
Received 15 November 2025, accepted 29 November 2025, date of publication 2 December 2025,
date of current version 8 December 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3639399

Learning Conditional Independence Differential
Graphs From Time-Dependent Data
JITENDRA K. TUGNAIT , (Life Fellow, IEEE)
Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA

e-mail: tugnajk@auburn.edu

This work was supported by the National Science Foundation under Grant CCF-2308473.

ABSTRACT Estimation of differences in conditional independence graphs (CIGs) of two time series
Gaussian graphical models (TSGGMs) is investigated where the two TSGGMs are known to have
similar structure. The TSGGM structure is encoded in the inverse power spectral density (IPSD) of the
time series. In several existing works, one is interested in estimating the difference in two precision
matrices to characterize underlying changes in conditional dependencies of two sets of data consisting of
independent and identically distributed (i.i.d.) observations. In this paper we consider estimation of the
difference in two IPSDs to characterize the underlying changes in conditional dependencies of two sets
of time-dependent data. Our approach accounts for data time dependencies unlike past work. We analyze
a penalized D-trace loss function approach in the frequency domain for differential graph learning,
using Wirtinger calculus. We consider both convex (group lasso) and non-convex (log-sum and SCAD
group penalties) penalty/regularization functions. An alternating direction method of multipliers (ADMM)
algorithm is presented to optimize the objective function. We establish sufficient conditions in a high-
dimensional setting for consistency (convergence of the inverse power spectral density to true value in
the Frobenius norm) and graph recovery. Both synthetic and real data examples are presented in support
of the proposed approaches. In synthetic data examples, our log-sum-penalized differential time-series
graph estimator significantly outperformed our lasso based differential time-series graph estimator which,
in turn, significantly outperformed an existing lasso-penalized i.i.d. modeling approach, with F1 score as
the performance metric. In a 120-dimensional moving-average model based time series example, for sample
sizes of n = 512 and 4096, our log-sum-penalized estimator improved the F1 scores by 84% and 44%,
respectively, over our lasso-penalized method and by 119% and 112%, respectively, over existing lasso-
penalized i.i.d. method (F1 scores 0.46 and 0.91 for log-sum, 0.28 and 0.58 for proposed lasso, and 0.21 and
0.43 for i.i.d. lasso).

INDEX TERMS Sparse graph learning, differential graphs, time series graphs, non-convex penalties, inverse
power spectral density.

I. INTRODUCTION
Graphical models are used to display and explore condi-
tional independence structure in the analysis of multivariate
data [1], [2], [3], [4]. Consider a graph G = (V , E) with
a set of p vertices (nodes) V = {1, 2, · · · , p} = [p],
and a corresponding set of (undirected) edges E ⊆ [p] ×
[p]. Next consider a stationary (real-valued), zero-mean,

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

p−dimensional multivariate Gaussian time series x(t), t =
0,±1,±2, · · · , with ith component xi(t), and correlation
(covariance) matrix function Rxx(τ) = E{x(t + τ)xT (t)},
τ = 0,±1, · · · . Given {x(t)}, in the corresponding graph
G, each component series {xi(t)} is represented by a node
(i in V), and associations between components {xi(t)} and
{xj(t)} are represented by edges between nodes i and j of G.
In a conditional independence graph (CIG), there is no edge
between nodes i and j (i.e., {i, j} ̸∈ E) if and only if (iff) xi(t)
and xj(t) are conditionally independent given the remaining

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 204563

https://orcid.org/0000-0002-0220-2453

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

p-2 scalar series xℓ(t), ℓ ∈ [p], ℓ ̸= i, ℓ ̸= j. (This is a
generalization of CIG for random vectors where {i, j} ̸∈ E iff
�ij = 0 [1], [2], [3]; � = (E{x(t)x⊤(t)})−1 is the precision
matrix.)

Let Sx(f) denote the power spectral density (PSD) matrix
of {x(t)}, given by Sx(f) =

∑
∞

τ=−∞ Rxx(τ)e−ι2π f τ , ι =
√
−1. In [4] it was established that conditional independence

of two time series components given all other components
of the time series, is encoded by zeros in the inverse PSD
(IPSD), that is, {i, j} ̸∈ E iff the (i, j)-th element of S−1x (f)
vanishes, i.e., [S−1x (f)]ij = 0 for every f . Hence one can use
estimated IPSD of observed time series to infer the associated
graph.

There has also been some interest in differential network
analysis where one estimates the difference in two inverse
covariance matrices [5], [6], [7], [8]. Given observations
x and y from two groups of subjects, one is interested in
the difference 1 = �y − �x , where �x = (E{xx⊤})−1

and �y = (E{yy⊤})−1. The associated differential graph
is G1 = (V , E1) where {i, j} ∈ E1 iff [1]ij ̸= 0.
It characterizes differences between the Gaussian graphical
models (GGMs) of the two sets of data. We use the term
differential graph as in [8], [9] ([5], [7], and [10] use
the term differential network). As noted in [5] and [7],
in biostatistics, the differential network/graph describes the
changes in conditional dependencies between components
under different environmental or genetic conditions. For
instance, one may be interested in the differences in the
graphical models of healthy and impaired subjects, or models
under different disease states, given gene expression data or
functional magnetic resonance imaging (fMRI) signals [11],
[12], [13].

In several applications such as fMRI signal analysis or
financial time series analysis, the underlying temporal data
is not i.i.d. Analysis of some resting state fMRI data in [14]
shows significant time-dependence. The data set analyzed
in [14, Sec. 2.2] consists of a single subject 1190 temporal
brain images, each image with 907 functional brain nodes.
This data passed stationarity, Gaussianity and linearity tests
[14, Sec. 2.2], implying that Gaussian time series assumption
used in this paper would be appropriate. The focus of [14] is
analysis of graphical models derived from precision matrix
of dependent data; they do not address time series graphical
models. In [15, Sec. 5.2] autoregressive models are fitted
to financial time series (international stock market data) to
infer the underlying time series graphical model. Differential
network analysis in such applications calls for consideration
of time-dependence in the data as well as consideration of
time series graphical models, instead of just assuming that the
data is i.i.d., as in [5], [6], [7], [8], and [10]. There is no prior
reported work on differential times series graph estimation.
This paper attempts to fill this gap.

In this paper we address the problem of estimating
differences in two time series Gaussian graphical models
(TSGGMs) which are known to have similar structure. Our

approach accounts for data time dependencies unlike past
work. The TSGGM structure is encoded in its IPSD just
as the vector GGM structure is encoded in its precision
matrix. We consider estimation of the difference in two
IPSD’s to characterize underlying changes in conditional
dependencies of two sets of time-dependent data {x(t)}nxt=1
and {y(t)}

ny
t=1. We analyze a penalized D-trace loss function

approach in the frequency domain for differential graph
learning, using Wirtinger calculus [16]. As a preliminary
step, we first address the problem of estimation of complex
differential graphs, given two complex-valued i.i.d. time
series. We consider both convex (group lasso) and non-
convex (log-sum and Smoothly Clipped Absolute Deviation
(SCAD) group penalties) penalty/regularization functions.
The use of non-convex penalties (unlike convex lasso penalty)
is known to yield more accurate results, i.e., they can produce
sparse set of solution like lasso, and approximately unbiased
coefficients for large coefficients, unlike lasso [17], [18],
[19].

A. RELATED WORK
The problem of estimation of complex differential graphs
and the general problem of differential times series graph
estimation have not been investigated before. The work of [9]
considers time series differential graphs with D-trace loss
functions except that in [9] x(t) and y(t) are non-stationary
(‘‘functional’’ modeling), and instead of a single record
(sample) of x(t), t ∈ [n] and y(t), t ∈ [n], as in this paper, they
assume multiple independent observations of x(t), t ∈ T ,
and y(t), t ∈ T (a closed subset of real line). However,
as in [9], we follow the framework of [20] for theoretical
analysis. Unlike our paper, [9] does not consider non-convex
penalties.

Differential network analysis reported in [5], [6], [7],
[8], and [10] all deal with i.i.d. data whereas we address
dependent data. In [21] differential latent variable graphical
models are estimated assuming i.i.d. data. In latent variable
models there are some hidden nodes. We do not consider
this aspect in this paper. As in [5], [6], [7], [8], and [10] we
use a D-trace loss function approach. One naive approach
to differential network analysis with i.i.d. data would be to
estimate the two precisionmatrices separately by any existing
estimator (see [3], [19], [22], [23] and references therein)
and then calculate their difference to estimate the differential
graph. In such an approach one estimates twice the number
of parameters (the respective precision matrices instead of
the difference), therefore, one needs larger sample sizes for
same accuracy. Also, this naive approach imposes sparsity
constraints on each precision matrix for the methods to work.
The same comment applies to methods such as [11], where
the two precision matrices and their differences are jointly
estimated. If only the difference in the precision matrices
is of interest, direct estimation of the difference in the two
precision matrices is preferable and has been considered in
[5], [6], [7], [8], [10], and [12], where only the difference

204564 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

is required to be sparse, not the two individual precision
matrices. In [5], [6], [7], [8], and [10] precision difference
matrix estimators are based on a D-trace loss [24], while [12]
discusses a Dantzig selector type estimator. In this paper we
extend the D-trace loss framework of [5] and [6] for i.i.d.
data to address time-dependent data via a frequency-domain
formulation.

Our work exploits prior work on graphical modeling of
real time series in high-dimensional settings. Nonparametric
approaches for graphical modeling of real time series in high-
dimensional settings (p is large and/or sample size n is of
the order of p) have been investigated in [25], [26], and [27],
among others. We use the frequency-domain formulation of
[26] and [27] which deals with graphical modeling of time
series, but not with differential graphical modeling addressed
here. In [28] and [29] estimation of high-dimensional power
spectral matrix is addressed. Time series graphical modeling
is not discussed in [29], unlike [28] where testing-basedmeth-
ods are used for inference of graphical models (as opposed to
regularization based methods in [25], [26], [27]). Differential
graphical modeling is not addressed in [28] and [29].

Although non-convex penalties have been extensively used
for graph estimation (see [19], [22], [23] and references
therein) and recently for differential graph estimation from
i.i.d. data [30], they have not been applied to differential
time-series graphs. For optimization we use the stan-
dard alternating direction method of multipliers (ADMM)
approaches [31] except that our ADMM algorithm applies
to real objective function of complex variables exploiting the
Wirtinger calculus. Our numerical results show that our log-
sum-penalized differential time-series graph estimator signif-
icantly outperforms our lasso based differential time-series
graph estimator which in turn, significantly outperforms the
i.i.d. modeling based time domain methods of [5] and [6]
(lasso penalty) and [30] (log-sum penalty), with F1 score as
the performance metric.

Graphical models have also been inferred from consid-
eration other than statistical [32]. One class of graphical
models are based on signal smoothness [32], [33], [34] where
graph learning from data becomes equivalent to estimation
of the graph Laplacian matrix. Some reviews of various
graph learning approaches may be found in [35], [36],
[37], and [38]. A large variety of graph learning models
and approaches exist, motivated by diverse applications in
signal processing, machine learning, and other areas. In [37]
(also [36]) existing graph learning methods are classified into
four broad categories: deep learning based methods, matrix
factorization based methods, random walk based methods,
and graph signal processing based methods. In terms of these
four categories, our approach falls in the category of graph
signal processing based methods with the sub-category of
‘‘learning topology structure.’’ Differently from [37], [35]
categorizes graph learning methods based on two graph
construction steps: (1) determine the edge set E , called E-
step, and (2) based on E , determine an edge weight matrix
W , called W -step, even though in some methods these two

steps may be merged into one, or the second step may
be executed first yielding W which then determines E .
In [38] graphical modeling is approached from a statistical
viewpoint and a wide variety of models (i.i.d. Gaussian
data, matrix-valued data, quantile graphical models, etc.) and
approaches are considered. In this paper we are interested
in conditional independence differential graphs, a topic not
addressed in [35], [36], [37], and [38].

More recently there has been interest in introducing
fairness considerations in graphical modeling [39] (based on
i.i.d. data assumption), and in exploiting transfer learning
ideas in estimating one target graph and several auxiliary
graphs using (i.i.d.) data from multiple sources [40]. In [40]
concepts similar to differential graphs are used in transferring
auxiliary graph structure to the target graph.

A class of graph and graph-based learning approaches are
motivated by specific application tasks such as clustering
and classification. Examples of such approaches include [41],
[42], [43] and relevant references in [35], [36], [37], and [38].
While these approaches address important useful problems,
they are not related to the differential time series graph
learning problem addressed in this paper. In such approaches
an important consideration is how to incorporate prior
information relevant to the intended application, in the
graph model. For instance, both local and global structure
information is incorporated in the model of [41], together
with a rank constraint on the graph Laplacian to reflect
the number of clusters. In [43] a multi-domain speech
emotion recognition problem is addressed where domain
discrepancy between target and source domains is captured
by similarity and dissimilarity graphs, modeled via Laplacian
matrices. Construction of these Laplacian matrices in [43]
does not follow any statistical approach or consider con-
ditional independence. That is, the objectives in this paper
and [43] are quite different, resulting in distinctly different
approaches. In [42] the speech emotion detection problem
of [43] is combined with gender prediction, and the focus
is on optimization of feature selection. In [42] a particle
swarm optimization approach is investigated which is a
general heuristic approach which does not guarantee a global
optimum. In this paper our penalized D-trace loss function
with lasso penalty or local-linear approximated non-convex
penalty, is convex and our ADMM optimization algorithm is
provably convergent to a global minimum (see Secs. II-C1
and V-A). For such problems ADMM is generally considered
to be a computationally efficient optimizer [31].

As noted in [35], ‘‘. . . how to select a suitable graph
construction/learning strategy in practice . . . is a challenging
problem without a universal solution, since it depends on
many factors . . . ’’

B. OUR CONTRIBUTIONS
We first address the problem of estimation of complex
differential graphs, given two complex-valued i.i.d. time
series. These results form the basis for analyzing a novel
penalized D-trace loss function approach in the frequency

VOLUME 13, 2025 204565

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

domain for differential graph learning, using Wirtinger
calculus. We consider both convex group lasso and non-
convex (log-sum and SCAD) group penalties regularization
functions. An ADMM algorithm is presented to optimize the
objective function, using a local linear approximation (LLA)
[19], [22] based iterative approach for non-convex penalties.
Theoretical analysis establishing sufficient conditions for
consistency (convergence of the inverse power spectral
density to true value in the Frobenius norm) and graph
recovery is presented using the framework of [20] which
does not apply to the SCAD penalty. Both synthetic and
real data examples are presented in support of the proposed
approaches.

A preliminary version of this paper appears in a conference
paper [44] where non-convex penalties are not considered
and no proof is given for [44, Theorem 1] (corresponding to
our Theorem 1). Moreover, [44] has no counterparts to our
Sec. V-B and Theorem 2, and it has limited synthetic data
results and no real data results.

C. NOTATION AND OUTLINE
For a set V , |V | denotes its cardinality. Given A ∈ Cp×p,
we use φmin(A), φmax(A), |A| and tr(A) to denote the
minimum eigenvalue, maximum eigenvalue, determinant and
trace of A, respectively, and we use A ≻ 0 and A ⪰ 0 to
denote that A is positive-definite and positive semi-definite,
respectively. Given B ∈ Cp×m, [B]ij denotes the (i, j)-th
element of B, and so does Bij, and Iq denotes the q × q
identity matrix. The symbol⊗ denotes the matrix Kronecker
product and the symbol ◦ denotes the Hadamard product. The
superscripts ∗ and H denote the complex conjugate and the
Hermitian (conjugate transpose) operations, respectively.

For B ∈ Cp×q, we define the operator norm, the Frobenius
norm and the vectorized ℓ1 norm, respectively, as ∥B∥ =√

φmax(BHB), ∥B∥F =
√
tr(BHB), ∥B∥1 =

∑
i,j |Bij| and

∥B∥∞ = maxi,j |Bij|. For vector θ ∈ Cp, we define ∥θ∥1 =∑p
i=1 |θi| and ∥θ∥2 =

√∑p
i=1 |θi|

2, and we also use ∥θ∥
for ∥θ∥2. Given A ∈ Cn×p, column vector vec(A) ∈ Cnp

denotes the vectorization ofAwhich stacks the columns of the
matrix A, and Re(A) and Im(A) denote the real and imaginary
parts, respectively, of A. The notation x ∼ Nc(m,6) denotes
a random vector x that is circularly symmetric (proper)
complex Gaussian with meanm and covariance6. Similarly,
x ∼ Nr (m,6) denotes a random vector x that is real-valued
Gaussian with mean m and covariance 6. Given a variable
vector x or matrix X , we use x⋄ or X⋄, respectively, to denote
their true values.

The rest of the paper is organized as follows. A penalized
D-trace loss function is presented in Sec. II for estimation of
complex differential graphs, given two complex-valued i.i.d.
time series. These results form the basis for a novel penalized
D-trace loss function approach in the frequency domain for
differential graph learning, formulated in Secs. III and IV.
A solution to optimization of the penalized D-trace loss is
provided in Sec. V and the selection of the tuning parameters

is presented in Sec. V-B. In Sec. VI we provide a theoretical
analysis of the proposed approach, resulting in Theorems 1
and 2. Numerical results are presented in Secs. VII and VIII.
A derivation of (32) and the proofs of Theorems 1 and 2 are
given in the two appendices.

II. COMPLEX DIFFERENTIAL GRAPHS
As a preliminary step, we first address the problem of
estimation of sparse complex differential graphs, given two
complex-valued i.i.d. time series. To this end, we first review
the problem of estimation of real differential graphs in
Sec. II-A. The results of Sec. II-A are then extended to
complex differential graphs in Secs. II-B and II-C. The results
of Secs. II-B and II-C are later exploited in Secs. III, IV and V
to address time series differential graphs.

A. REAL GAUSSIAN VECTORS
We first recall a formulation of [5], [6], [7], and [10] for
real-valued data. Let x ∈ Rp, x ∼ Nr (0,6⋄x), 6

⋄
x ≻ 0,

and suppose we are given i.i.d. samples {x(t)}nxt=1 of x, and
similarly given i.i.d. samples {y(t)}

ny
t=1 of independent y ∈

Rp, y ∼ Nr (0,6⋄y), 6
⋄
y ≻ 0. Let �⋄y = (6⋄y)

−1 and
�⋄x = (6⋄x)

−1 denote the respective precision matrices, and
let 6̂x =

1
nx

∑nx
t=1 x(t)x

⊤(t) and 6̂y =
1
ny

∑ny
t=1 y(t)y

⊤(t)
denote the sample covariance estimates. In [5], [6], [7], and
[10] one seeks to estimate 1⋄ = �⋄y − �⋄x and graph
G1 = (V , E1), based on 6̂x and 6̂y.
In [5] (see also [6, Sec. 2.1]), the following convex D-trace

loss function is used for 1 ∈ Rp×p

Lr (1, 6̂x , 6̂y) =
1
2
tr(6̂x16̂y1

⊤)− tr(1(6̂x − 6̂y)) (1)

where D-trace refers to difference-in-trace loss function,
a term coined in [24] in the context of graphical model
estimation.

Using the rule [45, p. 13,(117)] regarding matrix differen-
tiation of a trace function, we have

∂tr(6̂x16̂y1
⊤)

∂1
= 26̂x16̂y (2)

and using [45, p. 12,(100)], we have

∂tr(1(6̂x − 6̂y))
∂1

= 6̂x − 6̂y . (3)

It then follows that

∂Lr (1, 6̂x , 6̂y)
∂1

= 6̂x16̂y − (6̂x − 6̂y) (4)

and therefore, at the true covariances, we have

∂Lr (1,6⋄x ,6
⋄
y)

∂1
= 6⋄x16

⋄
y − (6⋄x −6

⋄
y) . (5)

When 1 = 1⋄ = �⋄y −�
⋄
x , we have

6⋄x16
⋄
y = 6

⋄
x (�
⋄
y −�

⋄
x)6
⋄
y

= 6⋄x�
⋄
y6
⋄
y −6

⋄
x�
⋄
x6
⋄
y = 6

⋄
x −6

⋄
y , (6)

204566 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

and therefore, by (5),

∂Lr (1,6⋄x ,6
⋄
y)

∂1

∣∣∣
1=1⋄

= 0 . (7)

Using tr(A⊤BCD⊤) = vec(A)⊤(D⊗ B)vec(C) and letting
d := vec(1) ∈ Rp2 , we have

Lr (1,6⋄x ,6
⋄
y) =

1
2
d⊤(6⋄y ⊗6

⋄
x)d − d

⊤vec(6⋄x −6
⋄
y) .

(8)

Thus Lr (1,6⋄x ,6
⋄
y) is quadratic in d with the Hessian matrix

given by

Hr = 6
⋄
y ⊗6

⋄
x , [Hr]kℓ =

∂2Lr (1,6⋄x ,6
⋄
y)

∂[d]k∂[d]ℓ
. (9)

The eigenvalues of Hr are the product of the eigenvalues
of 6⋄y and 6⋄x . By assumption 6⋄y and 6⋄x are positive-
definite, hence, Hr ≻ 0 since all eigenvalues of Hermitian
Hr are positive. Therefore, the function Lr (1,6⋄x ,6

⋄
y) is

strictly convex in 1 and by (7), has a unique minimum at
1⋄ = �⋄y −�

⋄
x [5], [6].

Since the true data covariances are unavailable, one uses
sample covariances of the data and 1 is estimated by
minimizing a lasso-penalized D-trace loss function (1) [5],
[6], [7], [10], given by Lr (1, 6̂x , 6̂y)+λ

∑p
k,ℓ=1 |1kℓ|.With

V = [p] and E ⊆ [p] × [p] the associated differential graph
is G1 = (V , E1) where {i, j} ∈ E1 iff [1]ij ̸= 0.

B. PROPER COMPLEX GAUSSIAN VECTORS
Consider complex-valued x, y ∈ Cp, with x ∼ Nc(0,6⋄x)
and y ∼ Nc(0,6⋄y) with 6

⋄
x ≻ 0 and 6⋄y ≻ 0. Given i.i.d.

measurements {x(t)}nxt=1 and {y(t)}
ny
t=1, we desire to estimate

1⋄ = �⋄y −�
⋄
x .

We propose a real-valued cost of complex-valued 1 ∈
Cp×p as

L(1, 6̂x , 6̂y) =
1
2

(
tr(6̂x16̂y1

H)+ tr(6̂
∗

x1
∗6̂
∗

y1
⊤)
)

− tr
(
1(6̂x − 6̂y)+1∗(6̂

∗

x − 6̂
∗

y)
)

(10)

with 6̂x =
1
nx

∑nx
t=1 x(t)x

H (t) and 6̂y =
1
ny

∑ny
t=1 y(t)y

H (t).
We will useWirtinger calculus [16, Appendix 2] to analyze

L(1, 6̂x , 6̂y) where we view it as a real-valued function
of two ‘‘independent’’ complex-valued vectors vec(1) and
its conjugate vec(1∗). Similar to (2) but using [45, p.
12,(100),(103)] and the fact that 6̂x and 6̂y are Hermitian,
we have

∂tr(6̂x16̂y1
H)

∂1∗
= 6̂x16̂y =

∂tr(6̂
∗

x1
∗6̂
∗

y1
⊤)

∂1∗
(11)

and similar to (3), we have

∂tr(1∗(6̂
∗

x − 6̂
∗

y))

∂1∗
= 6̂x − 6̂y . (12)

Note that ∂tr(1(6̂x−6̂y))
∂1∗

= 0. It then follows that

∂L(1, 6̂x , 6̂y)
∂1∗

= 6̂x16̂y − (6̂x − 6̂y) (13)

and therefore, at the true covariances, we have

∂L(1,6⋄x ,6
⋄
y)

∂1∗
= 6⋄x16

⋄
y − (6⋄x −6

⋄
y) . (14)

When 1 = 1⋄ = �⋄y −�
⋄
x , by (6), we have

∂L(1,6⋄x ,6
⋄
y)

∂1∗

∣∣∣
1=1⋄

= 0 . (15)

Define

θ = [vec(1)⊤ vec(1)H]⊤ ∈ C2p2 , (16)

H =
[
(6⋄y)

∗
⊗6⋄x 0

0 6⋄y ⊗ (6⋄x)
∗

]
, (17)

b =
[

vec(6⋄x −6
⋄
y)

vec((6⋄x)
∗
− (6⋄y)

∗)

]
. (18)

Using tr(A⊤BCD⊤) = vec(A)⊤(D⊗ B)vec(C), we have

L(1,6⋄x ,6
⋄
y) =

1
2
θHHθ − θHb . (19)

Clearly L(1,6⋄x ,6
⋄
y) is quadratic in θ with the complex

augmented Hessian matrix [16, Def. A2.5] H given by (17),
satisfying

[H]kℓ =
∂2L(1,6⋄x ,6

⋄
y)

∂[θ]k∂[θ]∗ℓ
. (20)

The eigenvalues ofH are the product of the eigenvalues of6⋄y
and 6⋄x . By assumption 6⋄y and 6⋄x are Hermitian positive-
definite, hence, H ≻ 0 since all eigenvalues of Hermitian H
are positive. Therefore, the function L(1,6⋄x ,6

⋄
y) is strictly

convex in 1 and by (15), has a unique minimum at 1⋄ =
�⋄y −�

⋄
x .

Since the true data covariances are unavailable, one uses
sample covariances of the data as in (10). In this case we
replace 6⋄x and 6⋄y in (17) with 6̂x and 6̂y, respectively,
resulting in the Hessian matrix Ĥ

Ĥ =

[
6̂
∗

y ⊗ 6̂x 0
0 6̂y ⊗ 6̂

∗

x

]
. (21)

Since 6̂x ⪰ 0 and 6̂y ⪰ 0, we now have Ĥ ⪰ 0,
implying that L(1, 6̂x , 6̂y) is convex, but not necessarily
strictly convex. In the high-dimensional case of min{nx , ny}
less than or of the order of p, to enforce sparsity and to make
the problem well-conditioned, for λ > 0, define the lasso-
penalized D-trace loss (similar to [5], [6], [7], [10])

Lλ(1, 6̂x , 6̂y) = L(1, 6̂x , 6̂y)+ λ

p∑
k,ℓ=1

|1kℓ| . (22)

We seek 1̂ = argmin1 Lλ(1, 6̂x , 6̂y). We discuss this
aspect next in Sec. II-C. With V = [p] and E ⊆ [p] × [p],
the associated complex differential graph is G1 = (V , E1)

where {i, j} ∈ E1 iff |[1]ij| > 0. Even though1 is Hermitian,
1̂ is not necessarily so. We make it Hermitian by setting
1̂H =

1
2 (1̂+ 1̂

H
), after obtaining 1̂.

VOLUME 13, 2025 204567

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

C. OPTIMIZATION
Similar to [6] (also [5], [8]), we use an alternating direction
method of multipliers (ADMM) approach [31] with variable
splitting to compute 1̂ = argmin1 Lλ(1, 6̂x , 6̂y). Using
variable splitting and adding the equality constraintW = 1,
consider

min
1,W

{
L(1, 6̂x , 6̂y)+ λ

p∑
k,ℓ=1

|Wkℓ|

}
, (23)

subject to 1 = W , (24)

where in the penalty we use W instead of 1. Let U ∈ Cp×p

denote the dual variable and ρ > 0 denote the penalty
parameter in the ADMM algorithm. The scaled augmented
Lagrangian for this problem is [31]

Lρ(1,W ,U) := L(1, 6̂x , 6̂y) (25)

+ λ

p∑
k,ℓ=1

|Wkℓ| +
ρ

2
∥1−W + U∥2F .

(26)

Given the ith iteration results 1(i),W (i),U (i), in the
(i + 1)st iteration, the ADMM algorithm executes the
following 3 updates [31]:
(a) 1(i+1)

← argmin1 L̄a(1) where

L̄a(1) := L(1, 6̂x , 6̂y)+
ρ

2
∥1−W (i)

+ U (i)
∥
2
F .

(b) W (i+1)
← argminW L̄b(W) where

L̄b(W) := λ

p∑
k,ℓ=1

|Wkℓ| +
ρ

2
∥1(i+1)

−W + U (i)
∥
2
F .

(c) U (i+1)
← U (i)

+
(
1(i+1)

−W (i+1))
Observe that L̄a(1) and L̄b(W) are convex in 1 and W ,
respectively.

We now address updates (a) and (b).
Update (a). To minimize L̄a(1) w.r.t. 1, using Wirtinger

calculus, we set

0 =
∂L̄a(1)
∂1∗

= 6̂x16̂y − (6̂x − 6̂y)+
ρ

2
(1−W (i)

+ U (i)). (27)

Using vec(AYB) = (B⊤ ⊗ A)vec(Y), we vectorize (27) to
obtain (

6̂
∗

y ⊗ 6̂x +
ρ

2
Ip ⊗ Ip

)
vec(1)

= vec
(
6̂x − 6̂y +

ρ

2
(W (i)

− U (i))
)
. (28)

Direct matrix inversion solution of (28) requires inversion of
a p2×p2 matrix. A computationally cheaper solution follows
similar to that in [5] and [6] where the real-valued case is
addressed and here we consider complex-valued Hermitian
matrices. Carry out eigen-decomposition of 6̂x and 6̂y as

6̂x = QxDxQ
H
x , QxQ

H
x = Ip , (29)

6̂y = QyDyQ
H
y , QyQ

H
y = Ip , (30)

where Dx and Dy are diagonal matrices. Define a matrix D ∈
Rp×p that organizes the diagonal of (Dy⊗Dx +

ρ
2 Ip2)

−1 in a
matrix with (j, k)th element as

[D]jk =
1

[Dx]jj[Dy]kk +
ρ
2

, (31)

and recall that the symbol ◦ denotes the Hadamard matrix
product. Then 1̂ that minimizes L̂a(1) is given by (the
derivation of (32) is given in Appendix A)

1̂ = Qx
[
D ◦ [QHx

(
6̂x − 6̂y +

ρ

2
(W (i)

− U (i))
)
Qy]

]
QHy
(32)

Note that the eigen-decomposition of 6̂x and 6̂y has to be
done only once. With A(i)

= W (i)
− U (i), we have

1(i+1)
= Qx

[
D ◦ [QHx

(
6̂x − 6̂y +

ρ

2
A(i))Qy]]QHy . (33)

Update (b). Notice that L̄b(W) is separable in (k, ℓ) with

L̄b(Wkℓ) = λ|Wkℓ| +
ρ

2
|1

(i+1)
kℓ −Wkℓ + U

(i)
kℓ |

2 , (34)

L̄b(W) =
p∑

k,ℓ=1

L̄b(Wkℓ) . (35)

Following [26, Lemma 1] and using (a)+ = max(0, a),
L̄b(Wkℓ) is minimized by the lasso solution

W (i+1)
kℓ =

(
1−

(λ/ρ)

|[1(i+1)
+ U (i)]kℓ|

)
+

[1(i+1)
+ U (i)]kℓ .

(36)

1) CONVERGENCE
A stopping (convergence) criterion following [31, Sec. 3.3.1]
can be devised. The stopping criterion is based on primal and
dual residuals being small where, in our case, at (i + 1)st
iteration, the primal residual is given by 1(i+1)

− W (i+1)

and the dual residual by ρ(W (i+1)
−W (i)). The convergence

criterion is met when the norms of these residuals are below
some threshold.

The objective function Lλ(1, 6̂x , 6̂y), given by (22),
is convex. It is also closed, proper and lower semi-continuous.
Hence, for any fixed ρ > 0, the ADMM algorithm is
guaranteed to converge [31, Sec. 3.2 and Appendix A],
in the sense that we have primal residual convergence to 0,
dual residual convergence to 0, and the objective function
convergence to the optimal value.

III. DIFFERENTIAL TIME SERIES GRAPHS: SYSTEM
MODEL
We now turn to the general problem of differential times
series graph estimation. Consider two independent stationary
(real-valued), zero-mean, p−dimensional multivariate Gaus-
sian time series x(t) and y(t), t ∈ Z, with PSDs Sx(f) ≻ 0
and Sy(f) ≻ 0, respectively, for every f ∈ [0, 1], and the CIGs
Gx = (V , Ex) and Gy =

(
V , Ey

)
, respectively. As discussed

earlier in Sec. I, the edge {i, j} ̸∈ Ex iff [S−1x (f)]ij ≡ 0 and
{i, j} ̸∈ Ey iff [S−1y (f)]ij ≡ 0 [4]. In differential network

204568 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

analysis for time-dependent data, one is interested in the
difference 1(f) = S−1y (f) − S−1x (f), and in the associated
differential graph G1 = (V , E1) we have {i, j} ̸∈ E1 iff
[1(f)]ij = 0 for every f ∈ [0, 1].

Given data {x(t)} and {y(t)}, our objective is to first
estimate the inverse PSDs S−1x (f) and S−1y (f) at distinct
frequencies, and then select the edge {i, j} in the differential
time series graph G1 based on whether or not [1(f)]ij = 0 for
every f ∈ [0, 1].

A. PROBLEM FORMULATION
Given time-domain data {x(t)}nxt=1 and {y(t)}

ny
t=1 originating

from two independent stationary, zero-mean, multivariate
Gaussian time series x(t) ∈ Rp and y(t) ∈ Rp. For simplicity,
we take nx = ny = n. With ι =

√
−1, define the (normalized)

discrete Fourier transforms (DFTs)

dx(fm) =
1
√
n

n∑
t=1

x(t) exp (−ι2π fm(t − 1)) , (37)

dy(fm) =
1
√
n

n∑
t=1

y(t) exp (−ι2π fm(t − 1)) , (38)

fm =
m
n

, m = 0, 1, · · · , n− 1. (39)

The set of complex random vectors {dx(fm), dy(fm)}
n/2
m=0 is a

sufficient statistic for any inference problem based on data
set {x(t), y(t)}nt=1 since given {dx(fm), dy(fm)}

n/2
m=0, one can

recover {x(t), y(t)}nt=1 via inverse DFT. [26].

1) MODEL ASSUMPTIONS
We assume the following:
(A1) The time series {x(t)}t∈Z is zero-mean stationary and

Gaussian, satisfying

∞∑
τ=−∞

|[Rxx(τ)]kℓ| <∞ for every k, ℓ ∈ V = [p] ,

and similarly for {y(t)}t∈Z.
(A2) For some integer mt > 0, let K = 2mt + 1. Pick

M =
⌊
(
n
2
− mt − 1)/K

⌋
,

f̃k =((k − 1)K + mt + 1)/n for k ∈ [M] ,

yieldingM equally spaced frequencies f̃k in the interval
(0, 0.5). Assume that for ℓ = −mt ,−mt + 1, · · · ,mt ,
the PSD matrices Sx(f) and Sy(f) satisfy

Sx(f̃k,ℓ) = Sx(f̃k) , Sy(f̃k,ℓ) = Sy(f̃k) , (40)

where f̃k,ℓ =
(
(k − 1)K + mt + 1+ ℓ

)
/n . (41)

Assumption (A1) is needed to invoke [46, Theorem 4.4.1]
regarding distribution of the DFTs {dx(fm), dy(fm)}

n/2
m=0.

Assumption (A2) is a local smoothness assumption which
implies that Sx(fk) and Sy(fk) are constant over K = 2mt +
1 consecutive frequency points fm’s, mt > 0.

It turns out that for ‘‘large’’ n, under assumption (A1),
the DFT dx(fm) is a complex-valued proper (i.e., circularly
symmetric) Gaussian vector∼ Nc(0,Sx(fm)), and (mutually)
independent for m = 1, 2, · · · , (n/2) − 1, (n even) [46,
Theorem 4.4.1], though not identically distributed. Also,
dx(f0) and dx(fn/2) (n even) are real-valued Gaussian vectors.
Similar comments apply to dy(fm). We exclude the frequency
points f0 and fn/2 from further consideration. Define

Ŝxk =
1
K

mt∑
ℓ=−mt

dx(f̃k,ℓ)dHx (f̃k,ℓ) , (42)

Ŝyk =
1
K

mt∑
ℓ=−mt

dy(f̃k,ℓ)dHy (f̃k,ℓ) (43)

where Ŝxk and Ŝyk represent PSD estimators at frequency f̃k
using unweighted frequency-domain smoothing [46]. By the
local smoothness assumption (A2), for ℓ = −mt ,−mt +
1, · · · ,mt , we have

dx(f̃k,ℓ) ∼ Nc(0,Sx(f̃k)) , (44)

dy(f̃k,ℓ) ∼ Nc(0,Sy(f̃k)) . (45)

2) MULTIPLE COMPLEX DIFFERENTIAL GRAPHS
To lighten notation, henceforth we will denote the true
values of Sx(f̃k) and Sy(f̃k) as S⋄xk and S⋄yk , respec-
tively, with their respective sample estimates Ŝxk and Ŝyk ,
k ∈ [M].
Our objective is to ascertain if1(f) = S−1y (f)− S−1x (f) =

0∀f ∈ [0, 1]. Since the PSD matrix S(f) of any real discrete-
time zero-mean stationary random process is periodic with
period one and S(−f) = SH (f), it is enough to check if
1(f) = 0∀f ∈ [0, 0.5], and therefore, in the associated
differential graph G1 = (V , E1) we have {i, j} ̸∈ E1 iff
[1(f)]ij = 0 for every f ∈ [0, 0.5]. Let 1k = S−1yk − S−1xk
and 1⋄k = (S⋄yk)

−1
− (S⋄xk)

−1. Under assumption (A2)
(and recalling that we exclude frequency points f0 and fn/2),
1(f), ∀f ∈ [0, 0.5] translates to 1k , k ∈ [M] such that
{1(f) = 0, ∀f ∈ [0, 0.5]} is equivalent to {1k = 0, k ∈
[M]}, and therefore, in the associated differential graph G1 =

(V , E1) we have {i, j} ̸∈ E1 iff [1k]ij = 0 for every
k ∈ [M].
Observe that for any fixed k ∈ [M], 1⋄k characterizes

a complex differential graph (cf. Sec. II) with ‘‘precision
matrix’’ difference (S⋄yk)

−1
− (S⋄xk)

−1. To estimate 1⋄k we
have K = 2mt + 1 independent complex measurements
dx(f̃k,ℓ) and dy(f̃k,ℓ), ℓ = −mt ,−mt + 1, · · · ,mt . The
D-trace loss for the kth differential graph is L(1k , Ŝxk , Ŝyk)
with L(·, ·, ·) specified by (10). Moreover, L(1k ,S⋄xk ,S

⋄

yk)
is strictly convex in 1k with a unique minimum at 1⋄k (see
Sec. II-B).

3) D-TRACE LOSS
Now we wish to ascertain if [1k]ij = 0 for every k ∈
[M] which calls for joint consideration of all M complex

VOLUME 13, 2025 204569

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

differential graphs. Define

1̃ := [11, 12, · · · , 1M] ∈ Cp×pM . (46)

In order to exploit every k ∈ [M], we propose the cost

L̃(1̃) =
M∑
k=1

L(1k , Ŝxk , Ŝyk) . (47)

Define

1̃
(ij)
:=
[
[11]ij, [12]ij, · · · , [1M]ij

]⊤
∈ CM . (48)

Substitute Ŝyk = S⋄yk and Ŝxk = S⋄xk in L̃(1̃) and denote it by

L̃(1̃
⋄
). Then L̃(1̃

⋄
), being a sum of strictly convex functions

(cf. Sec. II-B), is strictly convex and has a unique minimum
at 1k = 1

⋄

k , k ∈ [M] (cf. Sec. II-B). Since data-based L̃(1̃)
is a sum of convex functions L(1k , Ŝxk , Ŝyk) (cf. Sec. II-B),
it is convex, but not necessarily strictly convex.

Since true values1⋄k ’s are unavailable, our objective then is
to estimate 1̃ by minimizing data-based L̃(1̃) with resulting
estimate

ˆ̃
1 = [1̂1, 1̂2, · · · , 1̂M] . (49)

We estimate the edgeset E1 of the differential time-series
graph as

Ê1 =

{
{i, j} : ∥ ˆ̃1(ij)

∥ > 0
}

. (50)

IV. PENALIZED D-TRACE LOSS
In the high-dimensional case of K < p, to enforce sparsity
and to make the problem well-conditioned, we propose to
minimize a group penalized version of L̃(1̃) w.r.t.1ks, given
by

Lf (1̃) = L̃(1̃)+
p∑

i,j=1

hλ

(
∥1̃

(ij)
∥

)
(51)

where, for u ∈ R, hλ(u) is a penalty function that is a function
of |u|. The penalty operates on the group 1̃

(ij)
∈ CM , instead

of individual elements of 1̃.
The following penalty functions are considered:

(1) Lasso. For some λ > 0, hλ(u) = λ|u|, u ∈ R. It is a
convex function that is widely used.

(2) Log-sum. For some λ > 0 and 1 ≫ ϵ > 0, hλ(u) =
λϵ ln

(
1+ |u|

ϵ

)
. It is a nonconvex function.

(3) SCAD. For some λ > 0 and a > 2, hλ(u) = λ|u| for
|u| ≤ λ,= (2aλ|u|−|u|2−λ2)/(2(a−1)) for λ < |u| <
aλ, and = λ2(a + 1)/2 for |u| ≥ a. It is a nonconvex
function.

In [47] the log-sum penalty is defined as hλ(u) = ln(1+λ|u|)
whereas in [17], it is defined as hλ(u) = λ ln

(
1+ |u|

ϵ

)
.

We follow [17] but modify it so that, as for the lasso and
SCAD penalties, our hλ(u) yields limu→0+ h′λ(u) = λ where
h′λ(u) :=

dhλ(u)
du .

V. OPTIMIZATION
The objective function Lf (1̃) is non-convex in1 for the non-
convex SCAD and log-sum penalties, and convex for the lasso
penalty. Now we discuss an ADMM approach, following the
ADMM approach discussed in Sec. II-C for lasso, to attain a
local minimum of Lf (1̃) for the non-convex SCAD and log-
sum penalties, and a global minimum for the lasso penalty.

For non-convex hλ(u), we use a local linear approximation
(LLA) (as in [19], [22]), to yield

hλ(u) ≈ hλ(|u0|)+ h
′

λ(|u0|)(|u| − |u0|) → h′λ(|u0|)|u| ,
(52)

where h′(x) = dh(x)/dx, u0 is an initial guess, and the
gradient of the penalty function is

h′λ(|u0|) =



λϵ
|u0|+ϵ

for log-sum,
λ, if |u| ≤ λ
aλ−|u|
a−1 , if λ < |u| ≤ aλ

0, if aλ < |u|
for SCAD.

(53)

Therefore, with u0 fixed, we need to consider only the term
dependent upon u for optimization w.r.t. u :

hλ(u) → h′λ(|u0|) |u| . (54)

By [22, Theorem 1], the LLA provides a majorization of
the non-convex penalty, thereby yielding a majorization-
minimization approach. By [22, Theorem 2], the LLA is the
best convex majorization of the LSP and SCAD penalties.

With some initial guess ¯̃1 = [1̄1, 1̄2, · · · , 1̄M], in LSP
we replace

hλ

(
∥1̃

(ij)
∥

)
→ λij :=

λϵ

∥
¯̃
1(ij)
∥ + ϵ

. (55)

The solution ˆ̃1lasso to the convex lasso-penalized objective
function may be used as an initial guess with ¯̃1 = ˆ̃1lasso.
Similarly, for SCAD, we have

λij =


λ, if ∥ ¯̃1(ij)

∥ ≤ λ
aλ−∥ ¯̃1(ij)

∥

a−1 , if λ < ∥
¯̃
1(ij)
∥ ≤ aλ

0, if aλ < ∥
¯̃
1(ij)
∥

. (56)

With LLA, the original objective function is transformed to
its convex LLA approximation

L̃f (1̃) = L̃(1̃)+
p∑

i,j=1

λij∥1̃
(ij)
∥ . (57)

For lasso, we have λij = λ∀i, j. If ¯̃1(ij)
= 0, we obtain λij =

λ∀i, j.
We follow an ADMM approach following the ADMM

approach discussed in Sec. II-C for lasso, for both lasso
and LLA to LSP/SCAD. For non-convex penalties, we have
an iterative solution: first solve with lasso penalty, then use
this solution for initialization to LLA and solve again the
LLA convex problem. In practice, just two iterations seem to

204570 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

be enough. Using variable splitting and adding the equality
constraint W̃ = 1̃ with W̃ = [W1 · · · WM], W k ∈ Cp×p

for k ∈ [M], consider (W̃
(ij)

is defined similar to (48))

min
1̃,W̃

{
L̃f (1̃)+

p∑
i,j=1

λij∥W̃
(ij)
∥

}
, (58)

subject to 1̃ = W̃ , (59)

where, in the penalty, we use W̃ instead of 1̃. Let Ũ =
[U1 · · · UM], Uk ∈ Cp×p for k ∈ [M], denote the dual
variables and ρ > 0 denote the penalty parameter in the
ADMMalgorithm. The scaled augmented Lagrangian for this
problem is [31]

L̃ρ(1̃, W̃ , Ũ) = L̃f (1̃)+
p∑

i,j=1

λij∥W̃
(ij)
∥

+
ρ

2

M∑
k=1

∥1k −W k + Uk∥
2
F . (60)

Following Sec. II-C, given the results 1̃
(m)

, W̃
(m)

, Ũ
(m)

of the mth iteration, in the (m + 1)st iteration, an ADMM
algorithm executes the following three updates:

(i) 1̃
(m+1)

← argmin
1̃

∑M
k=1 L̃ak (1k) where

L̃ak (1k) = L(1k , Ŝxk , Ŝyk)+
ρ

2
∥1k −W

(m)
k +U

(m)
k ∥

2
F .

(ii) W̃
(m+1)

← argminW̃ L̃b(W̃) where

L̃b(W̃) =
ρ

2

M∑
k=1

∥1
(m+1)
k −W k + U

(m)
k ∥

2
F

+

p∑
i,j=1

λij∥W̃
(ij)
∥ .

(iii) Ũ
(m+1)

← Ũ
(m)
+ 1̃

(m+1)
− W̃

(m+1)
.

Some details regarding updates (i) and (ii) are given below.
Update (i): The optimization in step (i) is separable in1k ,

and the solution discussed in Sec. II-C applies. Perform the
eigen-decomposition of Ŝxk and Ŝyk as Ŝxk = QxkDxkQ

H
xk and

Ŝyk = QykDykQ
H
yk where Dxk and Dyk are diagonal matrices,

QxkQ
H
xk = Ip andQykQ

H
yk = Ip. Define a matrixD(k)

∈ Rp×p

that organizes the diagonal of (Dyk ⊗ Dxk +
ρ
2 Ip2)

−1 in a
matrix with the (i, j)th element [D(k)]ij = 1/([Dxk]ii[Dyk]jj +
ρ
2). Then, for k ∈ [M], we have

1
(m+1)
k = Qxk

[
D(k)
◦
[
QHxk

(
Ŝxk − Ŝyk

+
ρ

2
(W (m)

k − U
(m)
k)

)
Qyk

]]
QHyk . (61)

Update (ii): The optimization in step (ii) is separable in
W̃

(ij)
, and the solution discussed in Sec. II-C applies with

λ → λij. With Ak = 1
(m+1)
k + U (m)

k , (b)+ = max(0, b),
and for k ∈ [M] and i, j ∈ [p],

[W (m+1)
k]ij =

(
1−

λij

ρ∥Ã
(ij)
∥

)
+

[Ak]ij , (62)

where Ã
(ij)
=
[
[A1]ij, · · · , [AM]ij

]⊤
∈ CM . (63)

Algorithm 1 ADMM Algorithm for Solving (60)

Input: PSD estimators Ŝxk and Ŝyk , k ∈ [M] (computed
using (42) and (43)), regularization and penalty parameters
λij (i, j ∈ [p]) and ρ = ρ̄, tolerances τabs and τrel , variable
penalty factor µ̄, maximum number of iterationsmmax. Initial
guess 1̄k , k ∈ [M].
Output: Estimated 1̂k , k ∈ [M].
1: Initialize:1(0)

k = 1̄k ,U
(0)
k = W (0)

k = 0, k ∈ [M], ρ(0)
=

ρ̄

2: Eigen-decompose Ŝxk and Ŝyk as Ŝxk = QxkDxkQ
H
xk and

Ŝyk = QykDykQ
H
yk , k ∈ [M].

3: converged = false, m = 0
4: while converged = false and m ≤ mmax, do
5: For k ∈ [M], construct D(k)

∈ Rp×p with [D(k)]ij =

1/([Dxk]ii[Dyk]jj +
ρ(m)

2).

6: For k ∈ [M], set 1(m+1)
k = Qxk

[
D(k)
◦
[
QHxk

(
Ŝxk −

Ŝyk +
ρ
2 (W

(m)
k − U

(m)
k)

)
Qyk

]]
QHyk .

7: For k ∈ [M], define Ak = 1
(m+1)
k + U (m)

k and Ã
(ij)
=[

[A1]ij, · · · , [AM]ij
]⊤. For k ∈ [M] and i, j ∈ [p],

[W (m+1)
k]ij =

(
1− λij

ρ(m) ∥Ã
(ij)
∥

)
+

[Ak]ij.

8: Dual update U (m+1)
k ← U (m)

k +1
(m+1)
k −W (m+1)

k , k ∈
[M].

9: Check convergence. With e1, e2, e3, R(m+1)
p , R(m+1)

d ,
τpri and τdual as defined in (64)-(70), respectively, let
dp = ∥R(m+1)

p ∥F and dd = ∥R
(m+1)
d ∥F . If (dp ≤

τpri) and (dd ≤ τdual), set converged = true.
10: Update penalty parameter ρ :

ρ(m+1)
=


2ρ(m) if dp > µ̄ dd
ρ(m)/2 if dd > µ̄ dp
ρ(m) otherwise .

We also need to set U (m+1)
= U (m+1)/2 for dp > µ̄dd

and U (m+1)
= 2U (m+1) for dd > µ̄dp.

11: m← m+ 1
12: end while
13: With1k , k ∈ [M], denoting the converged estimates, set

1̂k = (1k +1
H
k)/2, k ∈ [M], and

ˆ̃
1 = [1̂1, 1̂2, · · · , 1̂M] .

A pseudocode for the ADMM algorithm to solve (60)
is given in Algorithm 1 where we use the stopping
(convergence) criterion following [31, Sec. 3.3.1] and varying
penalty parameter ρ following [31, Sec. 3.4.1]. The variables
defined in (64)-(70) are needed in Algorithm 1 with 1(m+1)

k ,
W (m+1)

k , U (m+1)
k as defined therein:

e1 = ∥[1
(m+1)
1 , · · · ,1

(m+1)
M]∥F (64)

e2 = ∥[W
(m+1)
1 , · · · ,W (m+1)

M]∥F (65)

VOLUME 13, 2025 204571

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

e3 = ∥[U
(m+1)
1 , · · · ,U (m+1)

M]∥F (66)

R(m+1)
p =

[
1

(m+1)
1 −W (m+1)

1 , · · · , 1
(m+1)
M −W (m+1)

M

]
(67)

R(m+1)
d = ρ(m)

[
W (m+1)

1 −W (m)
1 , · · · , W (m+1)

M −W (m)
M

]
(68)

τpri = p
√
M τabs + τrel max(e1, e2) (69)

τdual = p
√
M τabs + τrel e3/ρ(m) . (70)

Our overall ADMM-based optimization algorithm is as
follows.
1. Given M and K = 2mt + 1, calculate Ŝxk and Ŝyk , k ∈

[M] (computed using (42) and (43)). Initialize iteration
m̃ = 0, 1̃

(0)
= 0, ¯̃1 = [1̄1, 1̄2, · · · , 1̄M] = 1̃

(0)

and use ¯̃1 to compute λij’s.
2. Execute Algorithm 1 with initial guess ¯̃1. Denote the

resulting estimate by ˆ̃1. Let m̃← m̃+ 1.
3. Quit if using lasso, else set 1̃

(m̃)
=
ˆ̃
1 and ¯̃1 = 1̃

(m̃)
to

re-compute λij’s via the LLA.
4. Repeat steps 2 and 3 until convergence.

A pseudocode for the above ADMM algorithm is given in
Algorithm 2. It utilizes Algorithm 1 in each LLA step.

For the numerical results in Secs. VII and VIII, we used
µ̄ = 10, ρ̄ = 2, ϵ = 0.001 for log-sum penalty, a = 3.7
(as in [18], [19]) for the SCAD penalty, τabs = τrel = 10−4,
mmax = 200, and m̃max = 1 for lasso and = 2 for LSP and
SCAD penalties.

A. CONVERGENCE
The LLA-based objective function L̃f (1̃), given by (57),
is convex in 1̃ (cf. Sec. III-A3). It is also closed, proper
and lower semi-continuous. Hence, for any fixed ρ > 0, the
ADMMalgorithm is guaranteed to converge [31, Sec. 3.2 and
Appendix A], in the sense that we have primal residual (67)
convergence to 0, dual residual (68) convergence to 0, and the
objective function L̃f (1̃) convergence to the optimal value.

B. BIC FOR TUNING PARAMETER SELECTION
Given n and the chosen K and M , for model selection
we follow a BIC-like criterion similar to as given in [8,
Sec. III-E] (which follows [5] who invokes [12]) for time-
domain approaches. Let |A|0 denote the number of nonzero
elements in A and suppose that ˆ̃1 = [1̂1, 1̂2, · · · , 1̂M]
minimizes (51). We choose λ to minimize BIC(λ) given by

BIC(λ) = 4K
M∑
k=1

∥Ŝxk1̂k Ŝyk − (Ŝxk − Ŝyk)∥F

+ ln(4K)
M∑
k=1

|1̂k |0 . (71)

Following [5] we use the term BIC (Bayesian information
criterion) for it even though the cost function used is not neg-
ative log-likelihood although ln(4K)

∑M
k=1 ∥1̂k∥0 penalizes

Algorithm 2 LLA-Based ADMM Algorithm for Optimiz-
ing (51)

Input: PSD estimators Ŝxk and Ŝyk , k ∈ [M] (computed
using (42) and (43)), regularization and penalty parameters
λ and ρ = ρ̄, tolerances τabs and τrel , variable penalty factor
µ̄, maximum number of iterations m̃max. For lasso penalty,
m̃max = 1
Output: Estimated 1̂k , k ∈ [M], and edge-set
Ê1

1: Initialize 1̃
(0)
= 0 and ¯̃1 = [1̄1, 1̄2, · · · , 1̄M] =

1̃
(0)
∈ Cp×pM . Set λij = λ, i, j ∈ [p].

2: m̃ = 1
3: while m̃ ≤ m̃max, do
4: Execute Algorithm 1, resulting in output ˆ̃1. Set

1̃
(m̃)
=
ˆ̃
1.

5: if LSP/SCAD then
6: Set ¯̃1 = 1̃

(m̃)
and re-compute λij’s via the LLA (55)

or (56).
7: end if
8: m̃← m̃+ 1
9: end while

10: With1k , k ∈ [M], denoting the converged estimates, set
1̂k = (1k +1

H
k)/2, k ∈ [M], and

ˆ̃
1 = [1̂1, 1̂2, · · · , 1̂M] .

If ∥ ˆ̃1(ij)
∥ > 0 assign edge {i, j} ∈ Ê1, else {i, j} ̸∈ Ê1.

over-parametrization as in BIC. It is based on the fact that
true 1⋄k satisfies S⋄xk1

⋄

kS
⋄

yk − (S⋄xk − S⋄yk) = 0. Since (71)
is not scale invariant, we scale both Ŝxk and Ŝyk (and 1̂k

commensurately) by 6̄
−1

where 6̄ = diag{6̂x} is a diagonal
matrix of diagonal elements of 6̂x =

1
nx

∑nx
t=1 x(t)x

⊤(t) (we
have nx = ny = n in this paper). We have M models, each
with K complex measurements dx(f̃k,ℓ) and dy(f̃k,ℓ), leading
to 4K real samples for each model: (71) reflects that.
In our numerical results we search overλ ∈ [λℓ, λu], where

λℓ and λu are selected via a heuristic as in [8]. Find the
smallest λ, labeled λsm for which we get a no-edge model;
then we set λu = λsm/2 and λℓ = λu/10.

VI. THEORETICAL ANALYSIS
Here we analyze some properties (consistency in inverse PSD
difference estimation and graph recovery) of the minimizer of
the convex function L̃f (1̃) specified by (57), by following the
approach of [20]. The approach of [20] requires λij > 0 for
every i, j ∈ p, a condition that is violated by the SCAD
penalty. Therefore, our theoretical analysis applies to the
lasso and the log-sum penalties only.

Define the true differential edgeset E⋄1 and its cardinality s,

E⋄1 =
{
{i, j} : [(S⋄y (f))

−1
− (S⋄y (f))

−1]ij ̸≡ 0,

0 ≤ f ≤ 0.5
}

, s = |E⋄1| . (72)

204572 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

In the rest of this section, we allow p, K = 2mt + 1,M , s and
λ to be a functions of sample size n, denoted as pn, Kn, Mn,
sn and λn, respectively. With τ > 2, define

Bxy = max
f ∈[0,0.5]

{
∥S⋄x (f)∥∞ , ∥S⋄y (f)∥∞

}
, (73)

Bd = max
f ∈[0,0.5]

∥(S⋄y (f))
−1
− (S⋄x (f))

−1
∥∞ , (74)

φ⋄min = min
f ∈[0,0.5]

{
φmin(S⋄x (f))× φmin(S⋄y (f))

}
, (75)

σxy = max
f ∈[0,0.5],ℓ∈[p]

{
[S⋄x (f)]ℓℓ , [S⋄y (f)]ℓℓ

}
, (76)

C0 = 80 σxy

√
2
(
ln(16pτ

nMn)/ ln(pn)
)
, (77)

N1 = argmin
n

{
n : Kn > 2 ln(16pτ

nMn)
}

, (78)

N2 = argmin
n

{
n : Kn > C2

0 ln(pn)/Bxy
}

, (79)

N3 = argmin
n

{
n :

√
Kn/Mn ≥

768BxyB2initsnC0
√
ln(pn)/φ⋄min

}
, (80)

Binit =

 1 : lasso

1+ max
i,j∈[p]

∥
¯̃
1(ij)
∥/ϵ : log-sum (81)

where ¯̃1 is the initialization for LLA to the log-sum penalty
(see (55)).

Let ˆ̃1 = argmin
1̃
L̃f (1̃) where L̃f (1̃) is specified in (57).

The proof of Theorem 1 is given in the Appendix B.
Theorem 1: Under assumptions (A1)-(A2), if

λn ≥ 2Binit
√
Mn
(
6BxyBd sn + 4

)
C0

√
ln(pn)
Kn

, (82)

n ≥ max{N1,N2,N3} , (83)

then with probability > 1− 2/pτ−2
n , we have

∥
ˆ̃
1− 1̃

⋄
∥F =

√√√√ Mn∑
k=1

∥1̂k −1
⋄

k∥
2
F ≤

4
√
sn λn

φ⋄min
(84)

for any τ > 2.
Remark 1 (Convergence Rate): If Bxy, σxy, φ⋄min and Bd

stay bounded with increasing sample size n, we have ∥ ˆ̃1 −
1̃
⋄
∥F = OP(s1.5n

√
Mn ln(pn)/Kn). Therefore, for ∥ ˆ̃1 −

1̃
⋄
∥F → 0 as n→∞, we must have s1.5n

√
Mn ln(pn)/Kn)→

0. Note that KnMn ≈ n/2, therefore, for ∥ ˆ̃1− 1̃
⋄
∥F → 0 as

n→∞, we need s1.5n
√
n ln(pn)/K 2

n)→ 0. □
We now address graph recovery. We follow the proof

technique of [9, Theorem 10] in establishing Theorem 2
whose proof is in the Appendix B. For some γn > 0, define

Ê1 =

{
{i, j} : ∥ ˆ̃1(ij)

∥ > γn > 0
}

, (85)

Ẽ⋄1 =
{
{i, j} : ∥(1̃

⋄
)(ij)∥ > 0

}
, (86)

σ̄n =
4
√
sn λn

φ⋄min
, (87)

ν = min
{i,j}∈E⋄1

∥
(
(S⋄y (f))

−1
− (S⋄x (f))

−1)(ij)
∥ , (88)

N4 = argmin
{
n : σ̄n ≤ 0.4ν

}
. (89)

Theorem 2: For γn = 0.5ν and n ≥ N4, Ê1 = Ẽ⋄1 with
probability> 1−2/pτ−2

n under the conditions of Theorem 1.

VII. SYNTHETIC DATA EXAMPLES
We now present numerical results using synthetic data to
illustrate the proposed approach (real data results are in
Sec. VIII). In synthetic data examples the ground truth is
known and this allows for assessment of the efficacy of
various approaches in graph learning.

A. GRAPHS WITH 120 NODES
We consider two models for time-dependent data generation
with p = 120.

1) AR MODEL
The time series data {x(t)}, x(t) ∈ Rp, is generated using
a vector autoregressive (AR) model of order 3 (VAR(3))
as follows. Let {w(t)}, w(t) ∈ Rp, denote an i.i.d. zero-
mean Gaussian sequence with precision matrix � and let
square matrices Ai ∈ Rp×p, i ∈ [3], be block-diagonal with
15× 15 sub-blocks A(q)

i , q ∈ [8]. Then {x(t)} is generated as

x(t) =
3∑
i=1

Aix(t − i)+ w(t) . (90)

The diagonal entries of � are set to 0.5, and the off-
diagonal entries follow an Erdös-Rènyi (ER) graph with
connection probability per = 0.001: if nodes j and k are
not connected in the ER graph, we have [�]jk = 0, and if
they are connected, then [�]jk is uniformly distributed over
[−0.4,−0.1] ∪ [0.1, 0.4]. Only 20% of entries of A(q)

i ’s are
nonzero (randomly picked) and the nonzero elements are
independently and uniformly distributed over [−0.8,−0.3]∪
[0.3, 0.8]. We then check if the VAR(3) model is stable with
all eigenvalues of the companionmatrix≤ 0.95 inmagnitude;
if not, the we scale Ai’s to fulfill this condition (see [27,
Sec. VI.A], [48, Sec. 6.1]). To generate y-data, we randomly
eliminate one of the 8 clusters (A(q)

i ’s for randomly picked q)
of x(t) and replace it with an independently generated A(q)

i ,
i ∈ [3].

2) MA MODEL
Here the time series data {x(t)}, x(t) ∈ Rp, is generated using
a vector moving average (MA) model of order 3 (MA(3)) as
follows. Let {w(t)}, w(t) ∈ Rp, with precision matrix�, be as
for the ARmodel, and let square matrices Bi ∈ Rp×p, i ∈ [3],
be block-diagonal with 15×15 sub-blocksB(q)

i , q ∈ [8]. Then
{x(t)} is generated as

x(t) = 0.5Ipw(t)+
3∑
i=1

(Bi/i)w(t − i) . (91)

VOLUME 13, 2025 204573

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

FIGURE 1. True log10
(∑

f =0:0.01:5 |[S⋄
x (f)]ij |

)
(left), log10

(∑
f =0:0.01:5 |[S⋄

y (f)]ij |
)

(middle), and log10
(∑

f =0:0.01:5
|[(S⋄

y (f))−1 − (S⋄
x (f))−1]ij |

)
(right), i, j ∈ [120], for the AR model, for a single Monte Carlo run: p = 120 nodes.

FIGURE 2. True log10
(∑

f =0:0.01:5 |[S⋄
x (f)]ij |

)
(left), log10

(∑
f =0:0.01:5 |[S⋄

y (f)]ij |
)

(middle), and log10
(∑

f =0:0.01:5
|[(S⋄

y (f))−1 − (S⋄
x (f))−1]ij |

)
(right), i, j ∈ [120], for the MA model, for a single Monte Carlo run: p = 120 nodes.

We pick� as for the ARmodel. Only 25% of entries of B(q)
i ’s

are nonzero (randomly picked) and the nonzero elements are
independently and uniformly distributed over [−0.4,−0.2]∪
[0.2, 0.4]. To generate y-data, we randomly eliminate one
of the 8 clusters (B(q)

i ’s for randomly picked q) of x(t) and
replace it with an independently generated B(q)

i , i ∈ [3], with
nonzero entries uniformly distributed over [−0.2, 0.2].
For both models, the first 100 samples are discarded

to eliminate transients, and we generate n = nx = ny
observations for x(t) and y(t), with n ∈ {512, 2048, 4096}.
In each run, we calculate the true PSDs S⋄x (f) and S⋄y (f)
for f ∈ [0, 0.5] at intervals of 0.01. Let F denote
the number of frequencies points in [0, 0.5] at inter-
vals of 0.01. Define 1⋄(f) = (S⋄y (f))

−1
− (S⋄x (f))

−1,
b = maxi,j∈[p](1/F)

∑
f |[(S

⋄
x (f))

−1]ij|, and dij =

(1/F)
∑

f |[1
⋄(f)]ij|. In each run, we take {i, j} ∈ E⋄1 if

dij > τb, else {i, j} ̸∈ E⋄1, where the threshold τ = 0.001 for
the MA model and = 0.01 for the AR model. To avoid very
‘‘peaky’’ inverse PSDs, if b > 50, 000 we redraw the samples
till this condition is satisfied: it is needed for the MAmodels.
For a typical realization (run), Figs. 1 and 2 show heatmaps
of log10

(∑
f=0:0.01:5 |[S

−1(f)]ij|
)
, i, j ∈ [120], for the AR

and MA models, respectively. For the chosen AR model,
the percentage of distinct connected edges in the differential
graph turn out to be 2.0± 0.4% and for the MA model, they
are 2.0± 1.0%.

Simulation results based on 100 runs are shown in
Table 1 where the performance measures are F1-score and
Hamming distance (between the estimated and true edgesets)
for efficacy in edge detection, and timing per run as a
surrogate for computational complexity. All algorithms were
run on a Window 11 Enterprise operating system with
processor Intel(R) Core(TM) i7-10700 CPU @2.90 GHz
with 32GBRAM, usingMATLABR2023a.We implemented
our three proposed approaches, labeled ‘‘DTS-FD, log-sum’’,
‘‘DTS-FD, lasso’’ and ‘‘DTS-FD, SCAD’’ (DTS stands for
dependent time series and FD stands for frequency-domain)
using log-sum, lasso and SCAD penalties, respectively. For
comparison, we implemented two approaches that assume
the data is i.i.d. and they are time-domain approaches
based on sample covariances. One of them is based on [6]
which minimizes lasso-penalized (1) based on difference
of precision matrices (labeled ‘‘IID, lasso’’) and the other
follows the recent approach of [30] (labeled ‘‘IID, log-sum’’)
and it minimizes log-sum-penalized (1) based on difference
of precision matrices. Although the approach of [30] is
aimed at multi-attribute graphs, the approach therein applies
to our problem by setting the number of attribute to one.
For our proposed frequency-domain approaches, we used
M = 2, 4, 5 (K = 127, 255, 409) for the MA model and
M = 2, 4, 6 (K = 127, 255, 341) for the AR model, for
n = 512, 2048, 4096, respectively.

204574 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

TABLE 1. F1 scores, Hamming distances and timings for the synthetic data examples (p = 120), averaged over 100 runs (standard deviation σ in
parentheses). ‘‘DTS-FD, log-sum’’, ‘‘DTS-FD, lasso’’ and ‘‘DTS-FD, SCAD’’ are the proposed approaches with log-sum, lasso and SCAD penalties, respectively,
‘‘IID, lasso’’ is the time-domain approach of [6] (also [5]) with lasso penalty, and ‘‘IID, log-sum’’ is the time-domain approach of [30] with log-sum penalty.

It is seen from Table 1 that our log-sum-penalized graph
estimator significantly outperforms our lasso based graph
estimator which in turn, significantly outperforms the lasso
based methods of [5] and [6], yielding higher F1 scores and
lower Hamming distances (ideal F1 score is 1 and ideal
Hamming distance is 0). The performance of our SCAD-
penalized graph estimator in Table 1 is similar to that of
our lasso based graph estimator showing little improvement.
While the log-sum penalized ‘‘IID, log-sum’’ method of [30]
improves upon ‘‘IID, lasso’’, it is significantly inferior to our
proposed ‘‘DTS-FD: log-sum’’.

The improvement in performance with log-sum penalty
over lasso (e.g., ‘‘DTS-FD, log-sum’’ over ‘‘DTS-FD,
lasso’’), and with dependent time-series (DTS-FD) modeling
over i.i.d. data modeling (IID) approaches, comes at the cost
of much increased computational time. For the MA model,
we see from Table 1 that for sample sizes of n = 512 and
4096, ‘‘DTS-FD, log-sum’’ approach yields F1 scores of
0.46 and 0.91, respectively, compared to the ‘‘DTS-FD,
lasso’’ F1 scores of 0.28 and 0.58, respectively, which
represent improvements by 84% and 44% (log-sum over
lasso), respectively. But the computational cost (timing per
run) increases (log-sum over lasso) by factors of 2.29 and
2.28 for n = 512 and 4096, respectively. Note that the
log-sum solution uses the lasso solution as an initial guess
for LLA, and the lasso timing is included in the log-sum
timing. One would expect the log-sum solution timing to
be approximately twice the lasso timing: solve with lasso,
use lasso-based LLA to obtain λij’s and solve again using

ADMM. On the other hand, we see little improvement in the
F1 score over lasso with the SCAD penalty even though the
computational cost for SCAD is comparable to that for log-
sum penalty.

For the AR model, we see smaller (compared to the MA
model) yet significant improvements in the F1 scores with
log-sum penalty over lasso in Table 1. For sample sizes of
n = 512 and 4096, ‘‘DTS-FD, log-sum’’ approach yields
F1 scores of 0.54 and 0.82, respectively, compared to the
‘‘DTS-FD, lasso’’ F1 scores of 0.40 and 0.69, respectively,
which represent improvements by 26% and 19% (log-sum
over lasso), respectively. The timing per run increases (log-
sum over lasso) by factors of 1.68 and 1.63 for n = 512 and
4096, respectively.

When analyzing the trade-off between performance and
computational time for lasso and log-sum penalties, the
Hamming distance performance measure seems to provide
a ‘‘better’’ metric. The Hamming distance between the true
and the estimated graph edgeset is the sum of the number of
distinct incorrect edges in the estimated edgeset (a true edge
is missing, or an edge missing from true edgeset is present
in the estimated edgeset). For the MA model, for sample
sizes of n = 512 and 4096, ‘‘DTS-FD, lasso’’ approach
yields Hamming distances of 373.5 and 146.4, respectively,
compared to the ‘‘DTS-FD, log-sum’’ Hamming distances of
128.9 and 37.2, respectively, which represent reductions by
factors of 2.90 and 3.93 (log-sum over lasso), respectively.
For the AR model, for sample sizes of n = 512 and 4096,
‘‘DTS-FD, lasso’’ approach yields Hamming distances of

VOLUME 13, 2025 204575

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

FIGURE 3. ROC curves: ‘‘DTS-FD, log-sum’’ is the proposed approach with log-sum penalty, ‘‘DTS-FD, lasso’’ is the proposed approach with lasso
penalty, and ‘‘IID, lasso’’ is the time-domain approach of [6] (also [5]) with lasso penalty. TPR=true positive rate, TNR=true negative rate.

TABLE 2. F1 scores, Hamming distances and timings for AR(3) model with p ∈ {60,120,240}, averaged over 100 runs (standard deviation σ in
parentheses). ‘‘DTS-FD, log-sum’’ and ‘‘DTS-FD, lasso’’ are the proposed approaches with log-sum and lasso penalties, respectively. Also shown is the
normalized Hamming distance which is the Hamming distance divided by total number of distinct edges in the differential graph, expressed as
percentage.

203.1 and 98.7, respectively, compared to the ‘‘DTS-FD, log-
sum’’ Hamming distances of 125.0 and 50.4, respectively,
which represent reductions by factors of 1.62 and 1.96 (log-
sum over lasso), respectively. Thus we have reduction in
the Hamming distance by factors of 2.90 and 3.93 with a
computational cost increase by factors of 2.29 and 2.28 for
n = 512 and 4096, respectively, for the MA model, and
reduction in the Hamming distance by factors of 1.62 and
1.96 with a computational cost increase by factors of 1.68 and
1.63 for n = 512 and 4096, respectively, for the AR model.
Since the main objective of differential graph learning is

determination of the true edgeset, such a trade-off seems to
be reasona

In Table 1, λ’s were first picked from a grid of values to
maximize the F1 score (ground truth is known in synthetic
data examples) – this establishes how well a method will
perform if λ’s are judiciously picked. For log-sum penalty we
also show the results when λ’s are selected to minimize the
BIC criterion of Sec. V-B. We see that the heuristic BIC-type
criterion performs well.

The receiver operating characteristic (ROC) curves are
shown in Fig. 3 for three approaches ‘‘DTS-FD, log-

204576 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

sum’’, ‘‘DTS-FD, lasso’’ and ‘‘IID, lasso’’. By changing the
penalty parameter λ and determining the resulting edges over
100 runs, we calculated the true positive rate (TPR) which
calculates true edges correctly detected (∥ ˆ̃1(ij)

∥ ̸= 0 and
∥(1̃
⋄
)(ij)∥ ̸= 0), and false positive rate 1-TNR (where TNR

is the true negative rate) which are the edges {i, j} for which
∥
ˆ̃
1(ij)
∥ ̸= 0 but ∥(1̃

⋄
)(ij)∥ = 0. It is seen from Fig. 3 that our

log-sum-penalized graph estimator significantly outperforms
both the ‘‘IID, lasso’’ approach and our lasso based graph
estimator, yielding much higher TPR for a given 1-TNR,
consistent with the results of Table 1.

B. GRAPHS WITH VARYING NUMBER OF NODES
We now consider AR(3) models for time-dependent data
generation with varying number of graph nodes p ∈

{60, 120, 240}. The objective is to empirically study the
performance stability of the proposed solutions with varying
model dimensions. The AR(3) model follows (90) where
Ai ∈ Rp×p, i ∈ [3], is block-diagonal with
(i) six 10× 10 sub-blocks A(q)

i , q ∈ [6], when p = 60,
(ii) eight 15 × 15 sub-blocks A(q)

i , q ∈ [8], when p = 120
(as in Sec. VII-A),

(iii) eight 30× 30 sub-blocks A(q)
i , q ∈ [6], when p = 240.

All other details regarding generation of �, A(q)
i ’s, {x(t)} and

{y(t)} are exactly as before in Sec. VII-A. The percentage of
distinct connected edges in the differential graphs turn out
to be 3.0 ± 1.0%, 2.0 ± 0.4% and 2.0 ± 0.2% for p = 60,
p = 120 and p = 240, respectively.

Simulation results based on 100 runs are shown in Table 2
for the proposed ‘‘DTS-FD, lasso’’ and ‘‘DTS-FD, log-sum’’
approaches where the performance measures, as in Table 1,
are the F1-score, the Hamming distance and timing per run.
The results for p = 120 are as in Table 1. Since the number of
distinct connected edges in the differential graph vary with p,
we also show the normalized Hamming distance which is the
Hamming distance divided by total number of distinct edges
in the differential graph, expressed as percentage. As for
Table 1, we used M = 2, 4, 6 (K = 127, 255, 341) for
all AR models, for n = 512, 2048, 4096, respectively. The
number of unknowns in 1k is p2, therefore, the number of
unknowns being estimated is Mp2. It is seen in Table 2 that
the F1 score decreases and the Hamming distance increases
(i.e., the performance deteriorates) with increasing dimension
p for the same sample size n since the number of unknowns
being estimated increases. The performance is stable with
increasing p as the performance improves with increasing
n, and the deterioration in the performance measures with
increasing p for fixed n is ‘‘gradual.’’

VIII. REAL DATA: FINANCIAL TIME SERIES
Here we investigate differences in the time series graphical
models of the share prices of 97 stocks in the S&P 100 index
over two different time periods: Jan. 2, 2013 to Jan. 14,
2015 and Dec. 17, 2015 to Jan. 1, 2018. In the real data
example our goal is visualization and exploration of the

differential conditional dependency structure underlying the
data since the ground truth is unknown. The selection of the
duration of each period leads to equal number of samples in
the two time periods.

We consider daily share prices (at close of the day) of
97 stocks in the S&P 100 index from Jan. 1, 2013 through
Jan. 1, 2018. This data was gathered from Yahoo Finance
website. If zm(t) is share price of mth stock on day t , we pre-
process to create xm(t) = ln(zm(t)/zm(t − 1)) as the time
series to analyze. Such transformations are common in the
analysis of financial time series. For instance, such pre-
processing is used in [15, Sec. 5.2] for topology selection for
graphical models for international stock market data, and in
[49, Sec. 5.2] for analyzing GDP growth, total manufacturing
production growth and consumer price index core inflation
data. We have xm(t) = ln(zm(t)) − ln(zm(t − 1)) which
implies that we first perform log(·) transformation (generally
believed tomake data ‘‘more Gaussian’’), followed by lag one
differencing to make the data close to univariate uncorrelated
and stationary.

The 97 stocks in the S&P 100 index are classified into
11 sectors (according to the Global Industry Classification
Standard (GISC)) and we order the nodes to group them as
information technology (nodes 1-12), health care (13)-(27),
financials (28)-(44), real estate (45)-(46), consumer discre-
tionary (47)-(56), industrials (57)-(68), communication ser-
vices (69)-(76), consumer staples (77)-(87), energy (88)-(92),
materials (93), utilities (94)-(97). For each m, xm(t) was
centered and normalized to unit variance. The pre-processed
data from Jan. 2, 2013 to Jan. 14, 2015 was taken as the x-
data and that from Dec. 17, 2015 to Jan. 1, 2018 (each series
with 512 samples) was taken as the y-data. The resulting
differential graphs are shown in Fig. 4. The tuning parameter
λ as selected as discussed in Sec. V-B. The proposed log-
sum penalty yields the sparsest graph with 151 edges. Some
of the ‘‘strongly’’ connected nodes (thicker lines and higher
degrees) in Fig. 4(d) are Apple (labeled node 1), Meta (72),
Alphabet (73), Microsoft (8), Visa (43), Amazon (47), Abbott
Labs (14) and American Express (30). The IID model based
differential graphs in Figs. 4(a) and 4(b) are just too dense.

IX. CONCLUSION
Estimation of differences in CIGs of two TSGGMs was
investigated where the two TSGGMs are known to have
similar structure. We presented and analyzed a penalized
D-trace loss function approach in the frequency domain for
differential graph learning using both convex (group lasso)
and non-convex (log-sum and SCAD group penalties) reg-
ularization functions. An ADMM algorithm was presented
to optimize the objective function where, for non-convex
penalties, a local linear approximation approach was used.
A model selection method for tuning parameter selection
was also presented. Both synthetic and real data examples
were presented to illustrate the proposed approach where
in synthetic data examples, our frequency-domain based
log-sum-penalized differential time-series graph estimator

VOLUME 13, 2025 204577

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

FIGURE 4. Differential graphs comparing financial time series (S&P 97 stocks share prices) over period Jan. 2, 2013 to Jan. 14,
2015 with that over period Dec. 17, 2015 to Jan. 1, 2018 (each series with 512 samples): (a) time-domain IID model with lasso
penalty [6] (IID, lasso), (b) time-domain IID model with log-sum penalty [30] (IID, log-sum), (c) proposed freq-domain approach
with group lasso penalty (FD-DTS, lasso), (d) proposed freq-domain approach with group log-sum penalty (FD-DTS, log-sum).
In the freq-domain approaches we used M = 2 (mt = 63, K = 127). In the figures the thickness of the lines reflects the strength
of the connection (determined by ∥

ˆ̃
1(ij)∥).

significantly outperformed our frequency-domain based
lasso-penalized differential time-series graph estimator, with
F1 score as the performance metric. Our frequency-domain
estimators significantly outperformed the i.i.d. modeling
based time domain methods of [5] and [6] (lasso penalty)
and [30] (log-sum penalty). The SCAD penalty resulted in
little improvement over our lasso based graph estimator.

Theoretical analysis establishing sufficient conditions for
consistency and graph recovery was presented using the
framework of [20] which however, does not apply to the
SCAD penalty. Exploration of alternative analysis techniques
(e.g., [47]) to handle penalties such as SCAD, and to
analyze (51) instead of its LLA approximation, is of interest.

APPENDIX A
DERIVATION OF (32)
Now we derive (32). By (28)-(30), we have

Ip ⊗ Ip = (Q∗yQ
T
y)⊗ (QxQ

H
x)

=
(
Q∗y ⊗ Qx

)(
QTy ⊗ QHx)

)
=
(
Q∗y ⊗ Qx

)(
Ip ⊗ Ip

)(
QTy ⊗ QHx)

)
(92)

and

6̂
∗

y ⊗ 6̂x =
(
Q∗y ⊗ Qx

)(
Dy ⊗ Dx

)(
QTy ⊗ QHx)

)
. (93)

Let

C = 6̂x − 6̂y +
ρ

2
(W (i)

− U (i)) . (94)

Then by (28) and (31),

vec(1) =
(
Q⊤y ⊗ QHx)

−1 (Dy ⊗ Dx +
ρ

2
Ip ⊗ Ip

)−1
×
(
Q∗y ⊗ Qx

)−1vec(C)
=
(
Q∗y ⊗ Qx

) (
Dy ⊗ Dx +

ρ

2
Ip ⊗ Ip

)−1
×
(
Q⊤y ⊗ QHx

)
vec(C)

=
(
Q∗y ⊗ Qx

) (
Dy ⊗ Dx +

ρ

2
Ip ⊗ Ip

)−1
204578 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

× vec(QHx CQy)

=
(
Q∗y ⊗ Qx

)
vec

(
D ◦ (QHx CQy)

)
= vec

(
Qx
[
D ◦ (QHx CQy)

]
QHy

)
. (95)

The desired (32) follows from (94) and (95).

APPENDIX B
TECHNICAL LEMMAS AND PROOFS OF
THEOREMS 1 AND 2
For theoretical analysis we will use the restricted strong
convexity (RSC) based results from [20] which are given
therein for real-valued vectors variables. Therefore, we first
express our cost L̃f (1̃) in terms of vec(1k), k ∈ [Mn],
and then in terms of vec(Re(1k)) and vec(Im(1k)), before
invoking [20].

With ψk := vec(1k) define

θk : =

[
Re(ψk)
Im(ψk)

]
∈ R2p2 , ψ̄k : =

[
ψk
ψ∗k

]
∈ C2p2 . (96)

Then cost L̃(1̃) of (47) can be re-expressed in terms of ψ̄ks
and θks as

Lc(ψ̃) =
Mn∑
k=1

(1
2
ψ̄
H
k H̄k ψ̄k − ψ̄

H
k b̄k

)
(97)

where

ψ̃ :=
[
ψ̄
⊤

1 · · · ψ̄Mn

]⊤
∈ C2p2Mn , (98)

H̄k :=

[
Ŝ
∗

yk ⊗ Ŝxk 0
0 Ŝyk ⊗ Ŝ

∗

xk

]
∈ C2p2Mn×2p2Mn , (99)

b̄k =

[
vec(Ŝxk − Ŝyk)

vec((Ŝxk − Ŝyk)∗)

]
∈ C2p2Mn , (100)

and

Lr (θ̃) =
Mn∑
k=1

(
θHk Hkθk − 2 θ⊤k bk

)
(101)

where (ι =
√
−1)

θ̃ :=
[
θ⊤1 · · · θ

⊤
Mn

]⊤
∈ R2p2Mn , (102)

Hk :=
1
2
THrcH̄kT rc ∈ R2p2Mn×2p2Mn , (103)

bk :=
1
2
THrc b̄k ∈ R2p2Mn , T̃ rc :=

[
1 ι

1 −ι

]
, (104)

T rc := T̃ rc ⊗ Ip2 ∈ C2p2 , ψ̄k = T rcθk , (105)

and T rc yields real-to-complex transformation [16, Appendix
2]. Note that we have the equalities L̃(1̃) = Lc(ψ̃) = Lr (θ̃).
It is easy to establish that ∥T̃ rc∥ = ∥T rc∥ =

√
2 and

∥T̃ rc∥1,∞ = ∥T rc∥1,∞ = ∥THrc∥1,∞ = ∥T̃
H
rc∥1,∞ = 2.

We now turn our attention to the penalty/regularization
term

∑p
i,j=1 λij∥1̃

(ij)
∥ in (57) andwill express it to conform to

the framework of [20]. Note that the term 1̃
(ij)

corresponds to

the edge {i, j} of the graph. We denote its real-valued version
as

θ̃Gt =
[
Re(1̃

(ij)
)⊤ Im(1̃

(ij)
)⊤
]⊤
∈ R2Mn (106)

(subscript G for grouped variables [20]), with index t ∈ [p2],
(i, j) ↔ t = (i − 1)p + j and i = ⌊t/p⌋ + 1, j = t mod p.
Using this notation, we have (we now denote λ by λn)

p∑
i,j=1

λij∥1̃
(ij)
∥ = λn

p2∑
t=1

wt∥θ̃Gt∥2 , (107)

wt =

{
1 : lasso

ϵ/(ϵ + ∥¯̃θGt∥) : log-sum ,
(108)

where ¯̃θGt corresponds to ¯̃1(ij) In the notation of [20], the
regularization penalty without λn is expressed as a weighted
group norm

R(θ̃) = ∥θ̃∥Ḡ,2w :=

p2∑
t=1

wt∥θ̃Gt∥2 (109)

where the index set {1, 2, · · · , 2Mnp2} is partitioned into a set
of NG = p2 disjoint groups Ḡ = {G1,G2, · · · ,Gp2} and the
subscript 2w signifies the weighted group norm. Using this
notation, the penalized counterpart to L̃f (1̃) of (57) is

L̃r (θ̃) = Lr (θ̃)+ λnR(θ̃) . (110)

As discussed in [20, Sec. 2.2], w.r.t. the usual Euclidean
inner product ⟨u, v⟩ = u⊤v for u, v ∈ R2Mnp2 and given
any subset SḠ ⊆ {1, 2, · · · ,NG} of group indices, define the
subspace

M = {θ̃ ∈ R2Mnp2 | θ̃Gt = 0 for all t ̸∈ SḠ} (111)

and its orthogonal complement

M⊥ = {θ̃ ∈ R2Mnp2 | θ̃Gt = 0 for all t ∈ SḠ} . (112)

The chosen R(θ̃) is decomposable w.r.t. (M,M⊥) since
R(θ̃

(1)
+ θ̃

(2)
) = R(θ̃

(1)
) + R(θ̃

(2)
) for any θ̃

(1)
∈ M and

θ̃
(2)
∈M⊥ [20, Sec. 2.2,Example 2].

In order to invoke [20], we need the dual norm R⊛ of
regularizerRw.r.t. the inner product ⟨u, v⟩ = u⊤v (we use ⊛
instead of ∗ since ∗ has already been used to denote complex
conjugation). It is given by [20, Sec. 2.3]

R⊛(v) = sup
∥u∥Ḡ,2w≤1

⟨u, v⟩ = sup
∥u∥Ḡ,2w≤1

2Mnp2∑
i=1

uivi

≤ sup
∥u∥Ḡ,2w≤1

p2∑
t=1

∥uGt∥2∥vGt∥2

≤ sup
∥u∥Ḡ,2w≤1

(
max
t∈[p2]

w−1t ∥vGt∥2
) p2∑
t=1

wt∥uGt∥2︸ ︷︷ ︸
=∥u∥Ḡ,2w

≤ max
t∈[p2]

w−1t ∥vGt∥2 . (113)

VOLUME 13, 2025 204579

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

We also need the subspace compatibility index [20], defined
as

9(M) = sup
u∈M\{0}

R(u)/∥u∥2 . (114)

We have R(u) =
∑p2

t=1 wt∥uGt∥2 ≤ (maxt∈[p2] wt)
∑p2

t=1
∥uGt∥2. By (108), wt ≤ 1 and by the Cauchy-Schwarz
inequality, for u ∈M,

∑p2

t=1 ∥uGt∥2 ≤
√
sn ∥u∥2. Thus, for

the lasso and log-sum penalties, 9(M) ≤
√
sn.

We need to establish a restricted strong convexity condi-
tion [20] on Lr (θ̃). With θ̃

⋄
denoting the true value of θ̃ , let

θ̃ = θ̃
⋄
+ γ̃ with θk = θ⋄k + γ k (cf. (102)). Consider

δLr (γ̃ , θ̃
⋄
) : = Lr (θ̃

⋄
+ γ̃)− Lr (θ̃

⋄
)− ⟨∇Lr (θ̃

⋄
), γ̃ ⟩
(115)

where the gradient ∇Lr (θ̃
⋄
) at θ̃ = θ̃

⋄
is

∇Lr (θ̃
⋄
) =

[
(∇1Lr (θ̃

⋄
))⊤ · · · (∇MnLr (θ̃

⋄
))⊤
]⊤

, (116)

∇kLr (θ̃
⋄
) :=

∂Lr (θ̃)
∂θk

∣∣∣
θ̃=θ̃

⋄ = 2Hkθ
⋄

k − 2 bk . (117)

Noting thatHk = H⊤k , (115) simplifies to

δLr (γ̃ , θ̃
⋄
) =

Mn∑
k=1

γ⊤k Hkγ k , (118)

which may be rewritten as

δLr (γ̃ , θ̃
⋄
) =

Mn∑
k=1

[
γ⊤k H

⋄

kγ k + γ
⊤
k
(
Hk −H⋄k

)
γ k

]
. (119)

Under the sparsity assumption (72), θ̃
⋄
= θ̃

⋄

M, hence,
θ̃
⋄

M⊥ = 0, where θ̃M and θ̃M⊥ denote projection of θ̃

on subspaces M and M⊥, respectively. Similar to ˆ̃1 =
argmin

1̃
L̃f (1̃), suppose

ˆ̃
θ = argmin

θ̃

{
Lr (θ̃)+ λnR(θ̃)

}
, (120)

and we consider (115) and (118) with ˆ̃θ = θ̃
⋄
+ γ̃ . Then

ˆ̃
θ − θ̃

⋄
=
ˆ̃
θM − θ̃

⋄
+
ˆ̃
θM⊥ = γ̃M + γ̃M⊥ . (121)

By [20, Lemma 1],

R(γ̃M⊥) ≤ 3R(γ̃M)+ 4R(θ̃
⋄

M⊥) , (122)

if we pick

λn ≥2R⊛(∇Lr (θ̃
⋄
)) . (123)

Since in our case θ̃
⋄

M⊥ = 0, we haveR(θ̃
⋄

M⊥) = 0.

We now turn to bounding R⊛(∇Lr (θ̃
⋄
)). First we need

several auxiliary results. Define

1xk : = Ŝxk − S⋄xk , 1yk := Ŝyk − S⋄yk , (124)

1yxk : = Ŝ
∗

yk ⊗ Ŝxk − (S⋄yk)
∗
⊗ S⋄xk , (125)

δ̄x = max
k∈Mn
∥1xk∥∞ , δ̄y = max

k∈Mn
∥1yk∥∞ , (126)

δ̄ ≥max{δ̄x , δ̄y} . (127)

Lemma 1: Under (124)-(127) and with Bxy as in (73),
we have

∥1yxk∥∞ ≤ δ̄2 + 2Bxy δ̄ =: B̄ . (128)

Proof:We can rewrite 1yxk as

1yxk = 1
∗
yk ⊗1xk + (S⋄yk)

∗
⊗1xk +1

∗
yk ⊗ S⋄xk . (129)

Therefore

∥1yxk∥∞ ≤ ∥1yk∥∞ ∥1xk∥∞ + ∥(S⋄yk∥∞ ∥1xk∥∞

+ ∥1yk∥∞ ∥S⋄xk∥∞
≤ δ̄yδ̄x + Bxyδ̄x + δ̄yBxy ≤ δ̄2 + 2Bxyδ̄ . ■ (130)

Using the notation Gt for the group t corresponding to
the edge {i, j}, as in (106), let (∇Lr (θ̃

⋄
))Gt ∈ R2M denote

the corresponding entries of the gradient. By (116)-(117),
we have

(∇Lr (θ̃
⋄
))Gt =

[
(∇1Lr (θ̃

⋄
))⊤Gt · · · (∇MnLr (θ̃

⋄
))⊤Gt

]⊤
,

(131)

(∇kLr (θ̃
⋄
))Gt = (2Hkθ

⋄

k − 2 bk)Gt ∈ R2 . (132)

At the true valuesHk = H⋄k and bk = b⋄k ,

∇kLr (θ̃
⋄
)
∣∣∣
Hk=H⋄k ,bk=b

⋄

k

= 0 = 2H⋄k θ
⋄

k − 2 b⋄k (133)

(cf. (14)-(15)) where

H⋄k :=
1
2
THrcH̄⋄kT rc , b⋄k :=

1
2
THrc b̄

⋄

k (134)

H̄⋄k :=
[
(S⋄yk)

∗
⊗ S⋄xk 0

0 S⋄yk ⊗ (S⋄xk)
∗

]
, (135)

b̄
⋄

k =

[
vec(S⋄xk − S

⋄

yk)
vec((S⋄xk − S

⋄

yk)
∗)

]
. (136)

Therefore, we may rewrite (132) as

(∇kLr (θ̃
⋄
))Gt = (2(Hk −H⋄k)θ

⋄

k − 2 (bk − b⋄k))Gt

=

p2∑
q=1

[
2(Hk −H⋄k)Gt,Gq(θ

⋄

k)Gq
]
− 2 (bk − b⋄k)Gt (137)

where Gq represents group q corresponding to some edge
{ℓ,m}, (i, j)↔ t = (i−1)p+j and (ℓ,m)↔ q = (ℓ−1)p+m.
Lemma 2: Under the conditions of Lemma 1

∥(∇kLr (θ̃
⋄
))Gt∥2 ≤

p2∑
q=1

2 B̄ ∥(θ⋄k)Gq∥2 + 4δ̄ . (138)

Proof:With (i, j)↔ t = (i− 1)p+ j and (ℓ,m)↔ q =
(ℓ− 1)p+ m, we have(

H̄k − H̄⋄k
)
Gt,Gq =

[
ak 0
0 a∗k

]
, (139)

ak := [Ŝ
∗

yk]jm[Ŝxk]iℓ − [(S⋄yk)
∗]jm[S⋄xk]iℓ , (140)

204580 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

(b̄k − b̄
⋄

k))Gt =
[
[1xk −1yk]ij
[1xk −1yk]∗ij

]
, (141)

where (139)-(140) follow from vec(Sxk1kSyk) = (S⊤yk ⊗
Sxk)vec(1k) and S⊤yk = S∗yk . Using Lemma 1, ∥T̃ rc∥ =

√
2

and ∥(H̄k − H̄⋄k)Gt,Gq∥ ≤ ∥1yxk∥∞, we have

∥2(Hk −H⋄k)Gt,Gq∥ = ∥T̃
H
rc(H̄k − H̄⋄k)Gt,GqT̃ rc∥

≤ ∥T̃
H
rc∥ ∥(H̄k − H̄⋄k)Gt,Gq∥ ∥T̃ rc∥ ≤ 2 B̄ . (142)

By (124), (126), (127) and (141)

∥2 (bk − b⋄k)Gt∥2 = ∥T̃
H
rc(b̄k − b̄

⋄

k))Gt∥

≤ ∥T̃
H
rc∥ ∥(b̄k − b̄

⋄

k))Gt∥2 ≤ 4δ̄ . (143)

By (137), (142) and (143) we have (138). ■
Lemma 3: Under the conditions of Lemma 1 if δ̄ ≤ Bxy,

R⊛(∇Lr (θ̃
⋄
)) ≤ Binit

√
Mn

(
6BxyBd sn + 4

)
δ̄ (144)

where Bd and Binit are given by (74) and (81), respectively.
Proof: By Lemma 2 and (131),

∥(∇Lr (θ̃
⋄
))Gt∥2 =

√√√√ Mn∑
k=1

∥(∇kLr (θ̃
⋄
))Gt∥22

≤

√
Mn max

k∈[Mn]
∥(∇kLr (θ̃

⋄
))Gt∥2

≤

√
Mn
[
2 B̄ max

k∈[Mn]

(p2∑
q=1

∥(θ⋄k)Gq∥2
)
+ 4δ̄

]
.

(145)

Observe that
∑p2

q=1 ∥(θ
⋄

k)Gq∥2 ≤ sn maxq∈[p2] ∥(θ
⋄

k)Gq∥2
since at most sn edges are connected in the true graph. For
group q with (ℓ,m) ↔ q = (ℓ − 1)p + m, ∥(θ⋄k)Gq∥2 =
|[1⋄k]ℓm| ≤ Bd for k ∈ [Mn]. Therefore,

∥(∇Lr (θ̃
⋄
))Gt∥2 ≤

√
Mn

[
2 B̄snBd + 4δ̄

]
. (146)

By (113) and (146)

R⊛(∇Lr (θ̃
⋄
)) ≤ max

t∈[p2]
w−1t ∥(∇Lr (θ̃

⋄
))Gt∥2

≤ (max
t∈[p2]

w−1t) (max
t∈[p2]
∥(∇Lr (θ̃

⋄
))Gt∥2)

δ̄≤Bxy
≤ Binit

√
Mn

(
6BxyBd sn + 4

)
δ̄ (147)

where, for the log-sum penalty we used maxt∈[p2] w
−1
t = 1+

maxt∈[p2] ∥θ̃Gt∥/ϵ = 1 + maxi,j∈[p] ∥
¯̃
1(ij)
∥/ϵ =: Binit , and

δ̄ ≤ Bxy results in B̄ = δ̄2 + 2Bxy ≤ 3Bxyδ̄. ■
Lemma 4: Under the conditions of Lemmas 1 and 3,

if λn ≥ 2R⊛(∇Lr (θ̃
⋄
)),

δLr (γ̃ , θ̃
⋄
) ≥ κL ∥γ̃ ∥

2
2 , (148)

where κL = φ⋄min − 192 snMnB2initBxyδ̄.

Proof: Consider (119). By (103) we have

Mn∑
k=1

γ⊤k H
⋄

kγ k

=

Mn∑
k=1

1
2
(T rcγ k)

H H̄⋄k (T rcγ k)

≥

Mn∑
k=1

1
2
φmin(H̄⋄k)∥T rcγ k∥

2
2

=

Mn∑
k=1

φmin(H̄⋄k)∥γ k∥
2
2 since THrcT rc = 2Ip2 . (149)

Now φmin(H̄⋄k) = φmin(S⋄yk)φmin(S⋄xk) ≥ φ⋄min, implying

Mn∑
k=1

γ⊤k H
⋄

kγ k ≥ φ⋄min

Mn∑
k=1

∥γ k∥
2
2 = φ⋄min∥γ̃ ∥

2
2 . (150)

Define

Ȟ := block-diag
{
H1 , · · · , HMn

}
, (151)

Ȟ⋄ := block-diag
{
H⋄1 , · · · , H⋄Mn

}
. (152)

We have ∥Ȟ − Ȟ⋄∥∞ = maxk∈[Mn] ∥Hk − H⋄k∥∞. Using
the facts ∥AB∥∞ ≤ ∥A∥∞ ∥B⊤∥1,∞ and ∥AB∥∞ ≤

∥B∥∞ ∥A∥1,∞, and Lemma 1, we have

∥Hk −H⋄k∥∞ = ∥
1
2
THrc(H̄k − H̄⋄k)T rc∥∞

≤
1
2
∥T⊤rc∥

2
1,∞∥H̄k − H̄⋄k∥∞ ≤

4
2
∥1yxk∥∞ ≤ 2B̄ . (153)

By (151)-(153),

|

Mn∑
k=1

γ⊤k (Hk −H⋄k)γ k | = |γ̃
⊤
(
Ȟ− Ȟ⋄

)
γ̃ |

≤

2p2Mn∑
ℓ=1

2p2Mn∑
m=1

|γ̃ℓ

[
Ȟ− Ȟ⋄

]
ℓmγ̃m|

≤ ∥Ȟ− Ȟ⋄∥∞
(2p2Mn∑

m=1

|γ̃m|
)2
=: A . (154)

As in (102), γ̃ =
[
γ⊤1 , · · · , γ⊤

]⊤. Expressing in terms of
group Gt and using the Cauchy-Schwarz inequality, we have

2p2Mn∑
m=1

|γ̃m| =

p2∑
t=1

(Mn∑
k=1

[
|γkt | + |γk(t+p2)|

])

≤

p2∑
t=1

√
2Mn ∥γ̃Gt∥2 ≤

√
2Mn

(
max
t∈[p2]

w−1t
) p2∑
t=1

wt∥γ̃Gt∥2

≤

√
2Mn Binit∥γ̃ ∥Ḡ,2w . (155)

Thus by (153), (154) and (155), if δ̄ ≤ Bxy,

A ≤ 12B2initMnBxy δ̄ ∥γ̃ ∥2Ḡ,2w
. (156)

VOLUME 13, 2025 204581

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

By (122) and (123) we have

∥γ̃ ∥2Ḡ,2w
= ∥γ̃M + γ̃M⊥∥

2
Ḡ,2w

= (∥γ̃M∥Ḡ,2w + ∥γ̃M⊥∥Ḡ,2w)
2

(122)
≤ 16 ∥γ̃M∥

2
Ḡ,2w

(114)
≤ 16 sn∥γ̃M∥

2
2 ≤ 16 sn∥γ̃ ∥22 .

(157)

Using (119), (150), (154), (156) and (157), we have

δLr (γ̃ , θ̃
⋄
) ≥

(
φ⋄min − 192 snMnB2initBxyδ̄

)
∥γ̃ ∥22 = κL ∥γ̃ ∥

2
2 ,

proving the desired result. ■
Using [26, Lemma 1] we have Lemma 5.
Lemma 5: Let σxy, C0 and N1 be as in (76), (77) and (78),

respectively. Define

A = max
k∈[Mn], q,ℓ∈[pn]

{∣∣[Ŝxk − S⋄xk]qℓ∣∣, ∣∣[Ŝyk − S⋄yk]qℓ∣∣}.
Then for any τ > 2 and sample size n > N1,

P
(
A > C0

√
ln(pn)/Kn

)
≤ 2/pτ−2

n . (158)

Proof: By [26, Lemma 1],

P
(
max
k,q,ℓ

∣∣[Ŝxk − S⋄xk]qℓ∣∣ > C0x

√
ln(pn)
Kn

)
≤

1

pτ−2
n

(159)

P
(
max
k,q,ℓ

∣∣[Ŝyk − S⋄yk]qℓ∣∣ > C0y

√
ln(pn)
Kn

)
≤

1

pτ−2
n

(160)

for any τ > 2 and sample size n > N1 where C0x =

80 maxℓ,f ([S⋄x (f)]ℓℓ)
√
N1/ ln(pn) and C0y = 80 maxℓ,f

([S⋄y (f)]ℓℓ)
√
N1/ ln(pn). Using the union bound,

P
(
A > C0

√
ln(pn)/Kn

)
≤P
(
max
k,q,ℓ

∣∣[Ŝxk − S⋄xk]qℓ∣∣ > C0
√
ln(pn)/Kn

)
+ P

(
max
k,q,ℓ

∣∣[Ŝyk − S⋄yk]qℓ∣∣ > C0
√
ln(pn)/Kn

)
≤2/pτ−2

n (161)

since C0 ≥ C0x and C0 ≥ C0y. ■
We are now ready to prove Theorem 1.
Proof of Theorem 1: First choose δ̄ to make κL > 0 in

Lemma 4. Suppose we take 192snMnB2initBxyδ̄ ≤ φ⋄min/4.
Then κL ≥ 3φ⋄min/4. Now pick

δ̄ = C0
√
ln(pn)/Kn ≤ min

{
Bxy,

φ⋄min

768snMnB2initBxy

}
,

(162)

leading to 192snMnB2initBxyδ̄ ≤ φ⋄min/4. These upper bounds
can be ensured by picking appropriate lower bounds to
sample size n and invoking Lemma 5. The choice of n
specified in (83) satisfies (162) with probability > 1 −
2/pτ−2

n . Using δ̄ = C0
√
ln(pn)/Kn ≤ Bxy, the lower bound

on λn given in (82) satisfies (123) with R⊛(∇Lr (θ̃
⋄
)) as in

Lemma 3. By [20, Theorem 1], ˆ̃θ given by (120) satisfies

∥
ˆ̃
θ − θ̃

⋄
∥2 ≤

3λn
κL

9(M) . (163)

The left-side of (163) equals ∥ ˆ̃1− 1̃
⋄
∥F while the right-side

of (163) equals the last term of (84) using 9(M) ≤
√
sn,

κL ≥ 3φ⋄min/4. This proves Theorem 1. ■
We now turn to the proof of Theorem 2.
Proof of Theorem 2: We have ∥ ˆ̃1(ij)

− (1̃
⋄
)(ij)∥ ≤ ∥ ˆ̃1 −

1̃
⋄
∥F ≤ σ̄n w.h.p. For the edge {i, j} ∈ Ẽ⋄1, we have

∥
ˆ̃
1(ij)
∥ = ∥(1̃

⋄
)(ij) + ˆ̃1(ij)

− (1̃
⋄
)(ij)∥

≥∥(1̃
⋄
)(ij)∥ − ∥ ˆ̃1(ij)

− (1̃
⋄
)(ij)∥

≥ν − σ̄n ≥ 0.6 ν for n ≥ N4

>γn . (164)

Thus, Ẽ⋄1 ⊆ Ê1. Now consider the set complements (Ẽ⋄1)c and
Êc1. For the edge {i.j} ∈ (Ẽ⋄1)c, ∥(1̃

⋄
)(ij)∥ = 0. For n ≥ N4,

w.h.p. we have

∥
ˆ̃
1(ij)
∥ ≤∥(1̃

⋄
)(ij)∥ + ∥ ˆ̃1(ij) ˆ̃1(ij)

− (1̃
⋄
)(ij)∥

≤0+ σ̄n ≤ 0.4 ν < γn , (165)

implying that {i, j} ∈ Êc1. Thus, (Ẽ
⋄

1)
c
⊆ Êc, hence Ê1 ⊆ Ẽ⋄1,

establishing Ê1 = Ẽ⋄1. ■

REFERENCES
[1] J. Whittaker, Graphical Models in Applied Multivariate Statistics.

Hoboken, NJ, USA: Wiley, 1990.
[2] S. L. Lauritzen, Graphical Models. London, U.K.: Oxford Univ. Press,

1996.
[3] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data.

Berlin, Germany: Springer, 2011.
[4] R. Dahlhaus, ‘‘Graphical interaction models for multivariate time series,’’

Metrika, vol. 51, no. 2, pp. 157–172, Aug. 2000.
[5] H. Yuan, R. Xi, C. Chen, and M. Deng, ‘‘Differential network analysis via

lasso penalized D-trace loss,’’ Biometrika, vol. 104, no. 4, pp. 755–770,
Dec. 2017.

[6] B. Jiang, X. Wang, and C. Leng, ‘‘A direct approach for sparse
quadratic discriminant analysis,’’ J Mach. Learn. Res., vol. 19, no. 31,
pp. 1–37, 2018.

[7] Z. Tang, Z. Yu, and C. Wang, ‘‘A fast iterative algorithm for high-
dimensional differential network,’’ Comput. Statist., vol. 35, no. 1,
pp. 95–109, Mar. 2020.

[8] J. K. Tugnait, ‘‘Learning high-dimensional differential graphs from multi-
attribute data,’’ IEEE Trans. Signal Process., vol. 72, pp. 415–431, 2024.

[9] B. Zhao, Y. S. Wang, and M. Kolar, ‘‘FuDGE: A method to estimate
a functional differential graph in a high-dimensional setting,’’ J. Mach.
Learn. Res., vol. 23, pp. 1–82, Jan. 2020.

[10] Y. Wu, T. Li, X. Liu, and L. Chen, ‘‘Differential network inference via the
fused D-trace loss with cross variables,’’ Electron. J. Statist., vol. 14, no. 1,
pp. 1269–1301, Jan. 2020.

[11] P. Danaher, P. Wang, and D. M. Witten, ‘‘The joint graphical lasso for
inverse covariance estimation across multiple classes,’’ J. Roy. Stat. Soc.
Ser. B, Stat. Methodol., vol. 76, no. 2, pp. 373–397, Mar. 2014.

[12] S. D. Zhao, T. T. Cai, and H. Li, ‘‘Direct estimation of differential
networks,’’ Biometrika, vol. 101, no. 2, pp. 253–268, Jun. 2014.

[13] E. Belilovsky, G. Varoquaux, and M. B. Blaschko, ‘‘Hypothesis testing
for differences in Gaussian graphical models: Applications to brain
connectivity,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 29,
Barcelona, Spain, Dec. 2016, pp. 595–603.

204582 VOLUME 13, 2025

J. K. Tugnait: Learning Conditional Independence Differential Graphs From Time-Dependent Data

[14] H. Shu and B. Nan, ‘‘Estimation of large covariance and precision matrices
from temporally dependent observations,’’ Ann. Statist., vol. 47, no. 3,
pp. 1321–1350, Jun. 2019.

[15] J. Songsiri and L. Vandenberghe, ‘‘Topology selection in graphical models
of autoregressive processes,’’ J.Mach. Learn. Res., vol. 11, pp. 2671–2705,
Oct. 2010.

[16] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-
Valued Data. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[17] E. J. Candès, M. B. Wakin, and S. P. Boyd, ‘‘Enhancing sparsity by
reweighted ℓ1 minimization,’’ J. Fourier Anal. Appl., vol. 14, pp. 877–905,
Jan. 2008.

[18] J. Fan and R. Li, ‘‘Variable selection via nonconcave penalized likelihood
and its Oracle properties,’’ J. Amer. Stat. Assoc., vol. 96, no. 456,
pp. 1348–1360, Dec. 2001.

[19] C. Lam and J. Fan, ‘‘Sparsistency and rates of convergence in large covari-
ance matrix estimation,’’ Ann. Statist., vol. 37, no. 6B, pp. 4254–4278,
Dec. 2009.

[20] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, ‘‘A
unified framework for high-dimensional analysis of M -estimators with
decomposable regularizers,’’ Stat. Sci., vol. 27, no. 4, pp. 538–557,
Nov. 2012.

[21] S. Na, M. Kolar, and O. Koyejo, ‘‘Estimating differential latent variable
graphical models with applications to brain connectivity,’’ Biometrika,
vol. 108, pp. 425–442, Jan. 2021.

[22] H. Zou and R. Li, ‘‘One-step sparse estimates in nonconcave penalized
likelihoodmodels,’’Ann. Statist., vol. 36, no. 4, pp. 1509–1533, Aug. 2008.

[23] J. K. Tugnait, ‘‘Sparse graph learning under Laplacian-related constraints,’’
IEEE Access, vol. 9, pp. 151067–151079, 2021.

[24] T. Zhang and H. Zou, ‘‘Sparse precision matrix estimation via lasso
penalized D-trace loss,’’ Biometrika, vol. 101, no. 1, pp. 103–120,
Mar. 2014.

[25] A. Jung, G. Hannak, and N. Goertz, ‘‘Graphical LASSO based model
selection for time series,’’ IEEE Signal Process. Lett., vol. 22, no. 10,
pp. 1781–1785, Oct. 2015.

[26] J. K. Tugnait, ‘‘On sparse high-dimensional graphical model learning for
dependent time series,’’ Signal Process., vol. 197, pp. 1–18, Aug. 2022.

[27] J. K. Tugnait, ‘‘On conditional independence graph learning from multi-
attribute Gaussian dependent time series,’’ IEEE Open J. Signal Process.,
vol. 6, pp. 705–721, 2025.

[28] J. Krampe and E. Paparoditis, ‘‘Frequency domain statistical inference for
high-dimensional time series,’’ J. Amer. Stat. Assoc., vol. 120, no. 551,
pp. 1580–1592, Jul. 2025.

[29] J. Chang, Q. Jiang, T. McElroy, and X. Shao, ‘‘Statistical inference for
high-dimensional spectral density matrix,’’ J. Amer. Stat. Assoc., vol. 120,
no. 551, pp. 1960–1974, Jul. 2025.

[30] J. K. Tugnait, ‘‘Learning multi-attribute differential graphs with non-
convex penalties,’’ IEEE Access, vol. 13, pp. 67065–67078, 2025.

[31] S. Boyd, ‘‘Distributed optimization and statistical learning via the
alternating direction method of multipliers,’’ Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, 2010.

[32] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, ‘‘Learning graphs from
data,’’ IEEE Signal Process Mag., vol. 36, no. 3, pp. 44–63, May 2019.

[33] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, ‘‘Learning
Laplacian matrix in smooth graph signal representations,’’ IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160–6173, Dec. 2016.

[34] V. Kalofolias and N. Perraudin, ‘‘Large scale graph learning from smooth
signals,’’ in Proc. 7th Intern Conf Learn. Represent. (ICLR), New Orleans,
LA, USA, May 2019, pp. 1–19.

[35] L. Qiao, L. Zhang, S. Chen, and D. Shen, ‘‘Data-driven graph construction
and graph learning: A review,’’ Neurocomputing, vol. 312, pp. 336–351,
Oct. 2018.

[36] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu, ‘‘Graph
learning: A survey,’’ IEEE Trans. Artif. Intell., vol. 2, no. 2, pp. 109–127,
Apr. 2021.

[37] F. Xia, C. Peng, J. Ren, F. Gozi Febrinanto, R. Luo, V. Saikrishna, S. Yu,
and X. Kong, ‘‘Graph learning,’’ 2025, arXiv:2507.05636.

[38] L.-P. Chen, ‘‘Estimation of graphical models: An overview of selected
topics,’’ Int. Stat. Rev., vol. 92, no. 2, pp. 194–245, Aug. 2024.

[39] D. Ataee Tarzanagh, B. Hou, Q. Long, L. Shen, and Z. Zhou, ‘‘Fairness-
aware estimation of graphical models,’’ in Proc. Adv. Neural Inf. Process.
Syst. 37, Dec. 2024, pp. 17870–17909.

[40] Y. Zhang and Y. Yang, ‘‘Joint estimation for multisource Gaussian
graphical models based on transfer learning,’’ Pattern Recognit., vol. 158,
Feb. 2025, Art. no. 110964.

[41] Z. Kang, C. Peng, Q. Cheng, X. Liu, X. Peng, Z. Xu, and L.
Tian, ‘‘Structured graph learning for clustering and semi-supervised
classification,’’ Pattern Recognit., vol. 110, Feb. 2021, Art. no. 107627.

[42] A. Amjad, L.-C. Tai, and H.-T. Chang, ‘‘Utilizing enhanced particle
swarm optimization for feature selection in gender-emotion detection from
English speech signals,’’ IEEE Access, vol. 12, pp. 189564–189573, 2024.

[43] A. Amjad, S. Khuntia, H.-T. Chang, and L.-C. Tai, ‘‘Multi-domain
emotion recognition enhancement: A novel domain adaptation technique
for speech-emotion recognition,’’ IEEE Trans. Audio, Speech Language
Process., vol. 33, pp. 528–541, 2025.

[44] J. K. Tugnait, ‘‘Estimation of differential graphs from time-dependent
data,’’ in Proc. IEEE CAMSAP, Dec. 2023, pp. 261–265.

[45] K. B. Petersen andM. S. Pedersen. (2012). TheMatrix Cookbook. [Online].
Available: http://www2.imm.dtu.dk/pubdb/p.php?3274

[46] D. R. Brillinger, Time Series: Data Analysis and Theory. New York, NY,
USA: McGraw-Hill, 1981.

[47] P.-L. Loh and M. J. Wainwright, ‘‘Support recovery without incoherence:
A case for nonconvex regularization,’’ Ann. Statist., vol. 45, no. 6,
pp. 2455–2482, Dec. 2017.

[48] J. K. Tugnait, ‘‘Conditional independence graph estimation from multi-
attribute dependent time series,’’ in Proc. IEEE MLSP, Sep. 2024, pp. 1–6.

[49] R. Chen, H. Xiao, and D. Yang, ‘‘Autoregressive models for matrix-
valued time series,’’ J. Econometrics, vol. 222, no. 1, pp. 539–560,
May 2021.

JITENDRA K. TUGNAIT (Life Fellow, IEEE)
received the B.Sc. degree (Hons.) in electronics
and electrical communication engineering from
Punjab Engineering College, Chandigarh, India,
in 1971, the M.S. and the E.E. degrees in electrical
engineering from Syracuse University, Syracuse,
NY, USA, in 1973 and 1974, respectively, and
the Ph.D. degree in electrical engineering from
the University of Illinois Urbana–Champaign,
in 1978.

From 1978 to 1982, he was an Assistant Professor of electrical and
computer engineering at the University of Iowa, Iowa City, IA, USA.
He was with the Long Range Research Division, Exxon Production Research
Company, Houston, TX, USA, from June 1982 to September 1989. He joined
the Department of Electrical and Computer Engineering, Auburn University,
Auburn, AL, USA, in September 1989, as a Professor, where he is currently
the James B. Davis Professor. His current research interests include statistical
signal processing and machine learning for signal processing.

Dr. Tugnait has served as an Associate Editor for IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, IEEE TRANSACTIONS ON SIGNAL PROCESSING, IEEE SIGNAL

PROCESSING LETTERS, and IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS;
a Senior Area Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING; and a
Senior Editor for IEEE WIRELESS COMMUNICATIONS LETTERS.

VOLUME 13, 2025 204583

