWE) prob-
lems [5], [6]. The standard LWE scheme involves complex
matrix-vector multiplication, and hence it is impractical to
deploy for practical implementations [5]. In comparison, the
Ring-LWE scheme simplifies the main operation into the poly-
nomial multiplication in the ring Zq/(x

n + 1), which involves
less computational complexity than the standard LWE [6].
Thus, quite a number of works have been proposed on the
efficient implementation of the Ring-LWE scheme [8]–[14].

Following this direction, a new variant of the Ring-
LWE scheme, namely the binary Ring-LWE (BRLWE) [15],
has been proposed recently specifically to target resource-
constrained applications [15], [16]. The BRLWE scheme uses
binary errors (instead of Gaussian distributed errors in the
general Ring-LWE scheme [6]) to achieve low-complexity
implementation. Note that the parameters for BRLWE are
smaller than the start-of-the-art Ring-LWE settings. However,
not many reports have been made to achieve efficient imple-
mentation of the BRLWE scheme, especially on the hardware
platform, since the initial introduction of the BRLWE scheme.
The first BRLWE scheme, which is based on software imple-
mentation, is proposed in [15] after extensive security analysis
and mathematical derivation. Then, the first hardware structure
is presented in [17]. Very recently, a pair of high-speed and
low-complexity BRLWE structures are reported in [18]. A
high-speed BRLWE structure is then proposed in [3]. Other
reports also include the fault detection scheme based [19]
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Fig. 1: The existing low-complexity BRLWE structure (Fig-
ure 5 of [18]), where the gray area represents the involved
polynomial multiplication over hybrid fields.

(using the same structure of [18]) and fault resistance system
(software-based [20]).

On one side, these existing designs represent the major
works in the fields; on the other side, however, they still
need to be improved for wide applications. Specifically for
resource-constrained applications, the BRLWE scheme needs
to have a low-complexity BRLWE structure. While the very
recently proposed low-complexity design (see Figure 5 of
[18]) needs significant improvements (see Figure 1). First,
the design presented in [18] is based on the general algorithm
of the key arithmetic component of the BRLWE scheme
and no dedicated algorithm-to-architecture co-implementation
technique has been provided. Second, the finalized structure
has not designed the input resources in a comprehensive
format, e.g., one of the input operands actually needs to be
circularly shifted every cycle, which does require external
resource usage (e.g., delivered by the software computed
memory). Finally, the designed hardware architecture has not
been optimized enough for potential application environments,
e.g., that structure uses two n-to-1 multiplexers (MUXes of
log2q-bit, where q = 256 [18]) which increases the area usage
and hence is not ideal for resource-constrained applications.

In this paper, we aim at proposing a novel implementation
strategy for the BRLWE scheme specifically on the low-
complexity aspect based on the above considerations. Noticing
that the polynomial multiplication is the key arithmetic com-
ponent of the BRLWE scheme, we thus propose four layers
of interdependent efforts (main contributions) as follows:

• We have conducted the necessary mathematical derivation
process to obtain the desired algorithm for the polynomial
multiplication over hybrid fields, which is the primary
arithmetic component of the BRLWE scheme.

• We have then presented the corresponding hardware
architecture based on the proposed algorithm with a
detailed explanation of the internal structures.

• We have also provided a thorough complexity analysis
along with a comparison based on implementation results
to validate the proposed polynomial multiplication has
superior performance over the state-of-the-art solution.

• Finally, we have extended the proposed polynomial mul-
tiplication to obtain a low-complexity implementation
of the BRLWE scheme and demonstrated that the pro-

Alice Bob

a: public parameter
(known by two parties)

r2: secret key

 key generation:
 r1,r2: binary polynomial;
 p=r1-ar2; p: public key

p

 encryption:
 e1,e2,e3: binary errors (polynomial);
 m=encode(m);
 c1=ae1+e2;
 c2=pe1+e3+m;

c1,c2:
ciphertext

 decryption:
 m=decode(c1r2+c2);

˜
 

˜
 

Fig. 2: Three operational phases of the BRLWE scheme.

posed BRLWE structure has significantly smaller area-
time complexities than the competing designs.

The rest of the paper is organized as follows. Section II
introduces the preliminaries. Section III presents the proposed
algorithmic derivation process. The corresponding hardware
structure is described in Section IV, along with the following
complexity analysis and comparison processes. The extension
to the proposed BRLWE structure is then given in Section
V, accompanied by comparison and discussion. Finally, we
conclude the paper in Section VI.

II. PRELIMINARIES

A. Binary Ring-Learning-with-Errors (BRLWE) Scheme

The BRLWE is a new variant of the Ring-LWE scheme,
which is released recently in [15] with rigorous security analy-
sis and proof that it still retains the hardness of the lattice prob-
lem. Though the BRLWE scheme based PQC is currently not
a NIST candidate, it has excellent potential to be standardized
in the future for lightweight applications. The BRLWE scheme
uses binary errors (instead of Gaussian distributed errors for
LWE scheme) to reduce the key size, and the corresponding
area-complexity [15]. Consequently, the BRLWE involves
mainly operations over the ring Zq/f(x) (f(x) = xn + 1)
that the polynomial of degree (n−1) with integer coefficients
modulo q is regarded as one typical element in the ring
(n = 512 and n = 256 can provide the BRLWE scheme
with equivalent 190/140 and 84/73 bits of class and quantum
securities, respectively [15], [16]).

In general, a complete BRLWE scheme based PQC has three
main operational phases [15], which include key generation,
encryption, and decryption, as shown in Figure 2 and summa-
rized as follows:

• Key generation: We define a as a public parameter
(polynomial of integer coefficients) shared between two
parties (Alice and Bob). Define that r1 and r2 are two
binary polynomials with randomly selected coefficients
and r2 is the secret key. The main operation involved
within this phase is p = r1−a · r2, where p is the public
key sent to Bob. Then, r1 is discarded after this operation.
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Thus, the secret and public keys involve n and nlog2q
bits, respectively.

• Encryption: The n-bit message m (binary polynomial) is
firstly encoded into a unique polynomial m̃ according to
(1). Then, Bob uses three errors (binary polynomials) e1,
e2, and e3 to generate the ciphertext c1 and c2 (a pair of
polynomials and the length of the ciphertext is 2nlog2q
bits), as shown in Figure 2. The ciphertext is then sent
to Alice.

m = m0 +m1x+ · · ·+mn−1x
n−1

encode : (m0, . . . ,mn−1)→
n−1∑
i=0

mi(
q

2
)xi (m̃).

(1)

• Decryption: Alice uses the secret key r2 to recover the
original message m. Note that there is a threshold decoder
function involved that returns a binary value of ‘1’ if the
coefficient of the calculated polynomial is in the range of
(q/4, 3q/4), otherwise, it will return a ‘0’.

Remark. For the sake of hardware implementation, the
authors of [18] have proposed to use the coefficients of the
polynomials in the ring from the inverted range (compared to
the original one), where each coefficient of every element is
represented in (−b q2c, b

q
2c − 1) (which exactly matches the

two’s complement representation range). In this case, all the
necessary modular addition/subtractions of two coefficients are
performed automatically without any reduction. Note that the
three main phases of Figure 2 under this notation have exactly
the same operations (parameters) as those of the original one.
The encode function of (1) can be updated to

encode : (m0, . . . ,mn−1)→
n−1∑
i=0

mi(−
q

2
)xi (m̃), (2)

and similar update is applied to the final decode (to be opposite
of the original decode function) [18]. Note that we will also
use this representation in the proposed structure.

B. Polynomial Multiplication over Hybrid Fields

The arithmetic operation involved with each phase of the
BRLWE scheme, as shown in Figure 2, can be summarized
as follows:

key generation : PM and PA→ p,

encryption : PM and PA→ c1,

encryption : PM and PA and PA→ c2,

decryption : PM and PA→ output,

(3)

where, PM refers to the polynomial multiplication and PA
denotes the polynomial addition. For example, the operation
of ae1 in the encryption phase of Figure 2 is a polynomial
multiplication, similar to the other operations in other phases.

It is interesting to observe that these polynomial multiplica-
tions share one common feature: one polynomial has integer
coefficients while the other has merely binary coefficients.
Though polynomial multiplication based on integer coeffi-
cients or binary ones have been explored in the literature [21]–
[24], this type of polynomial multiplication (let us just define

as the polynomial multiplication over hybrid fields), however,
has not been well covered. As the major arithmetic complexity
of each phase of the BRLWE scheme lies mainly on this spe-
cific type of polynomial multiplication (polynomial additions
are just point-wise operations), considerable efforts need to be
made in this area (particularly on the implementation aspect).

III. MATHEMATICAL FORMULATION & ARITHMETIC
DERIVATION

Without loss of generality and for simplicity of discussion,
one can use a general form to represent all the polynomial
multiplications for the three phases of the BRLWE scheme.
In this paper, we focus on the low-complexity style.

A. Mathematical Formulation
Definition 1. Define a general polynomial multiplication over
hybrid fields as:

T = DB mod f(x), (4)

where D =
∑n−1

i=0 dix
i (di are log2q-bit integers in Zq),

B =
∑n−1

i=0 bix
i (bi ∈ {0, 1}), and f(x) = xn + 1. T is

the multiplication product and T =
∑n−1

i=0 tix
i and ti are also

log2q-bit integers in Zq .
T of (4) can then be rewritten as

T = D

n−1∑
i=0

bix
i mod f(x) =

n−1∑
i=0

bi(Dx
i mod f(x)). (5)

Definition 2. Let us define again D[0] = Dx0 mod f(x) = D,
D[1] = Dx1 mod f(x), . . ., D[j] = Dxj mod f(x), . . .,
D[n−1] = Dxn−1 mod f(x).

From Definition 2, one can also find that

D[1] =Dx1 mod f(x) = D[0]x mod f(x)

· · · · · · · · ·
D[j] =Dxj mod f(x) = D[j−1]x mod f(x),

· · · · · · · · ·
D[n−1] =Dxn−1 mod f(x) = D[n−2]x mod f(x),

(6)

Thus, we can have

D[0] =d0 + d1x+ d2x
2 + · · ·+ dn−1x

n−1,

D[1] =D[0]x mod f(x)

=d0x+ d1x
2 + · · ·+ dn−1x

n mod f(x)

=− dn−1 + d0x+ d1x
2 + · · ·+ dn−2x

n−1,

D[2] =D[1]x mod f(x)

=dn−1x+ d0x
2 + · · ·+ dn−2x

n mod f(x)

=− dn−2 − dn−1x+ d0x
2 + · · ·+ dn−3x

n−1,

· · · · · · · · ·
D[j] =D[j−1]x mod f(x)

=dn−1x+ d0x
2 + · · ·+ dn−2x

n mod f(x)

=− dn−j − · · ·+ d0x
j + · · ·+ dn−j−1x

n−1,

· · · · · · · · ·
D[n−1] =D[n−2]x mod f(x)

=d2x+ d3x
2 + d4x

3 + · · ·+ d1x
n mod f(x)

=− d1 − d2x− d3x2 − d4x3 + · · ·+ d0x
n−1,

(7)
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where we have substituted xn ≡ −1 (since f(x) = xn + 1
and xn + 1 ≡ 0 in integer field).

Thus, (5) can be transferred into

T =

n−1∑
i=0

D[i]bi =

n−1∑
j=0

tjx
j , (8)

which can be written as the form of

t0 =

n−1∑
i=0

D
[i]
0 bi,

t1 =

n−1∑
i=0

D
[i]
1 bi,

· · · · · · · · ·

tn−1 =

n−1∑
i=0

D
[i]
n−1bi,

(9)

where D[i]
j denotes the jth coefficient according to the order

of xj (for 0 ≤ j ≤ n− 1). For instance, connecting with (8),
we have

D
[0]
0 =d0, D

[0]
1 = d1, · · · , D[0]

n−1 = dn−1,

D
[1]
0 =− dn−1, D

[0]
1 = d0, · · · , D[0]

n−1 = dn−2,

· · · · · · · · ·
D

[n−1]
0 =− d1, D[0]

1 = −d2, · · · , D[0]
n−1 = d0.

(10)

B. Algorithmic Derivation

TABLE I: Coefficients (without sign) of D[i]
j in (9)

D
[i]
0 D

[i]
1 D

[i]
2 . . . D

[i]
n−3 D

[i]
n−2 D

[i]
n−1

D
[0]
j d0 d1 d2 . . . dn−3 dn−2 dn−1

D
[1]
j dn−1 d0 d1 . . . dn−4 dn−3 dn−2

D
[2]
j dn−2 dn−1 d0 . . . dn−5 dn−4 dn−3

. . . . . . . . . . . . . . . . . . . . . . . .

D
[n−3]
j d3 d4 d5 . . . d0 d1 d2

D
[n−2]
j d2 d3 d4 . . . dn−1 d0 d1

D
[n−1]
j d1 d2 d3 . . . dn−2 dn−1 d0

For low-complexity implementation of the polynomial mul-
tiplication over hybrid fields, we can actually compute the
coefficients of T in a serial format. Connecting with (10) and
(9), one can see that for computing each ti (0 ≤ i ≤ n−1), the
coefficients of bi are the same while the corresponding D

[i]
j

varies from each other (also with the changes on the signs).
For a more detailed information, we can list all the actual
coefficients (without sign) of D[i]

j of (9) and the related signs,
respectively, in Tables I and II, respectively.

It is clear that, from Table I, the jth coefficients of all the
D[i] are actually circularly shifted (for 0 ≤ i, j ≤ n− 1), e.g.,
the (n − 1)th coefficients of all the D[i] (0 ≤ i ≤ n − 1) are
{dn−1, dn−2, . . . , d2, d1, d0} can be circularly shifted to have
the (n − 2)th coefficients of all the D[i] (0 ≤ i ≤ n − 1) as
{dn−2, dn−3, . . . , d1, d0, dn−1} (similar to others).

TABLE II: Corresponding Signs for the Coefficients of D[i]
j

in (9)

D
[i]
0 D

[i]
1 D

[i]
2 . . . D

[i]
n−3 D

[i]
n−2 D

[i]
n−1

D
[0]
j + + + · · · + + +

D
[1]
j − + + · · · + + +

D
[2]
j − − + · · · + + +

. . . . . . . . . . . . . . . . . . . . . . . .

D
[n−3]
j − − − · · · + + +

D
[n−2]
j − − − · · · − + +

D
[n−1]
j − − − · · · − − +

Meanwhile, from Table II, one can observe that there is also
an sign inverted between the jth coefficients of all the D[i]

with the (j − 1)th coefficients of all the D[i] (for 0 ≤ i, j ≤
n− 1). For instance, the signs of all (n− 1)th coefficients of
all the D[i] (0 ≤ i ≤ n − 1) are {+,+, . . . ,+,+,+}, which
becomes {+,+, . . . ,+,+,−} for the signs of all (n − 2)th
coefficients of all the D[i].
Definition 3. Based on the above observations from Tables I
and II, we can further define that the value (without sign) of
the D[i]

j as γ(D
[i]
j ) and the corresponding sign as ς(D[i]

j ), e.g.,

γ(D
[1]
0 ) =dn−1,

ς(D
[1]
0 ) =−,

(11)

which matches exactly with the same coefficient from (10).
Based on the above definitions and equations, we can thus

have the proposed algorithm for low-complexity implementa-
tion of the polynomial multiplication over hybrid fields.

Algorithm 1: Proposed algorithm for the polynomial
multiplication over hybrid fields.
Input : D, B, and T are polynomials over hybrid

fields. D and T are the polynomials with
log2q-bit integer coefficients over ring and B
is a binary polynomial.

Output: T = DB mod f(x) (f(x) = xn + 1).

Initialization step
1 T = 0 ;

Main step
2 for j = n− 1 to 0 do
3 for i = n− 1 to 0 do
4 T = T + ς(D

[i]
j )γ(D

[i]
j )bi. // following (8)-(10)

5 end
6 tj = T ;
7 end

Final step
8 Obtain the output T from serially delivered tj ;

Note that the actual execution of the proposed Algorithm 1
also involves two unique features (contributions):

• All the values of γ(D
[i]
j ) are processed based on the

original input D and hence no external resources are
required for value-shifting.
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Fig. 3: The proposed structure for the polynomial multiplication over hybrid fields. CSR: circular shift-register; SISO: serial-in
serial-out; SC: sign control; AC: accumulation cell.

• All the related signs of ς(D[i]
j ) are controlled by the

control unit to match the corresponding values of γ(D
[i]
j ).

Besides that, the delivering of tj is in the sequence of
starting from tn−1, tn−2, ... to t0, simply because all the
coefficients of D[i]

n−1 are positive values and no extra values are
required to pre-process the input with negative signs. Similarly,
the coefficients of B are processed from bn−1, bn−2, ... to b0.

IV. PROPOSED STRUCTURE, COMPLEXITY, AND
COMPARISON

With the help of Algorithm 1, we have presented the
proposed structure for polynomial multiplication over hybrid
fields along with the corresponding complexity analysis and
comparison with the existing one of [18] using their implemen-
tation on field-programmable gate array (FPGA) platform.

Parameter Setting. Connecting with the preliminary of
Section II and the proposed algorithm in Section III, we
specify the corresponding parameter setting: (i) n is the
security level of the BRLWE scheme, also the size of the
involved polynomial; (ii) the integer polynomial has n log2q-
bit coefficients and the binary polynomial has n binary values.

A. Proposed Structure

The proposed polynomial multiplier based Algorithm 1 is
shown in Figure 3, where the structure consists of five main
components, i.e., the input component, the sign control (SC)
component, the AND gate cell, the accumulation cell (AC)
component, and the control unit component. The details of
these components are given as follows:

Input Component. The input component includes the input
processing cells for polynomial D and B, as shown in Fig-
ure 3. The functions and internal structures of these cells are
introduced as follows.

All the coefficients of the input D, namely {d0, . . . , dn−1},
are connected to a n-to-1 MUX, where the corresponding
log2n-bit selection signals are generated from the control unit.
The operation of the n-to-1 MUX is following the pattern
shown in Table III, where the selection signals (log2n-bit) start
with “00...00” and end with “11...11” for the first n cycles
such that the output of the MUX follows the sequence of
dn−1 (last) → dn−2 → . . . → d1 → d0 (first); while the

TABLE III: Operation Details of the MUX for the Input D

cycles signal output sequence from the MUX∗

the first n cycles dn−1 → dn−2 → . . .→ d1 → d0
the second n cycles dn−2 → dn−3 → . . .→ d0 → dn−1

the third n cycles dn−3 → dn−4 → . . .→ dn−1 → dn−2

· · · · · · · · · · · ·
the (n− 1)th n cycles d1 → d0 → . . .→ d3 → d2

the nth n cycles d0 → dn−1 → . . .→ d2 → d1

∗: The signal on the far right is delivered out from the MUX first, while the
signal on the far left is the last one to be delivered out from the MUX.

clk

clr-1

en-1

clk

clr-1

en-1

...
clk

clr-1

en-1

clk

clr-1

en-1

M
U

X

ctr-1

input B

b0,...,bn-1

bn-1bn-2b1b0

output

1

Fig. 4: The internal structure of the CSR (SISO) for B, where
the values in each register are the initial loading values.

selection signals start with “00...01” to “11...11” and end with
“00...00” for the second n cycles (similar to the following
cycles). This operation exactly executes the process of deliv-
ering γ(D

[i]
j ) in the main steps (Lines 2-7) of Algorithm 1

(also following Table I), which does not require any external
resources. Note that the details of the generating of selection
signals (seln) for the n-to-1 MUX is described in the control
unit component.

Besides that, the corresponding input B is fed to a serial-
in serial-out (SISO) circular shift-register (CSR) to produce
the desired output to the AND gate cell according to the
sequence specified in Line 4 of Algorithm 1 (also see (9))
as: {bn−1, bn−2, . . . , b1, b0} (these n output values will be
repeated with the same order again after n cycles). The internal
structure of the CSR is shown in Figure 4. After the initial
values are loaded in all the n registers (Figures 3 and 4), the
MUX helps these related registers to function in a circularly-
shifted format to produce the output to the AND cell.

Sign Control (SC) Component. As shown in Figure 3, the
SC component consists of one XOR gate and a 2-to-1 MUX.
The SC component functions according to the operation of



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 6

...

o
ut

p
ut

 f
ro

m
 th

e
 n

-t
o

-1
 M

U
X

output of the CSR

in
pu

t 
to

 t
he

 A
C

 (
lo

g
2q

-b
it)

1

Fig. 5: The internal structure of the AND gate cell.

TABLE IV: Control Signals Generated by the Control Unit

name description width
seln select D for the n-to-1 MUX during each cycle log2n
clr clear the register in the AC after each n cycles 1
sgd to obtain ς(D[i]

j ) based on Definition 3 1
rr tj read ready signal 1

ctr-1 circularly shifting (CSR) for input B 1
en-1 enable the operation of the registers in the CSR (B) 1
clr-1 clear the content of the registers in the CSR (B) 1

ς(D
[i]
j ) in Line 4 of Algorithm 1 (also see Table II). One

input of the XOR gate is set as ‘1’ to help with the sign
inverting for the output from the n-to-1 (Table II): (i) the
selection signal (sgd, for the 2-to-1 MUX) switches to deliver
the output from the XOR gate as the output (the XOR gate
inverts the output of the n-to-1 MUX); (ii) the carry-in to the
adder turns from ‘0’ to ‘1’ (meet the requirement of the two’s
complement representation). When the related sign is positive,
the output of the n-to-1 MUX is just directly delivered to the
AND cell (meanwhile the carry-in to the adder is set as ‘0’).

AND Gate Cell. The following AND cell functions to
obtain the multiplication of the D[i]

j bi in (9) (also Line 4 of
Algorithm 1) to be accumulated in the following AC, and its
detail can be seen in Figure 5. All the output bits of the AND
gates are then connected to the following AC.

Accumulation Cell (AC) Component. The AC component,
as shown in Figure 3, consists of a log2q-bit adder and a
log2q-bit register. The output of the adder is used as the input
to the register, while the register’s output is connected back
as another input of the adder such that the desired result is
produced in the output of the adder after n cycles, according
to the Line 4 of Algorithm 1 (the accumulation operation is
directed by the register clear signal (clr)). Every new output
is available in every n cycles according to the sequence of
tn−1,..., to t0, which takes in total n× n cycles to obtain all
the coefficients of T .

Control Unit Component. The control unit is in charge
of all the related control signals within the proposed structure,
including the selection signal for the n-to-1 MUX, clear signal
(clr) for the AC, the sign of each D[i]

j , the control signals for
the CSR, and the ready-to-read signal for the output of the
multiplier. Details of these signals are shown in Table IV.

After the releasing of the reset signal to the overall structure,
the control unit works in two states in a successive order
(“reset” is also set as a state, see Figure 6(a)), namely “load”
and “compute”. The state of “load” refers to the reading of

double 
loop

state
MIA

MIN

CSR (SISO)‘1’
1

clk

clk

seln

clr

rr

sgd

csh

s

k log2n

1

...log2n 1

...log2n 1

1

reset load compute

reset signal

cycles0 n n2

(a)

(b)

Fig. 6: (a) The main three states involved within the control
unit. (b) The top-level structure of the control unit. MIA:
multi-input AND gate. MIN: multi-input NAND gate.

bj into the CSR for B (n clock cycles). Then, the control
unit enters into the “compute” state (another n2 cycles).
Under the “compute” state, the control unit is responsible for
organizing and controlling all the computational components
in the structure of Figure 3 to get the correct output T .

To achieve this goal, the top-level structure of the control
unit is shown in Figure 6(b), where the core is a specially
designed double loop module. The double loop module pro-
duces two log2n-bit signals (loop indicators) s and k, and
from these two signals we can obtain all the other control
signals required during the “compute” state. The synchronous
clear signal clr for the register in the AC functions when
s = “111...111” (log2n-bit). Meanwhile, the output read-
ready signal rr is released and activated. As shown in Figure 6,
both signals (clr and rr) are produced by a multi-input AND
gate (MIA), i.e., a log2n-input AND gate. The selection signal
to the n-to-1 MUX seln can be directly obtained from k to
fulfill the corresponding requirement based on Table IV. The
sign control signal to the MUX in the SC component and the
carry-in in the AC component (sgd) is produced by controlling
a SISO CSR, where the output (csh) of the multi-input NAND
gate (MIN) is attached to the 2-to-1 MUX in the 1-bit CSR
(SISO). When k = “000...000” (log2n-bit), the CSR reads one
‘1’ in (otherwise, it just delivers the proper output according
to its circularly shifting nature). Note that the initial content
of the registers in the CSR are set as zero. Besides that, ctr-1
(for the CSR of input B) is set as ‘0’ in the “load” state and
turns into ‘1’ in the “compute” state, while en-1 is set as ‘1’
and clr-1 as ‘0’ all the time (the registers are enabled with
initial values as zero).

The internal structure of the double loop module is shown
in Figure 7. The loop indicator s, consists of log2n-bits as
{s0, s1, . . . , sh−1}, are generated by log2n number of loop
units (paired 1-bit register and 1-bit full adder (AD) connected
in a loop format. Finally, all the output bits of the 1-bit
registers are combined together to form the loop indicator s.
The log2n-bits of the loop indicator s are then fed to a log2n-
input NAND gate to produce a selection signal (sel) for all the
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Fig. 8: The transition of both loop indicators s and k through
an example of n = 8, where one round refers to the clock
cycles required to deliver one tj .

2-to-1 MUXes in the log2n number of loop units for producing
another loop indicator k. Note that the first 1-bit AD’s carry-in
is set as ‘1’ and its carry-out is used for the carry-in of the
neighboring AD (similar to other loop units). Eventually, all
the output bits of the 1-bit registers are used to form the loop
indicator k.

Example. To illustrate the detailed operation of the double
loop module, we can have the following explanation (with a
case study example). As shown in Table II, there are (j −
1) negative signs in j-th row. Thus, we can add one more
negative sign into the CSR in each round (one round refers to
n cycles to produce one tj), at a specific cycle determined by
k. To get these specific cycles, we can define the n rounds’
clock sequence for the “compute” state as {[1, 2, ..., n], [n +
1, ..., 2n], ..., [n(n−1)+1, ..., n2]}. Then, the clocks of which
(the signs for Di

j is negative) should be {[n+1], [2n+1, 2n+
2], [3n+1, 3n+2, 3n+3], ..., [(n−1)n+1, (n−1)n+2, ..., (n−
1)n + n − 1]}. Note that through using a CSR of length n,
the output of the CSR can be delayed for n cycles. In this
case, the clock sequence becomes {[1], [n + 1, n + 2], [2n +
1, 2n+ 2, 2n+ 3], ..., [(n−2) + 1, (n−2)n+ 2, ..., (n−2)n+

n − 1]}. It is easy for us to get such a sequence from the
output of the CSR by feeding ‘1’ (negative sign) at cycles of
{1, n + 2, 2n + 3, ..., (n − 2)n + (n − 1)}, which is exactly
when the inner loop indicator k = 0. The rest of the negative
signs in a round are inherited or circularly shifted back from
the previous round. We have also shown an example of the
actual value changes of the indicators s and k under the case
of n = 8 (Figure 8), where one can notice that k is delayed
for (j − 1) cycles compared to s for the jth round operation.
Overall, the proposed control unit functions in a very effective
way and also maintains very low area consumption.
B. Complexity Analysis

Overall, the area-time complexities of the proposed structure
for the polynomial multiplication over hybrid fields (Figure 3)
are listed as follows:

The input component of the proposed polynomial multipli-
cation architecture has one log2q-bit n-to-1 MUX (for input
D) and one CSR for input B, where the CSR contains one
1-bit 2-to-1 MUX and n number of 1-bit registers.

The SC component has a log2q-bit XOR gate and a log2q-
bit 2-to-1 MUX. While the following AND gate cell has log2q
number of 1-bit AND gates.

The following AC component has one log2q-bit adder and
a log2q-bit register. Finally, a control unit is also needed to
direct the proper signal flow of the overall structure.

The proposed structure of Figure 3 delivers out output tj (j
from n−1 to 0) in every n cycles after all the necessary values
are loaded in the proper status (e.g., all the initial values of
B are stored in the CSR) and it takes in total n×n cycles of
calculation to obtain the complete output of T .

Theoretical Comparison. Compared with the existing de-
sign of [18], as shown by the gray area in Figure 1, the
proposed structure for the polynomial multiplication over hy-
brid fields (BRLWE scheme) undoubtedly has several unique
advantages:

• The proposed structure does not require any external
resources to shift the coefficients of input D in a circular
format, which is required in the existing design (circularly
shifted in every cycle). In fact, the input D is directly fed
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to the proposed structure and no specific operation on the
input operand is further needed. This undoubtedly saves
potential resource usage, especially when considering the
resource-constrained application environments.

• The proposed structure involves smaller critical-path than
the existing one since the existing design of [18] requires
one n-to-1 MUX, two 2-to-1 MUXes, and one adder
(the AND cell and inverter involve very small delay) as
the main critical-path of the design, while the proposed
design in Figure 3 needs only one n-to-1 MUX, one 2-to-
1 MUX, and one adder as the major critical-path delay.
Hence, it is expected that the proposed design has higher
maximum frequency than the existing one.

• The binary input B is fed to a SISO CSR (in the
proposed design), which can produce the correct output
to the main computation components of the structure in
a repeated format (every n clock cycles). While in the
existing design of [18], only a regular shift-register is
used without detailed explanation of the internal structure,
which potentially increases the difficulty of control signal
generation as well as the corresponding area-complexity.

• The proposed structure of Figure 3 uses a novel control
unit to coordinate the sign inversion (with the help of
a SISO CSR, see Figure 6) for the required processing
values as well as the related operations in the other
components (with very small critical-path). While the
existing design uses a counter to control the input signal
processing, which potentially has larger time-complexity.

C. Comparison (FPGA Implementation Based)
For a detailed comparison, we have also coded and obtained

the related implementational performance of the proposed
structure on the FPGA platform along with the existing one
of [18] (gray area of Figure 1).

For a fair comparison, the overall experimental setups are
as follows:

(i) We have used VHDL to code the proposed design of
Figure 3 and have verified its function through ModelSim.
Meanwhile, we have also re-coded and re-implemented the
existing lightweight structure of [18] (following the gray area
of Figure 1). We have then obtained the results on the two
designs through the Intel Quartus Prime 17.0 on the Stratix
V (5SGXMA9N1F45C2), Arria V GZ (5AGZME7K3F40I4),
and Cyclone V (5CSXFC6D6F31I7ES) devices (after imple-
mentation), respectively.

(ii) We have followed the parameter selections in the pre-
vious reports of [15], [17], [18], i.e., n = 256 (and n = 512)
and q = 256. We have also used the same type of adder in
the coding, namely the ripple carry adder.

(iii) As the internal structure of the shift-register in the
existing design is unclear, we just use the proposed SISO
CSR for the existing design, which facilitates the control signal
setup in the existing design and potential complexity reduction.

(iv) We do not add any external resources in the existing
design for the shifting of input D, but just assume that
operation is provided by the external system already.

(v) The final area-time complexities of the proposed and
the existing designs, in terms of the number of adaptive

TABLE V: Comparison of the Area-Time Complexities for
the Proposed and Competing designs on the FPGA Platform

design ALMs Fmax latency delay ADP1 ER
n = 256 (Straix V)

Fig. 1∗ [18] 1,776 201.05 65,536 326 578,976 Y
This work 1,793 318.47 65,536 206 369,358 N

n = 512 (Straix V)
Fig. 1∗ [18] 3,478 186.39 262,144 1,406 4,890,068 Y
This work 3,491 288.77 262,144 908 3,169,828 N

n = 256 (Arria V)
Fig. 1∗ [18] 1,777 176.24 65,536 372 661,044 Y
This work 1,793 280.03 65,536 234 419,562 N

n = 512 (Arria V)
Fig. 1∗ [18] 3,479 172.56 262,144 1,519 5,284,601 Y
This work 3,490 249.0 262,144 1,053 3,674,970 N

n = 256 (Cyclone V)
Fig. 1∗ [18] 1,808 81 65,536 809 1,462,672 Y
This work 1,828 143.08 65,536 458 837,224 N

n = 512 (Cyclone V)
Fig. 1∗ [18] 3,550 76 262,144 3,449 12,243,950 Y
This work 3,564 134.57 262,144 1,948 6,942,672 N

ER: external resources? Y: Yes; N: No;
Unit for Fmax: MHz. Unit for delay: µs. 1: ADP=#ALM×delay.
∗: The gray area of the existing design, see Figure 1.

logic module (ALM), maximum frequency (short for Fmax,
unit is MHz), latency cycles (computation cycles for deliv-
ering the output signals), delay (critical-path×latency cycles,
where critical-path=1/Fmax), and area-delay product (ADP),
are listed and calculated in Table V.

It is clear that the proposed design significantly outperforms
the existing structure. As seen from Table V, the proposed
structure not only has higher maximum frequency (benefited
from the proposed structural design & control unit), but also
has smaller ADP than the existing design. For instance, the
proposed design has 36.2% and 35.2% less ADP than the ex-
isting one, for the cases of n = 256 and n = 512, respectively
(on the Straix V device, similar on other devices). Besides
that, the existing structure also requires external resources to
deliver in the shifted input multiplicand every cycle, while the
proposed design does not need this type of external assistance.

V. EXTENSION TO THE PROPOSED BRLWE STRUCTURE

In this section, we will extend the proposed polynomial
multiplication to the BRLWE structure, starting from the
algorithmic process to the architectural extension and finally
the implementation based comparison to confirm the superior
performance of the proposed BRLWE structure over the state-
of-the-art solution of [18].

A. Algorithmic Process

As seen from Figure 2 and equation (3), the typical BRLWE
arithmetic operation also involves another two polynomials
(one integer polynomial and one binary polynomial), espe-
cially at the stage of producing ciphertext c2 (while the other
phases require just the addition with one integer polynomial).
Hence, to cover all the basic operations of the BRLWE
scheme, it is expected to involve these two polynomials also.
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Definition 4. Define polynomials as: W =
∑n−1

i=0 wix
i, U =∑n−1

i=0 uix
i, and V =

∑n−1
i=0 vix

i (wi and ui are log2q-bit
integers in Zq , and vi is binary value). We define also

W =DB mod f(x) + U + V,

=T + U + V,
(12)

where f(x) = xn+1 and the addition of T+U+V is relatively
easy since it is simply point-wise operation. The equation of
(12) can thus be used as a universal form for the operations
involved within each phase of Figure 2 (all the coefficients
of V can be set as ’0’ if there is no addition with a binary
polynomial involved for that specific phase).

Correspondingly, Algorithm 1 in Section III is updated, i.e.,
adding one step after Step 2.5 as wj = tj + uj + vj , which
is serially delivered to obtain the final output W . Note that
for the decryption phase, the final step actually requires an 1-
bit XOR gate (following [17], [18]) connecting with the two
most-significant bits (MSBs) of the wj to obtain the desired
decoded message m, according to the description in Figure 2.

B. Corresponding Structure

Following the algorithmic operation of Algorithm 2 and
the design style of Figure 3, we can thn have the proposed
BRLWE structure as shown in Figure 9, where it is updated
with an extra adder and two CSRs (SISO style for inputs
U and V , respectively) when compared with the design in
Figure 3. The newly added adder is the same as that in the
AC component, while the CSR-II and CSR-III have the same
internal structure as that in Figure 4 except that the bit-width of
the MUX and registers in CSR-II have been increased to log2q-
bit, as determined by the input polynomial U . The control
signals to the CSR-II and CSR-III are still generated by the
control unit, following the previous design strategy in Figure 3.
Moreover, an extra XOR gate is used for the decryption phase
operation following the setup in the existing design of [17].
The rest parts of the structure of Figure 9 are the same as
those in Figure 3 (the area-complexity of Figure 9 is almost
the same as that of Figure 3 except an XOR gate, an adder,
and two CSRs as well as slight update on the control unit).
Again, the final output wj (j from n − 1 to 0) is available
in every n cycles and the total computation latency is n × n
cycles for the obtaining of a complete output W (actually, it
is n×n cycles for the decryption phase but 2n×n cycles for
the encryption phase).

C. FPGA based Implementation and Comparison

We have again coded the proposed design (Figure 9)
and the existing lightweight structure (Figure 5 in [18])
with VHDL and have obtained their corresponding perfor-
mance through the Intel Quartus Prime 17.0 on the Stratix
V (5SGXMA9N1F45C2), Arria V GZ (5AGZME7K3F40I4),
and Cyclone V (5CSXFC6D6F31I7ES) devices after imple-
mentation. We have also followed the same experimental setup
in Section IV-C to carry out the FPGA based implementation.
Note that we have again selected the parameters according
to the setup in the existing design of [17], [18], where n is
chosen as 256 and 512 (n = 512 and n = 256 can provide
the BRLWE scheme with equivalent 190/140 and 84/73 bits of
class and quantum securities, respectively [15]) and q = 256.
Besides that, the report of [18] mainly shows the structure
for the decryption phase of the BRLWE scheme, we hence
just re-coded the design (Figure 5 in [18]) for the decryption
phase for the existing design. While the proposed structure
of Figure 9 fits both the encryption and decryption phases.
The corresponding area-time complexities of the proposed and
existing designs are then shown in Table VI. Note that the low-
complexity design of [18] is so far the most recent BRLWE
structure available in the literature (the authors of [18] shown
their high-speed design outperforms the one in [17]), while the
other designs in [3], [17] are either high-speed architectures
(suitable for resource abundant applications) or other styles
(such as [19], [20]). We thus compare our BRLWE structure
only with the same processing style BRLWE design in the
literature (Figure 5 of [18]).

Again, it is clear that the proposed BRLWE structure has
significantly better performance than the existing BRLWE
design (on the decryption phase), i.e., the proposed design has
not only has smaller area-complexity than the existing one, but
also involves higher maximum frequency. As a result, e.g., the
proposed structure has 66.01% and 70.33% less ADP than that
of the competing design for the cases of n = 256 and n = 512,
respectively (on the Stratix V device, similar situation happens
on other two devices also). In fact, even when operating in
the encryption phase, the proposed structure still involves
significantly smaller ADP over the existing structure (running
in the decryption phase, which has only half of the latency
cycles compared with the encryption phase).

The superior performance of the proposed structure is due to
the following facts: (i) the proposed structure has employed
one n-to-1 log2q-bit MUX while the existing structure uses
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TABLE VI: Comparison of the Area-Time Complexities for the Proposed and Competing BRLWE Structures.

design device ALMs Fmax latency delay ADP∗ ADP reduction external resource?
n = 256 (decryption phase)

[18]1
Straix V 3,472 201.25 65,792 327 1,135,344 - Y
Arria V 3,470 178.67 65,792 368 1,276,960 - Y

Cyclone V 3,556 89.67 65,792 734 2,610,104 - Y

This work
Straix V 1,864 316.96 65,536 207 385,848 66.01% N
Arria V 1,864 268.17 65,536 244 454,816 64.38% N

Cyclone V 1,878 142.15 65,536 461 865,758 66.83% N
n = 512 (decryption phase)

[18]1
Straix V 6,901 171.32 262,656 1,533 10,579,233 - Y
Arria V 6,900 155.76 262,656 1,686 11,633,400 - Y

Cyclone V 7,066 75.52 262,656 3,478 24,575,548 - Y

This work
Straix V 3,551 296.65 262,144 884 3,139,084 70.33% N
Arria V 3,554 243.49 262,144 1,077 3,827,658 67.10% N

Cyclone V 3,614 129.22 262,144 2,029 7,332,806 70.16% N
n = 256 (encryption phase)

This work
Straix V 1,864 316.96 131,072 414 771,696 - N
Arria V 1,864 268.17 131,072 489 911,496 - N

Cyclone V 1,878 142.15 131,072 922 1,731,516 - N
n = 512 (encryption phase)

This work
Straix V 3,551 296.65 524,288 1767 6,274,617 - N
Arria V 3,554 243.49 524,288 2,153 7,651,762 - N

Cyclone V 3,614 129.22 524,288 4,057 14,661,998 - N

The existing design does not provide the details for encryption phase and hence we do not put the implementation results here.
# reduction of the ADP of the proposed work compared with the existing design on the same FPGA device with the same parameter setting.
Y: Yes; N: No; Unit for Fmax: MHz. Unit for delay: µs. ∗: ADP=#ALM×delay. 1: Refers to the structure of Figure 5 in [18].

two, which significantly increases the area usage; (ii) the
proposed BRLWE scheme uses the output of the adder (in
the AC) to be connected with the following components to
maintain the latency cycles as Figure 3, while the existing
structure has to use extra n cycles to calculate the addition with
another integer polynomial; (iii) the proposed design uses a
novel control unit which largely improves the timing efficiency
while the existing structure has no such component for timing
optimization; (iv) lastly, the proposed BRLWE design does
not require external resource usage for the signal processing
while the existing BRLWE structure requires the delivering of
shifted input multiplicand in every cycle.

Overall, the proposed BRLWE cryptoprocessor has the
features of: (i) low-complexity; (ii) efficient timing perfor-
mance (indicated by the high maximum frequency); and (iii)
independent operation (as it does not need external resource
assistance on data computation), and thus is more desirable for
resource-constrained application environments. Note that the
existing design of [18] actually has not provided the details
for extension to the encryption phase. Hence, the proposed
structure is designed in a more complete and comprehensive
way (covers both encryption and decryption phases).

Discussion. For a fair comparison, we have only compared
the proposed BRLWE design with the same type of the
design available in the literature (lightweight PQC suitable
for resource-constrained applications). However, we want to
mention that the authors of [17], [18] have shown sufficient
comparison that the BRLWE schemes have better ADP over
these regular LWE/Ring-LWE of [8], [9], [25]. Further efforts
can be made to extend the proposed BRLWE cryptographic
hardware in the actual application environment to be compared
with various PQC. Besides that, the employing of side-channel
attack resistance on the proposed BRLWE scheme, as covered
in [17], [26], is also applicable to the proposed design, which

can be seen as one of our future research directions.
Moreover, one has to note that the focus of our design

is to obtain ultra low-complexity implementation of BRLWE
scheme operating at point-to-point (coefficient-to-coefficient)
level, we thus do not employ fast algorithms such as Karatsuba
or Toom-Cook methods in our work (these algorithms typically
works better in the parallel processing/high-performance based
applications since the strategy of this type of fast algorithm
is to decompose one original polynomial multiplication into
smaller-size polynomial multiplications and hence has larger
area usage than the low-complexity one [27]–[29] though
involves better time-complexity). But in our following research
work like the high-performance designs, we will endeavor to
develop novel fast algorithms for the BRLWE scheme.

VI. CONCLUSION

This paper presents an efficient implementation of the poly-
nomial multiplication as well as its application for the BRLWE
cryptographic hardware. We have firstly presented a detailed
mathematical derivation process to obtain the proposed al-
gorithm for the polynomial multiplication of the BRLWE.
Then, an efficient hardware structure is detailed presented
along with following complexity analysis and FPGA based
comparison to confirm its efficiency. The proposed polynomial
multiplication is finally extended to obtain a low-complexity
BRLWE cryptographic structure, and the implementation and
comparison have fully confirmed the superior performance of
the proposed design over the existing structure. The proposed
design is highly efficient and can be extended further for actual
cryptosystem implementation.
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