On-Demand Device Authentication using Zero-Knowledge Proofs
for Smart Systems

Yadi Zhong

Auburn University
Auburn, Alabama, USA
yadi@auburn.edu

ABSTRACT

Due to the exponential growth of IoT devices across diverse applica-
tions, it has become essential to secure edge devices against various
hardware attacks, such as tampering and cloning. A tampered de-
vice with a hardware Trojan can bypass the security measures im-
plemented through the software layers. One of the primary ways to
verify the authenticity of a device is by using physically unclonable
functions (PUFs) as a unique device fingerprint. During authentica-
tion, the PUF response from the edge device is transferred securely
and compared with the stored response. This requires a secure com-
munication setup between the edge device and the central server.
The fingerprint must also be stored on a server for response match-
ing. However, the potential compromise of the central server will
result in the leak of all secret information of the edge devices, and
adversaries can exploit it to gain unauthorized access to the IoT net-
work. In this paper, we propose an efficient, secure, and on-demand
communication protocol using zero-knowledge proofs (ZKPs) that
allow the prover to provide evidence of its secret without revealing
that to the verifier. The edge device, acting as the prover, convinces
the central server, the verifier, of the unique PUF response stored in-
side the device without needing the actual storage of PUF responses
on the server. The non-interactive characteristic of zk-SNARK, a
widely used ZKP protocol in many popular cryptocurrencies such
as Zcash, offers better optimization to authentication frequency,
communication bandwidth between device and server, and protec-
tion of device-specific secret, all of which contribute to constructing
our proposed device authentication framework.

CCS CONCEPTS

« Security and privacy — Authentication; Embedded systems
security; Hardware security implementation.
KEYWORDS

Zero-knowledge proofs, zk-SNARK, physically unclonable func-
tions, Internet of Things.
ACM Reference Format:
Yadi Zhong, Joshua Hovanes, and Ujjwal Guin. 2023. On-Demand De-
vice Authentication using Zero-Knowledge Proofs for Smart Systems. In
Proceedings of the Great Lakes Symposium on VLSI 2023 (GLSVLSI ’23),
FJune 5-7, 2023, Knoxville, TN, USA. GLSVLSI, Knoxville, TN, USA, 6 pages.
https://doi.org/10.1145/3583781.3590275

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI 23, June 5-7, 2023, Knoxville, TN, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0125-2/23/06...$15.00
https://doi.org/10.1145/3583781.3590275

Joshua Hovanes
Auburn University
Auburn, Alabama, USA
josh.hovanes@auburn.edu

Ujjwal Guin
Auburn University
Auburn, Alabama, USA
ujjwal.guin@auburn.edu

1 INTRODUCTION

Over the past decades, the world has experienced a booming In-
ternet along with its wide range of web applications. The success
of the interconnected computer network fuels the emergence of
lightweight Internet of Things (IoTs), or edge devices. In turn, the
advancement and adoption of the Internet of Things (IoT) and cyber-
physical systems (CPS) offer foundations for smart cities and offered
solutions to critical infrastructures such as transportation, public
safety, health care, smart grid, etc. With 14.4 billion IoT devices
currently connected to the Internet [2], this number is estimated
to climb to 55.7 billion by 2025 [30]. These low-cost devices are
deployed in the field for better integrating computing, cyber, and
physical spaces, often in which proprietary information is included.
However, this abundance of devices presents a severe challenge to
ensuring the overall security of the connected infrastructure, as a
genuine device can be replaced with a cloned one with a backdoor.
Authenticating each device is a must to ensure the integrity and
security of the IoT network as a whole. The insider threat [15, 21]
is a looming issue, as it is challenging to monitor all edge devices
while they are operational. An adversary can replace an authentic
device with its cloned version and can gain access to the entire
infrastructure, bypassing all security measures [7, 31, 35]. It is es-
sential to authenticate an edge device regularly so the server can
periodically evaluate and monitor its fidelity. The response received
from an edge device serves as an indicator of its true identity.

Device authentication mechanisms using physically unclonable
functions (PUFs) have been proposed over the years [3, 12, 13, 18, 32,
40]. Unfortunately, PUFs can be modeled if an adversary observes
a set of challenge-response pairs (CRPs), and the responses can be
predicted without accessing the physical device [4, 16, 22, 37, 38]. It
is necessary to develop a novel communication protocol where an
adversary cannot access PUF responses and thus cannot model the
PUF. In addition, the secrecy of the PUF response should be kept
secure even after repeated authentication. When deployed, the de-
vice must be checked regularly to detect the malicious replacement
with a cloned counterpart. The same level of trust for a device must
be maintained after post-deployment [29]

This paper proposes an efficient, secure, and on-demand device
authentication protocol using zero-knowledge proofs (ZKPs) [26].
The signature from a physically unclonable function (PUF) is used
to create the proof, which can be verified by the central server
acting as a verifier without storing the actual PUF response. The
edge device periodically generates proofs using a self-generated
random seed. The proof can then be made public for verification
for anyone with the common reference string (CRS). This allows
repeated authentication by verifying the identity of an edge device
without access to the PUF secret.

https://doi.org/10.1145/3583781.3590275
https://doi.org/10.1145/3583781.3590275

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

The contributions of this paper are summarized as follows:

o Novel ZKP-based authentication protocol: We propose an authen-
tication scheme that uses ZKP to prove the existence of a device
fingerprint. The PUF responses are kept within the device itself
without sharing the secret value with the central server. Conse-
quently, the server does not need to keep the PUF responses for
every edge device operating in the field. We only require it to save
the error correction syndromes for corresponding challenges in
the server. The PUF response is processed inside the edge device,
which is the source for generating zero-knowledge proofs. The
server verifies the proof in combination with the publicly available
parameters determined at the setup phase. The proof verification is
computationally lightweight, and the server can process a batch of
verification requests simultaneously. In addition, our method can
leverage the non-interactive nature of zk-SNARK to allow any party
access to the public CRS and proof to verify its legitimacy. This can
potentially ease the workload of the central server in the presence
of many authentication queries, where a server can outsource a
few verification jobs to trusted delegates.

o Resilience against machine learning-based attacks: Our proposed
zk-SNARK-based communication protocol does not require storing
the PUF challenge-response pairs (CRP) on the central server. In-
stead, the CRS and the hashed values of the PUF response are stored
for each edge device. The zero-knowledge property of zk-SNARKs
ensures the verification of the PUF responses without revealing
this secret to the verifier. This significantly improves the overall
security of the IoT infrastructure, as the fingerprint of all edge de-
vices will be protected even if the central server is compromised. In
case of a suspected compromise of a PUF response, we can securely
update the public statement itself by choosing a different challenge
instead. After the challenge is updated, the edge device only needs
to provide the updated statement to the server as the incurred com-
munication overhead. As the adversary does not have access to the
CRPs, it is not feasible to model the PUF, and thus our proposed
approach is resilient against machine learning-based attacks.

The rest of the paper is organized as follows. We introduce PUF
and ZKP in Section 2. The proposed IoT device authentication
framework is described in Section 3. The experimental result and
performance analysis for the proposed approach are described in
Section 4. Finally, we conclude the paper in Section 5.

2 BACKGROUND
This section presents an overview of physically unclonable func-
tions (PUF), the PUF-based secure communication protocols, and

their challenges. We describe the prior work on ZKPs, Zero-Knowledge

Succinct Non-Interactive Argument of Knowledge (zk-SNARK), and
elliptic curve pairing-based zk-SNARK.

2.1 Physically Unclonable Functions

Throughout the years, the research community has proposed vari-
ous architectures for physically unclonable functions (PUFs) and
their implementations [23, 27, 28, 40]. PUFs derive their behavior
from the inherently uncontrollable and unpredictable variations in
the semiconductor manufacturing process. Therefore, its applica-
tion involves security and privacy-related research for its ability
to generate unclonable bits as a unique key for identification and
authentication. Over the years, different types of PUFs have been
proposed, e.g., arbiter PUF [23], ring oscillator PUF (ROPUF) [40, 42],

Yadi Zhong, Joshua Hovanes, & Ujjwal Guin

SRAM PUF [27, 28], among others. These designs leverage the un-
clonable characteristic in path delay and/or threshold voltage biases
to demonstrate the uniqueness of PUF.

Multiple PUF-based device authentication protocols have been
proposed in recent years [3, 12, 13, 18, 32, 40]. Arbiter PUFs and
ROPUFs were first applied in device authentication [40], where
the server keeps a database of CRPs for each PUF instance. SRAM
PUF-based authentication protocols [3, 32] also explicitly store PUF
responses on the server side for verification or key derivation. Chat-
terjee et al. does not keep PUF responses in the verifier’s database,
but the offlined security credential generator has those copies from
the enrollment phase [12]. Although security is guaranteed for
the above-mentioned algorithms with unclonable PUFs, machine
learning attacks with a subset of given challenge-response pairs
(CRPs) have been demonstrated effective in accurately predicting
responses [4, 16, 22, 37, 38]. Rihrmair et al. first exploits logic re-
gression for learning the features in CRPs to predict unseen Arbiter
and XOR Arbiter PUF responses with high probability [37]. Sub-
sequently, different machine learning-based attacks have surfaced
to target the extrapolation of PUF responses from various PUF
architectures [4, 16, 22, 38].

2.2 Zero-Knowledge Proofs

The overarching goal of ZKPs is to convince a verifier that a prover
possesses an existing secret without ever revealing the secret. These
proofs were conceptualized initially in 1985 by Goldwasser et al. [25].
This laid the foundation for the subsequent development of the
Feige-Fiat-Sharir protocol, one of the first identification schemes
using interactive ZKPs [19]. In interactive ZKPs, real-time com-
munication between the prover and the verifier is necessary to
complete the protocol. Non-interactive ZKPs, on the other hand,
relieve both parties from repeated communications. This concept
is first explored through Fiat-Shamir heuristic [20] and then de-
veloped by Blum et al. [8]. The non-interactive nature and the
adopted random oracle model allow any entity to verify the valid-
ity of a proof, where the proof generation no longer relies on the
verifier-dependent random values. Succinct non-interactive zero-
knowledge proofs (zk-SNARKs) produce logarithmic size proofs
for verification [5]. The popular cryptocurrency ZCash uses the
Zerocash framework [39] with zk-SNARK proof system to ensure
the anonymity of user identity [34]. Over the years, different zk-
SNARKSs protocols have been proposed and quickly gained popular-
ity in privacy-based blockchain applications, such as Pinocchio [36],
Groth’16 [26], Bulletproofs [10], Sonic [33], Marlin [14], etc.

2.3 Pairing-based zk-SNARK [26]

Despite various ZKPs having been proposed recently, the zk-SNARK
proposed by Groth [26] remains to be very efficient both for the
shorter proof size and less computation complexity for the ver-
ifier [26, 33]. Groth’16 operates on pairing-based cryptography,
whose underlying cryptographic hardness lies in the bilinear Diffie-
Hellman problem on elliptic curves [9]. It constructs the rank-1
constraint system (R1CS) of a quadratic arithmetic program (QAP)
with ¢ public statement, where each gate represents a multiplica-
tion/exponentiation operation on elliptic curve. Computations are
performed under bilinear groups (G, G2, Gr) that forms a non-
degenerate bilinary mapping G; X Gy — Gr. The constant proof
size contains 3 group elements, 2 in G and 1 in G;. Once a proof is

On-Demand Device Authentication using Zero-Knowledge Proofs
for Smart Systems

received, the verifier will compute ¢ exponentiation in Gy, 3 pairing
values, and check the quantitative equivalence of pairings in Gr.

3 PROPOSED APPROACH

This section details our proposed zk-SNARK-based approach for
IoT device authentication. The zero-knowledge scheme provides
security to PUF-based IoT verification methods without revealing
the secret asset in each edge device, e.g., PUF response. Figure 1
shows the overview of the proposed method, which consists of
two phases, the registration phase and the operational phase. The
first phase consists of PUF calibration and response extraction, and
initialization of parameters necessary for the trusted setup of zk-
SNARK. This phase is performed in a trusted environment right
before the deployment of IoT devices. Once the device is in the field,
it can be periodically checked and verified by the trusted server by
validating zk-SNARK proofs it generated.

3.1 Threat Model

This paper assumes the adversarial capability of replacing the au-
thentic device with a counterfeit, tampered, or cloned device. In
addition, the threat model assumes that the device does not provide
direct access of the PUF challenge-response pairs. This is practical
as the semiconductor industry typically disables the scan chain ac-
cess after the manufacturing test [11]. Similar features of blocking
scan access can be implemented here to prevent attackers from
obtaining the PUF responses. The adversary simply cannot bypass
the security mechanism while the device is in the field.

3.2 Registration Phase

Registration of the edge device begins with creating a stable PUF
response at a given challenge. We follow the pairing-based zk-
SNARK construction of Groth’16 [26] to authenticate and verify IoT
devices using each device’s inherent secret asset without revealing
it to them. In the registration phase, both the central server and the
edge device need to build a mutually agreed relation R and trusted
setup o, as shown in steps (1) and (2) in Figure 1. Additionally, a valid
hash for the PUF response and its error correction syndrome will
be computed and made public by the edge device, as shown in steps
(3) and (3 in Figure 1. This initialization phase can be completed in
a secure environment as the central server is considered as trusted.

o Construct Relation R: Before constructing and validating proofs,
both parties need to agree on the public parameters, similar to Alice
and Bob coordinating on the same prime and primitive root for com-
putations in the Diffie-Hellman protocol [17]. In the ZKP protocol,
the relation R is mutually communicated between both the prover
and the verifier. Let R be a relation of a given security parameter A
with prime field Fp, generators g1, g2 € Fp, of elliptic curve groups
G1, Gy of prime order g, bilinear mapping e : G; X Go — G of
prime order g with generator g; = e(g1, g2), scalars m, £, 3m polyno-
mials {fa, (X), f; (X), fc;(X)}}Z, of degree n — 1, and polynomial
fz(X) of degree n,

_ p,G1,Go,Gr, e, ¢,

B {fAi (X),fB,.(X),fc,.(X)}l’.'_il,fZ(X) '

Due to the process variations in chip manufacturing, the SRAM
inside each IoT device contains its own unique signature, ie., the
power-up state of the SRAM cells [27, 41]. It is feasible to extract
an SRAM PUF from the stable bits by calibrating and eliminating
the unstable bits from the power-up state. This is applicable to

R

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

Prover CDRegistration Phase Verifier
PUF(ch,wh) Relation (CI|
“| GeneratorR [~
Secret @ 1 E
Witness wh, loT CRS
Syndrome Vi | peyice <« Construction —> Server
v o = setup(R)
Public
Statement

--—__ Syndrome Vi

sh = hash(wy) Public Staternent sy, o

Store yn,Sp

Fetch Syndrome

Proof CT;Ten_eration 1D Syndrome ywoTTTT yh for Device ID
1= S,
TT(0,Sh,Wn,U,1,R) ~==Proof M= == oo Proof Verification
4 - Terminate Connection___x/ v(0,1m1,5h,R) = 0/1
i (8)e--- (if v4 = 0) v
: g . !
$7 ! loT dewce® 1
U, [F = 2 | | verification failed]
' !
i : '
v | } Fetch Syndrome
Proof Generation ' ___\Dj, syndrome Yn =" Yn for Device IDx
W=

Proof == meee

@ Proof Verification
., Terminate Connection___S"7 V(0,m;,sh,R) = 0/1
(j+3y€---

(ifv;=0) i J
] .]
| 10T device ® 1
! verification failed !

Figure 1: The proposed device authentication scheme using ZKPs.

TT(0,5h,Wh,U;,Tj,R)

other types of PUFs also. A set of challenges {c1,...,cp,...} can
be constructed for a PUF. For a given challenge ¢y, one can obtain
a unique PUF response wy, for each device and the corresponding
error correction syndrome yj, to ensure consistency in wy. Due to
the unclonable property of the PUF response, the IoT device has
secret witness wy, and the corresponding hash value as the public
statement s; = hash(wy,). The concatenation of witness wy, and
statement sy, is the solution to the quadratic arithmetic circuit in
RICS defined over {fa,(X), fg,(X), fc,(X)}12; and fz(X),

Ddifa, (X)) diff,(X) = Y dife,(X) = fo(X)fz(X),
i=1 i=1 i=1

where fo(X) is the quotient polynomial of degree n — 2, s, =
(di,....dp) € Ff,,wh =(dj1,--..dm) € F;,”_f,andd =(dy,....dm)
= (sp, wp) € Fj'. As it involves the secret witness wy, the quotient
polynomial fo(X) is computed by the edge device and is not shared
with the central server.

o Initialize Trusted Setup o: During the trusted setup, the IoT
device and the central server compute the common reference string
(CRS), which is essentially the basis for both proof generation and
validation. It applies the polynomials derived from the relation R
with R1CS arithmetic circuit to construct the public elliptic curve
points in Gy, Gy. It is called a trusted setup due to the fact that the
creation of CRS ¢ needs the uniform sampling of 5 random values

a, B, y, 8, x from the prime field Fp, denoted as a, 8,7, 9, x <i Fyp.
Note that, in the registration phase, we consider both the edge
device and the servers as trusted. One can select these variables at
random and from the uniform distribution. Once these values are
determined, elements in both cyclic groups G1, G, are generated
to construct the CRS o,

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

B 5 ivn-1 8 'xifz(x)yn-2
9111’91>91’{9316 }i:O’ 1 “ }i:1

{gy*l (Bfa;) af, (x)+fe, (x)) }f’
1 -
{95*1 (Bfa;) af; () e, (x)) }Wi 1
! i=e+1
99595465} 97

The pairing g;f = e(g7. g,) is also evaluated to improve further
the computational succinctness for the verifier (server). Note that
this device-specific CRS is stored on both parties and can be made
public. As for the server, it is required to distinguish the CRS from
one edge device to another, where a unique set of parameters in o
is constructed from each IoT device with its secret witness.

e Generate and Publicize Syndrome y;, and Statement s;,: Al-
though error correction syndrome is required for computing the sta-
ble PUF response, each edge device can further optimize its resource
utilization without saving them on the device itself. The syndromes
for all challenges in set {c1,...,cp, ...} can be sent to the server
instead. Syndrome yy, is computed over the PUF response wy, given
the challenge cy,, where the server will transmit it back to the device
before proof generation. Proving the knowledge of a secret witness,
i.e., PUF response, involves statements in non-deterministic poly-
nomial time complexity (NP) [25]. It can be performed by proving
to the verifier the knowledge of the preimage of a hash generated
from collision-resistant and preimage-resistant hash algorithm [6].
This requires the server to be able to check the statement of a valid
confirmed response against a newly generated one. Thus, during
the trusted phase, the statement s, = hash(wy,) is computed at the
IoT node and is then made public by the corresponding node. The
device can simply broadcast its s value in the IoT network. Steps
(3) and (9) of Figure 1 show the transmission and acceptance of sy,
from the device to the server. Note that the adversary cannot obtain
the PUF response from its hash s due to the preimage resistance
of the secure hash algorithm. In case of updating the PUF response
with another challenge c;/, new statement and syndrome can be
generated and made public based on the updated response wy,.

3.3 Operational Phase

Once the IoT device is deployed in the field, the central server needs
to ensure that adversaries cannot masquerade a malicious device
as the genuine one, nor can they replace an authentic device with
a clone/counterfeit one. Therefore, it is important to guarantee the
authenticity of the device, where the server needs to query the
device for a response and evaluate or certify the legitimacy of the
device. To counter the attacker from the malicious substitution of
edge devices, we propose the periodic authentication of devices,
where proofs are generated from IoT nodes and are delivered to
the server for verification. For each device, we denote its j¢ h proof
7j and the corresponding verification v; with subscript j, where
Jj =1,2,3,... The proposed on-demand authentication allows the
prover to initiate the proof generation, independent from the veri-
fier, the server. In case of the required error correction syndrome
needs to be retrieved online, the server can then initiates the proof-
verification process by sending the corresponding syndrome yy, to
the edge device for error correction in PUF extraction, as in step (5)
in Figure 1. Proof generation begins in an IoT device after it obtains
the witness wy, with challenge ¢, and syndrome yj,.

Yadi Zhong, Joshua Hovanes, & Ujjwal Guin

¢ Proof Generation 7;: To prevent an adversary’s malicious re-
placement of the edge device while deployed in the field, we secure
the device authentication with proof generation and validation from
the zk-SNARK protocol. The authentic device is trying to prove to
the server that it knows the preimage of the hash value s, with-
out disclosing it to the server. The proofs in the zk-SNARK reveal
nothing about the secret witness itself, i.e., perfect zero-knowledge,
due to the fact that it incorporates additional random values. In
order to generate multiple proofs for the same device at different
time intervals, it can be done for the j** proof mj by randomly
selecting a different set of (u,r), sampled from F, with uniform

distribution, e.g., a random oracle, denoted as uj, r; i Fp. Both
the secret witness wy, = (djy1,...,dm) and the public statement
sp = (d1, ..., dr) are used during the proof construction. The proof
i = II(0o, sp, Wy, uj, rj, R) = (74, 7B, mc) consists of three elliptic
curve points (14, 7, nc) with 74, 7¢c € Gy and g € Gy,

mj=\ ma=g]', 7B =95 mC = g:jzﬁujzzﬂrujrja)

where z1, z2, z3 are computed as follows.

m m
a=a+ Y difa,(x) 48 22 = B+) difs, (x) + 7765
i=1 i=1

m
2528570 di(Bfa, () + afis, () + o, () efo () fz (%)
i=t+1

e Proof Verification vj: Once proof 7; has been received, the
verifier can check the validity of the device by evaluating 7; with the
public statement s,. The server performs computations in Gt due
to the bilinear property of e(g¢, gg) = e(g1,92)? in Gy X Gy — Gr.
The verification v; = V (0, 7}, sp, R) check whether the following
equality holds,

e(ramp) = gy - e(g].g}) - e(nc.g8)
with ¢ defined as:

b=y (D di(Bfa, (0) + afi, (0) + fe, ()
i=1

The pairing equality is satisfied only when the prover, the IoT node,
has full knowledge of the input wy, that matches s, = hash(wy,).
This is due to the negligible probability of the adversary succeed-
ing in convincing the verifier of a false statement or finding the
preimage of hash sy, e.g., the soundness property of zero-knowledge
argument. If the device verification passes (v; = 1), the device is
considered trusted at present, and communications and interac-
tions can proceed as normal. If the server cannot validate the proof
(vj = 0), the device authentication fails, and that IoT node is marked
as untrusted. The server can then terminate its connection to the
specific edge device, followed by additional countermeasures if

possible.
{ L e(ra.78) = 6,7 - e(g).9}) - e(nc.g)

0. e(mams) # 9" -e(g.g}) - el g)
With a predefined interval set between the server and each edge

device, the IoT node can periodically send proofs to server and
get it verified. For example, step (6) of Figure 1 shows device gen-

vj =

erates its first proof 7; with random values (u1,71) <i Fp. The
server verifies proof 7y in step (7), and it would issue termination
of connection if proof verification failed (v; = 0). Similarly, the de-
vice generates the j? proof 7rj at the appointed time interval with

On-Demand Device Authentication using Zero-Knowledge Proofs
for Smart Systems

syndrome yp, (step (7)) after all prior (j — 1) proofs are validated,
shown in step (j1) of Figure 1. The server would perform the same
verification as before to determine the authenticity of the device.

3.4 Security Analysis

The zk-SNARK protocol offers the proposed device authentication
framework with additional security strength over the conventional
counterparts. We analyze and provide proof sketch for the security
strength of the proposed framework under three fundamental prop-
erties of ZKP, completeness, soundness, and zero-knowledge [25].

e Machine Learning Attack Resistance Analysis: As the device
fingerprint is proved to the verifier without transmitting it or re-
vealing it through the communication channel, the adversary will
not find the secret fingerprint when monitoring the data packets
between the device and server. The zero-knowledge property guar-
antees the proof 7; reveals nothing about the secret witness itself
or the PUF response wy,. Moreover, due to the preimage resistance
of the hash algorithm, the probability of the attacker’s success in
finding the preimage wy, from its hash value sy, is low and generally
less likely than the probability of hash collision. For the widely
adopted MiMC hash construction [1], it has a 256-bits preimage
security and a 128-bits collision security. This means the adversary
cannot determine the PUF response of a device from its hash. As
no response is ever leaked to the attacker during the IoT device
authentication, it is not practical to construct a set of known CRPs
for training the machine learning algorithm nor the subsequent
attack to predict the unseen PUF response. Thus, it is infeasible
for a malicious actor to launch machine learning-based attacks to
model the PUF, as no training dataset can be extracted.

e Proof Verification with Trusted Delegates: Conventional
device authentication schemes have a designated machine (i.e.,
server) for validating the IoT device. This is due to the fact that
the challenge-response pairs of edge devices, along with the public
error correction syndromes, are stored in the secure server. Recall
that the CRS o and statement sy, are treated as public parameters,
the server can essentially outsource the verification to some trusted
parties for performing the necessary computation instead. With
the soundness property, a non-polynomial time adversary would
be impossible to use randomly generated proofs to convince the
trusted delegates (or the server) of the validity of fake proof [26].
For honest prover, the completeness property ensures that its proof
can be validated by verification protocol. Therefore, having trusted
delegates, it is possible to ease the workload of the central server
in response to huge verification queries.

e Replay Attack Prevention: The proof validation relies on
matching pairing-based computation of hash value and proof. How-
ever, considering these proofs are made public after generation,
an adversary that passively observes the communication channel
could save these valid proofs and reuse them if the edge device was
compromised. To prevent this, an extra layer of security must be
added to save and check if a proof has been used before, as newly
generated proofs will be unique. Therefore, the server may need to
save each proof for later comparison to check for proof uniqueness.

4 EXPERIMENTAL RESULTS
We have implemented our proposed IoT device authentication pro-
tocol with the Raspberry Pi 4 Model B. This device is commonly

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

§

Edge
VDe_/ices

(I I T I
: T T T
I

Figure 2: Implementation setup with Raspberry Pi 4 Model B as
edge devices and laptop as the central server.

used in IoT applications today and is one of the most flexible micro-
controllers on the market. Proof verification is done on a Ubuntu
laptop, acting as the central server. Our proposed authentication
protocol is built on top of the ZPiE library [24] with Groth’16 zk-
SNARK [26]. Figure 2 shows the setup of our implementation, where
edge devices and the central server communicate through a wire-
less network. The edge device creates a proof once it periodically
receives the server’s request for its authentication.

4.1 Performance Analysis

Although zk-SNARK proof generation has a relatively high com-
putational workload than proof verification, it only needs to be
performed sparingly to be used effectively. Note that the zk-SNARK
is designed to allow the prover to convince the verifier of the knowl-
edge of its secret in a single proof, due to the negligible success of
a dishonest prover cheating with a false statement under a sound
zk-SNARK protocol [26]. For edge devices already deployed in the
field, monitoring with regular authentication is needed to ensure
the integrity of the device. In our proposed authentication scheme,
the proof generation is performed on device startup to simulate a
periodic yet moderately frequent device verification schedule. As
the device would likely be powered off during any form of replace-
ment, this schedule would check at each possible window while not
using extremely high amounts of computational power. Figure 3
shows the distributions of both proof generation and verification
with box plots. Over 60 tests on the Raspberry Pi 4 Model B using
ZPiE’s single-threaded setting, the average proof generation time is
232.7 ms. Similarly, the average verification time of Groth’16 proofs
on the server is 1.54 ms. This advantage of fast proof verification
allows the server to compute them frequently without noticeable
delays in simultaneously fulfilling verification requests from multi-
ple devices. The computationally lightweight proof verification by
the server permits the rapid expansion of enrolled devices in the
IoT network as the verification time is scalable to a larger IoT de-
vice count. Overall, the verification time is extremely short, and the
proving time is also short when considering the scale and frequency
with which this protocol would be performed.

5 CONCLUSION

This paper presents a novel authentication protocol for IoT devices
using the state-of-the-art zk-SNARK algorithm with SRAM PUF
as the device fingerprint. Our proposed ZKP-based approach can
guarantee the secrecy of the PUF response even if the central server

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

time (s)

x10°°
F -
0.236 2 }
% 1.8
n
0.234 216
% 1.4
0.232 L
Proof Gen. Proof Verif.
(@) (b)

Figure 3: Box plots for (a) proof generation time by Raspberry Pi
acting as IoT devices, (b) proof verification time by a laptop as a
server.

gets compromised. It resists machine learning-based attacks and the
attacker’s attempts to extrapolate the PUF responses, as the adver-
sary can never observe any challenge-response pair from analyzing
the entire communication between the server and a particular edge
device. Our proposed scheme can further prevent the potential
replay attack or impersonation if the adversary monitors the com-
munication channel. In addition, delegating the verification work
to trusted parties is possible when the server is busy with different
verification requests. We demonstrated our proposed framework by
implementing it on Raspberry Pi 4 Model B boards as edge devices
with ZPiE open-source library. Proofs generated by the IoT devices
are sent to the server via a wireless network, and the server can
verify them very efficiently within a few milliseconds.

REFERENCES

[1] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

[10

(11

[12

[13

[14

]

]

]

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In Int. Conf. on the Theory and Application of
Cryptology and Information Security. Springer, 191-219.

IoT Analytics. 2022. State of IoT 2022: Number of connected IoT devices growing 18%
to 14.4 billion globally. https://iot-analytics.com/number-connected-iot-devices/
Aydin Aysu, Ege Gulcan, Daisuke Moriyama, Patrick Schaumont, and Moti Yung.
2015. End-to-end design of a PUF-based privacy preserving authentication
protocol. In Cryptographic Hardware and Embedded Systems (CHES). 556-576.
Georg T Becker. 2015. The gap between promise and reality: On the insecurity
of XOR arbiter PUFs. In Cryptographic Hardware and Embedded Systems (CHES).
535-555.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Succinct
{Non-Interactive} Zero Knowledge for a von Neumann Architecture. In 23rd
USENIX Security Symposium (USENIX Security 14). 781-796.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From ex-
tractable collision resistance to succinct non-interactive arguments of knowledge,
and back again. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference. 326-349.

Bloomberg. 2018. The Big Hack: How China Used a Tiny Chip to Infiltrate U.S.
Companies. https://www.bloomberg.com/news/features/2018-10-04/the-big-
hack-how-china-used-a- tiny-chip- to-infiltrate-america- s- top- companies
Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-
Knowledge and Its Applications. In Symp. on Theory of Computing. 103-112.
Dan Boneh and Matt Franklin. 2001. Identity-based encryption from the Weil
pairing. In Int. Cryptology Conference. Springer, 213-229.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and
more. In IEEE Symp. on Security and Privacy (SP). 315-334.

Michael Bushnell and Vishwani Agrawal. 2004. Essentials of Electronic Testing
for Digital, Memory and Mixed-Signal VLSI Circuits. Vol. 17. Springer Science &
Business Media.

Urbi Chatterjee, Vidya Govindan, Rajat Sadhukhan, Debdeep Mukhopadhyay,
Rajat Subhra Chakraborty, Debashis Mahata, and Mukesh M Prabhu. 2018. Build-
ing PUF based authentication and key exchange protocol for IoT without explicit
CRPs in verifier database. IEEE Trans. on Dependable and Secure Computing 16, 3
(2018), 424-437.

Wenjie Che, Fareena Saqib, and Jim Plusquellic. 2015. PUF-based authentication.
In International Conference on Computer-Aided Design (ICCAD). 337-344.
Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. 2020. Marlin: preprocessing zkSNARKs with universal and

[15]

[16]

[17

(18]

&
B

™
S

I
S

I
2

'w
=

(31]

[32

[33

[34

[36

[37

[38

[39

[41

[42

Yadi Zhong, Joshua Hovanes, & Ujjwal Guin

updatable SRS. In International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 738-768.

Cybersecurity and Infrastructure Security Agency (CISA). 2022. Insider Threat
Mitigation. https://www.cisa.gov/insider-threat-mitigation

Jeroen Delvaux. 2019. Machine-Learning Attacks on PolyPUFs, OB-PUFs, RPUFs,
LHS-PUFs, and PUF-FSMs. IEEE Transactions on Information Forensics and
Security 14, 8 (2019), 2043-2058.

Whitfield Diffie and Martin E Hellman. 1976. New Directions in Cryptography.
IEEE Transactions on Information Theory 22, 6 (1976).

Mohammed El-Hajj, Ahmad Fadlallah, Maroun Chamoun, and Ahmed
Serhrouchni. 2019. A Survey of Internet of Things (IoT) Authentication Schemes.
Sensors 19, 5 (2019), 1141.

Uriel Feige, Amos Fiat, and Adi Shamir. 1988. Zero-knowledge proofs of identity.
Journal of cryptology 1, 2 (1988), 77-94.

Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems.. In Crypto, Vol. 86. Springer, 186—194.
Forbes. 2023. Was The Cybersecurity Crystal Ball Cloudy Or Clear Two Years Ago?
Fatemeh Ganji, Shahin Tajik, Fabian FaBler, and Jean-Pierre Seifert. 2016. Strong
machine learning attack against PUFs with no mathematical model. In Crypto-
graphic Hardware and Embedded Systems (CHES). 391-411.

Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. 2002. Sil-
icon Physical Random Functions. In ACM Conf. on Computer and Communications
Security. 148-160.

GitHub. 2021. ZPiE: Zero-knowledge Proofs in Embedded systems. https://github.
com/xevisalle/zpie

Shafi Goldwasser, Silvio Micali, and Chales Rackoff. 1985. The Knowledge Com-
plexity of Interactive Proof-Systems. In Proceedings of the seventeenth annual
ACM symposium on Theory of computing. 291-304.

Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In Int.
conf. on theory and applications of cryptographic techniques. Springer, 305-326.
Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen, and Pim Tuyls. 2007.
FPGA Intrinsic PUFs and Their Use for IP Protection. In International workshop
on Cryptographic Hardware and Embedded Systems. Springer.

Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. 2008. Power-up SRAM state
as an identifying fingerprint and source of true random numbers. IEEE Trans.
Comput. 58, 9 (2008), 1198-1210.

Joshua Hovanes, Yadi Zhong, and Ujjwal Guin. 2022. Beware of Discarding
Used SRAMs: Information is Stored Permanently. In IEEE Physical Assurance and
Inspection of Electronics (PAINE). 1-7.

International Data Corporation (IDC). 2021. Future of Industry Ecosystems:
Shared Data and Insights. https://blogs.idc.com/2021/01/06/future-of-industry-
ecosystems-shared-data-and-insights/

Nima Karimian, Mark Tehranipoor, Damon Woodard, and Domenic Forte. 2019.
Unlock your heart: Next generation biometric in resource-constrained healthcare
systems and IoT. IEEE Access 7 (2019), 49135-49149.

Jubayer Mahmod and Ujjwal Guin. 2020. A Robust, Low-Cost and Secure Au-
thentication Scheme for IoT Applications. Cryptography 4, 1 (2020), 8.

Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:
Zero-knowledge SNARKSs from linear-size universal and updatable structured
reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2111-2128.

Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. 2013. Zerocoin:
Anonymous Distributed E-Cash from Bitcoin. In IEEE Symp. on Security and
Privacy. 397-411.

NPR. 2014. U.S. HVAC Firm Reportedly Linked To Target’s Data Security
Breach. https://www.npr.org/sections/thetwo-way/2014/02/05/272101928/u-
s-hvac-firm-reportedly-linked- to- target-s-data-security-breach

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2016. Pinocchio:
Nearly Practical Verifiable Computation. Commun. ACM 59, 2 (2016), 103-112.
Ulrich Rithrmair, Frank Sehnke, Jan Solter, Gideon Dror, Srinivas Devadas, and
Jirgen Schmidhuber. 2010. Modeling attacks on physical unclonable functions.
In Proceedings of ACM Conf. on Computer and Communications Security. 237-249.
Ulrich Rithrmair, Jan Solter, Frank Sehnke, Xiaolin Xu, Ahmed Mahmoud, Vera
Stoyanova, Gideon Dror, Jirgen Schmidhuber, Wayne Burleson, and Srinivas
Devadas. 2013. PUF modeling attacks on simulated and silicon data. IEEE
transactions on information forensics and security 8, 11 (2013), 1876-1891.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous
payments from bitcoin. In Symp. on Security and Privacy. 459-474.

G. Edward Suh and Srinivas Devadas. 2007. Physical Unclonable Functions
for Device Authentication and Secret Key Generation. In Design Automation
Conference. 9-14.

Kan Xiao, Md Tauhidur Rahman, Domenic Forte, Yu Huang, Mei Su, and Mo-
hammad Tehranipoor. 2014. Bit selection algorithm suitable for high-volume
production of SRAM-PUF. In IEEE Int. Symp. on Hardware-Oriented Security and
Trust (HOST). 101-106.

Xin Xin, Jens-Peter Kaps, and Kris Gaj. 2011. A configurable ring-oscillator-based
PUF for Xilinx FPGAs. In IEEE Euromicro conf. on digital system design. 651-657.

https://iot-analytics.com/number-connected-iot-devices/
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.cisa.gov/insider-threat-mitigation
https://github.com/xevisalle/zpie
https://github.com/xevisalle/zpie
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/
https://www.npr.org/sections/thetwo-way/2014/02/05/272101928/u-s-hvac-firm-reportedly-linked-to-target-s-data-security-breach
https://www.npr.org/sections/thetwo-way/2014/02/05/272101928/u-s-hvac-firm-reportedly-linked-to-target-s-data-security-breach

	Abstract
	1 Introduction
	2 Background
	2.1 Physically Unclonable Functions
	2.2 Zero-Knowledge Proofs
	2.3 Pairing-based zk-SNARK groth2016size

	3 Proposed Approach
	3.1 Threat Model
	3.2 Registration Phase
	3.3 Operational Phase
	3.4 Security Analysis

	4 Experimental Results
	4.1 Performance Analysis

	5 Conclusion
	References

