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Abstract—We consider the problem of estimating differences
in two Gaussian graphical models (GGMs) which are known to
have similar structure. The GGM structure is encoded in its
precision (inverse covariance) matrix. In many applications one
is interested in estimating the difference in two precision matrices
to characterize underlying changes in conditional dependencies
of two sets of data. Existing methods for differential graph
estimation are based on single-attribute (SA) models where one
associates a scalar random variable with each node. In multi-
attribute (MA) graphical models, each node represents a ran-
dom vector. In this paper, we analyze a group lasso penalized
D-trace loss function approach for differential graph learning
from multi-attribute data. An alternating direction method of
multipliers (ADMM) algorithm is presented to optimize the
objective function. Theoretical analysis establishing consistency
in support recovery and estimation in high-dimensional settings
is provided. Numerical results based on synthetic as well as real
data are presented.

Index Terms—Sparse graph learning, differential graph
estimation, undirected graph, multi-attribute graphs.

I. INTRODUCTION

G
RAPHICAL models provide a powerful tool for analyz-

ing multivariate data [1], [2]. In a statistical graphical

model, the conditional statistical dependency structure among p
random variables x1, x1, · · · , xp, is represented using an undi-

rected graph G = (V, E), where V = {1, 2, · · · , p}= [p] is the

set of p nodes corresponding to the p random variables xis, and

E ⊆ V × V is the set of undirected edges describing conditional

dependencies among the components of x. The graph G then

is a conditional independence graph (CIG) where there is no

edge between nodes i and j (i.e., {i, j} 6∈ E) iff xi and xj are

conditionally independent given the remaining p-2 variables xℓ,

ℓ ∈ [p], ℓ 6= i, ℓ 6= j. In particular, Gaussian graphical models

(GGMs) are CIGs where x is multivariate Gaussian. Suppose

x has positive-definite covariance matrix Σ with inverse covari-

ance matrix Ω=Σ
−1. Then Ωij , the (i, j)-th element of Ω, is

zero iff xi and xj are conditionally independent. Such models

for x have been extensively studied. Given n samples of x, in
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high-dimensional settings where p≫ 1 and/or n is of the order

of p, one estimates Ω under some sparsity constraints; see [3],

[4], [5], [6].

More recently there has been increasing interest in differ-

ential network analysis where one is interested in estimating

the difference in two inverse covariance matrices [7], [8], [9].

Given observations x and y from two groups of subjects, one

is interested in the difference ∆=Ωy −Ωx, where Ωx =
(E{xx⊤})−1 and Ωy = (E{yy⊤})−1. The associated differ-

ential graph is G∆ = (V, E∆) where {i, j} ∈ E∆ iff ∆ij 6= 0. It

characterizes differences between the GGMs of the two sets

of data. We use the term differential graph as in [10], [11]

([7], [8], [9] use the term differential network). As noted in

[9], in biostatistics, the differential network/graph describes the

changes in conditional dependencies between components un-

der different environmental or genetic conditions. For instance,

one may be interested in the differences in the graphical models

of healthy and impaired subjects, or models under different

disease states, given gene expression data or functional MRI

signals [3], [12], [13].

In the preceding graphs, each node represents a scalar random

variable. In many applications, there may be more than one

random variable associated with a node. This class of graphical

models has been called multi-attribute (MA) graphical mod-

els in [14], [15], [16], [17] and vector graphs or networks in

[18], [19], [20], [21]. In a gene regulatory network, one may

have different molecular profiles available for a single gene,

such as protein, DNA and RNA. Since these molecular pro-

files are on the same set of biological samples, they consti-

tute multi-attribute data for gene regulatory graphical models

in [14], [16]. Consider p jointly Gaussian vectors zi ∈ R
m,

i ∈ [p]. We associate zi with the ith node of graph G = (V, E),
V = [p], E ⊆ V × V . We now have m attributes per node.

Now {i, j} ∈ E iff vectors zi and zj are conditionally depen-

dent given the remaining p-2 vectors {zℓ, ℓ ∈ V \{i,j}}. Let

x= [z⊤
1 z⊤

2 · · · z⊤
p ]

⊤ ∈ R
mp. Let Ω= (E{xx⊤})−1 assum-

ing E{xx⊤} ≻ 0. Define the m×m subblock Ω
(ij) of Ω

as [Ω(ij)]rs = [Ω](i−1)m+r,(j−1)m+s, r, s= 1, 2, · · · ,m. Then

we have the following equivalence [16, Sec. 2.1]

{i, j} 6∈ E ⇔ Ω
(ij) = 0. (1)

This paper is concerned with estimation of differential

graphs from multi-attribute data. Given independent and identi-

cally distributed (i.i.d.) samples x(t), t= 1, 2, · · · , nx, of x=
[z⊤

1 z⊤
2 · · · z⊤

p ]
⊤ ∈ R

mp where zi ∈ R
m, i ∈ [p], are jointly
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Gaussian, and similarly given samples y(t), t= 1, 2, · · · , ny ,

of y ∈ R
mp, our objective is to estimate the difference ∆=

Ωy −Ωx, and determine the differential graph G∆ = (V, E∆)
with edgeset E∆ = {{k, ℓ} : ‖∆(kℓ)‖F 6= 0}.

A. Related Work

All prior work on high-dimensional differential graph es-

timation from i.i.d. samples addresses single-attribute (SA)

models where each node represents a scalar random variable.

One naive approach would be to estimate the two precision

matrices separately by any existing estimator (see [4], [5] and

references therein) and then calculate their difference to esti-

mate the differential graph. (This approach is also applicable

to MA graphs.) This approach estimates twice the number of

parameters, hence needs larger sample sizes for same accuracy,

and also imposes sparsity constraints on each precision matrix

for the methods to work. The same comment applies to methods

such as [3], [6], where the two precision matrices and their

differences are jointly estimated. A recent survey is in [22].

In these approaches, given K ≥ 2 related groups of data, each

p-variate and sharing the same set of nodes V , but possibly

differing in connected edgesets, the objective is to jointly es-

timate the K precision matrices and their pairwise differences,

with sparsity constraints on each of the K precision matrices

and their pairwise differences. These approaches require each

of the K precision matrices to be sparse. If only the differences

in the precision matrices is of interest, alternative approaches

exist where no sparsity constraints are imposed on individual

precision matrices. For instance, direct estimation of the differ-

ence in the two precision matrices has been considered for SA

graphs in [7], [8], [9], [12], [23], [24], [25], [26], [27], [28],

where only the difference is required to be sparse, not the two

individual precision matrices. In [7], [8], [9], [23], [24], [28]

precision difference matrix estimators are based on a D-trace

loss [29], while [12] discusses a Dantzig selector type estimator.

In [25], [26], [27] differential graph is estimated by directly

modeling the ratio of the probability densities of the random

vectors under the two graphs.

Estimation of MA differential graphs has not been investi-

gated before. The work of [10], [11] is similar to an MA formu-

lation except that in [10], [11], x(t) and y(t) are non-stationary

(“functional” modeling), and instead of a single record (sam-

ple) of x(t), t= 1, 2, · · · , nx and y(t), t= 1, 2, · · · , ny , as in

this paper, they assume multiple independent observations of

x(t), t ∈ T (a closed subset of real line), and y(t), t ∈ T . The

objective function in [11, Eqns. (10)-(11)] is the same as our

objective function (3)-(4), but consequent estimation of edges

and theoretical analysis are vastly different. We estimate edges

as in (6), i.e., our threshold is set at zero and this is the method

analyzed in our Theorem 1(iv) for graph recovery with high

probability. In [10], [11], this threshold is set at a parameter

ǫn > 0 (see [11, Eqn. (13)]) which is a function of sample size

n, number of nonzero entries in true ∆, smallest eigenvalues

of true covariances Ω−1
y and Ω

−1
x (in our notation), and several

other factors. That is, ǫn is unknowable for practical imple-

mentation and it is used as a theoretical construct to establish

graph support recovery in [11, Theorem 10]. In simulations,

[10], [11] set ǫn = 0. That is, [10], [11] do not analyze what they

implement (the proof does not hold for ǫn = 0), and they do not

implement what they analyze (ǫn is unknowable). There is no

counterpart to our Theorem 1 in [10], [11], and the methodology

of our Theorem 1 allows us to set the edge detection threshold

to zero. Our Theorem 2 follows the general framework of [30]

to bound the Frobenius norm of the error in estimating ∆,

and [10], [11] also follow the general framework of [30] for

the same purpose. But their extension of this result to graph

recovery does not permit zero threshold for edge detection. We

attempt no such extension.

B. Our Contributions

In this paper, we analyze a group lasso penalized D-trace loss

function approach for differential graph learning from MA data,

extending the SA approach of [8], [28]. A two-block ADMM

algorithm is presented to optimize the objective function. The

two-block ADMM is guaranteed to be convergent unlike the

three-block ADMM method used in [8]. Two different ap-

proaches to theoretical analysis of the proposed approach in

high-dimensional settings are presented. Theorem 1 follows the

approach(es) of [8], [16], [28], [29], [31] while Theorem 2

follows the general framework of [30], not used in [8], [28]. The

general method of [31] requires an irrepresentability condition

(see (20)) which is also required in [8], [28] for SA graphs,

but is not needed by the method of [30], hence in our Theo-

rem 2. Numerical results based on synthetic as well as real data

are presented.

Preliminary version of parts of this paper appear in a confer-

ence paper [32]. Theorem 2, proof of Theorem 1 and real data

example do not appear in [32].

C. Outline and Notation

The rest of the paper is organized as follows. A group lasso

penalized D-trace loss function is presented in Sec. II for es-

timation of multi-attribute differential graph. An ADMM al-

gorithm is presented in Sec. III to optimize the convex ob-

jective function. In Sec. IV we analyze the properties of the

estimator of the difference ∆=Ωy −Ωx. Theorem 1 follows

the approach(es) of [8], [16], [28], [29], [31] while Theorem 2

follows the general framework of [30]. The general method of

[31] requires an irrepresentability condition (see (20)) which

is not needed by the method of [30]. On the other hand, our

Theorem 2 does not have a result like Theorem 1(ii), the oracle

property, nor does it have a result as in Theorem 1(iv), support

recovery. Numerical results based on synthetic as well as real

data are presented in Sec. V to illustrate the proposed ap-

proach. Proofs of Theorems 1 and 2 are given in Appendices A

and B, respectively.

For a set V , |V | or card(V ) denotes its cardinality. Given

A ∈ R
p×p, we use φmin(A), φmax(A), |A| and tr(A) to denote

the minimum eigenvalue, maximum eigenvalue, determinant

and trace of A, respectively. For B ∈ R
p×q , we define ‖B‖=

√

φmax(B
⊤B), ‖B‖F =

√

tr(B⊤B), ‖B‖1 =
∑

i,j |Bij |,
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where Bij is the (i, j)-th element of B (also denoted by [B]ij),

‖B‖∞ =maxi,j |Bij | and ‖B‖1,∞ =maxi
∑

j |Bij |. The

symbols ⊗ and ⊠ denote Kronecker product and Tracy-Singh

product [33], respectively. In particular, given block partitioned

matrices A= [Aij ] and B = [Bkℓ] with submatrices Aij and

Bkℓ, Tracy-Singh product yields another block partitioned

matrix A⊠B = [Aij ⊠B]ij = [[Aij ⊗Bkℓ]kℓ]ij [34]. Given

A= [Aij ] ∈ R
mp×mp with Aij ∈ R

m×m, vec(A) ∈ R
m2p2

denotes the vectorization of A which stacks the columns of

the matrix A, and

bvec(A) = [(vec(A11))
⊤ (vec (A21))

⊤ · · · (vec(Ap1))
⊤

(vec(A12))
⊤ · · · (vec(Ap2))

⊤ · · · (vec(App))
⊤]⊤.

Let S = E∆ = {{k, ℓ} : ‖∆(kℓ)‖F 6= 0} where ∆=
[∆(kℓ)] ∈ R

mp×mp with ∆
(kℓ) ∈ R

m×m denoting the (k, l)th
m×m submatrix of ∆. Then ∆S denotes the submatrix

of ∆ with block rows and columns indexed by S, i.e.,

∆S = [∆(kℓ)](k,ℓ)∈S . Suppose Γ=A⊠B given block

partitioned matrices A= [Aij ] and B = [Bkℓ]. For any two

subsets T1 and T2 of V × V , ΓT1,T2
denotes the submatrix

of Γ with block rows and columns indexed by T1 and T2,

i.e., ΓT1,T2
= [Ajℓ ⊗Bkq](j,k)∈T1,(ℓ,q)∈T2

. Following [16], an

operator C(·) is used in Sec. IV. Consider A ∈ R
mp×mp with

(k, l)th m×m submatrix A(kℓ). Then C(·) operates on A as







A(11) · · · A(1p)

...
. . .

...

A(p1) · · · A(pp)







C(·)

−−→







‖A(11)‖F · · · ‖A(1p)‖F
...

. . .
...

‖A(p1)‖F · · · ‖A(pp)‖F







with C(A(kℓ)) = ‖A(kℓ)‖F and C(A) ∈ R
p×p. Now con-

sider A1,A2 ∈ R
mp×mp with (k, l)th m×m submatrices

A
(kℓ)
1 and A

(kℓ)
2 , respectively, and Tracy-Singh product A1 ⊠

A2 ∈ R
(mp)2×(mp)2

. Then C(·) operates on A1 ⊠A2 as

C(A1 ⊠A2) ∈ R
p2×p2

with C(A
(k1ℓ1)
1 ⊗A

(k2ℓ2)
2 ) = ‖A(k1ℓ1)

1 ⊗
A

(k2ℓ2)
2 ‖F (=‖A(k1ℓ1)

1 ‖F ‖A(k2ℓ2)
2 ‖F ). That is, each m2 ×m2

submatrix A
(k1ℓ1)
1 ⊗A

(k2ℓ2)
2 of A1 ⊠A2 is mapped into its

Frobenius norm.

II. GROUP LASSO PENALIZED D-TRACE LOSS

Letx= [z⊤
1x z⊤

2x · · · z⊤
px]

⊤ ∈ R
mp where zix ∈ R

m, i ∈ [p],
are zero-mean, jointly Gaussian. Similarly, let y = [z⊤

1y z
⊤
2y · · ·

z⊤
py]

⊤ ∈ R
mp where ziy ∈ R

m, i ∈ [p], are zero-mean, jointly

Gaussian. Given i.i.d. samples x(t), t= 1, 2, · · · , nx, of x,

and similarly given i.i.d. samples y(t), t= 1, 2, · · · , ny , of

y ∈ R
mp, form the sample covariance estimates

Σ̂x =
1

nx

nx
∑

t=1

x(t)x⊤(t), Σ̂y =
1

ny

ny
∑

t=1

y(t)y⊤(t). (2)

and denote their true values as Σ
∗
x =Ω

−∗
x (= (Ω∗

x)
−1) and

Σ
∗
y =Ω

−∗
y . Assume that {x(t)} and {y(t)} are mutually inde-

pendent sequences. Assume Σ
∗
x and Σ

∗
y are positive definite.

We wish to estimate ∆=Ω
∗
y −Ω

∗
x and graph G∆ = (V, E∆),

based on Σ̂x and Σ̂y . Following the SA formulation of [8]

(see also [28, Sec. 2.1]), we will use a convex D-trace loss

function given by

L(∆, Σ̂x, Σ̂y) =
1

2
tr(Σ̂x∆Σ̂y∆

⊤)− tr(∆(Σ̂x − Σ̂y))

(3)

where D-trace refers to difference-in-trace loss function, a term

coined in [29] in the context of graphical model estimation.

The function L(∆,Σ∗
x,Σ

∗
y) is strictly convex in ∆ (its Hes-

sian w.r.t. vec(∆) is Σ∗
y ⊗Σ

∗
x), and has a unique minimum at

∆
∗ =Ω

∗
y −Ω

∗
x [8], [28]. When we use sample covariances, we

propose to estimate ∆ by minimizing the group-lasso penalized

loss function

Lλ(∆, Σ̂x, Σ̂y) = L(∆, Σ̂x, Σ̂y) + λ

p
∑

k,ℓ=1

‖∆(kℓ)‖F (4)

where λ > 0 is a tuning parameter and ‖∆(kℓ)‖F promotes

blockwise sparsity in ∆ [35], [36], [37] where, if we partition

∆ into m×m submatrices, ∆
(kℓ) denotes its (k, ℓ)th sub-

matrix, associated with edge {k, ℓ} of the differential graph

G∆ = (V, E∆).
For SA models (m= 1), [28] has used the lasso-penalized

loss function LJ (∆) = L(∆, Σ̂x, Σ̂y) + λ
∑p

k,ℓ=1

∣

∣∆kℓ

∣

∣. The

cost LJ (∆) is optimized in [28] using a two-block ADMM

approach which is known to be convergent. The resulting

estimator ∆̂ that minimizes the above cost is not necessarily

symmetric. To obtain a symmetric estimator for SA models,

[8] proposes the lasso-penalized loss function LY (∆)= 1
4
tr

(Σ̂x∆Σ̂y∆
⊤ + Σ̂y∆Σ̂x∆

⊤)− tr(∆(Σ̂x − Σ̂y))+λ
∑p

k,ℓ=1
∣

∣∆kℓ

∣

∣. In [8], cost LY (∆) is optimized using a three-

block ADMM method which is not necessarily convergent.

Suppose

∆̂= argmin
∆

Lλ(∆, Σ̂x, Σ̂y). (5)

Even though ∆ is symmetric, ∆̂ is not. We can symmetrize it

by setting ∆̂sym = 1
2
(∆̂+ ∆̂

⊤
), after obtaining ∆̂. Then the

differential graph edges are estimated as

Ê∆ =
{

{k, ℓ} : ‖∆̂(kℓ)

sym‖F > 0
}

. (6)

III. OPTIMIZATION

The objective function Lλ(∆, Σ̂x, Σ̂y), given by (4), is

strictly convex. Several existing approaches such as an alter-

nating direction method of multipliers (ADMM) [38] or prox-

imal gradient descent (PGD) methods [39], can be followed to

minimize (4). Note that [8], [28] use ADMM while [9] uses

a proximal gradient method, all for SA graphs. It is stated

in [8, Sec. 2.2] that in their simulation example, ADMM ap-

proach yielded a slightly smaller value of the objective function

compared to the PGD approach. In [10], [11], similar to [9],

a proximal gradient method is used for an objective function

similar to our (4). In this paper, motivated by [8], we will

develop an ADMM method. In a simulation example (Sec. V-A)

we compare our ADMM approach with ADMM and PGD

approaches of [28] and [9], [11], respectively.
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A. ADMM Approach

Similar to [28] (also [8]), we use an ADMM approach [38]

with variable splitting. Using variable splitting, consider

min
∆,W

{

L(∆, Σ̂x, Σ̂y) + λ

p
∑

k,ℓ=1

‖W (kℓ)‖F
}

subject to ∆=W . (7)

The scaled augmented Lagrangian for this problem is [38]

Lρ = L(∆, Σ̂x, Σ̂y)+λ

p
∑

k,ℓ=1

‖W (kℓ)‖F +
ρ

2
‖∆−W +U‖2

F

(8)

where U is the dual variable, and ρ > 0 is the penalty parameter.

Given the results ∆
(i),W (i),U (i) of the ith iteration, in the

(i+ 1)st iteration, an ADMM algorithm executes the following

three updates:

(a) ∆
(i+1)← argmin∆ La(∆), La(∆) :=L(∆, Σ̂x, Σ̂y)+

ρ
2
‖∆−W (i) +U (i)‖2

F .

(b) W (i+1) ← argminW Lb(W ), Lb(W ) :=λ
∑p

k,ℓ=1

‖W (kℓ)‖F + ρ
2
‖∆(i+1) −W +U (i)‖2

F .

(c) U (i+1) ←U (i) +
(

∆
(i+1) −W (i+1)

)

.

Update (a): Differentiate La(∆) w.r.t. ∆ to obtain

0 =
∂La(∆)

∂∆
= Σ̂x∆Σ̂y − (Σ̂x − Σ̂y) + ρ(∆−W +U)

(9)

⇒(Σ̂y ⊗ Σ̂x + ρI)vec(∆) = vec(Σ̂x − Σ̂y + ρ(W −U))
(10)

Direct matrix inversion solution of (10) requires inversion of

a (mp)2 × (mp)2 matrix. A computationally cheaper solution

is given in [8], [28], as follows. Carry out eigendecompo-

sition of Σ̂x and Σ̂y as Σ̂x =QxDxQ
⊤
x , QxQ

⊤
x = I and

Σ̂y =QyDyQ
⊤
y , QyQ

⊤
y = I , where Dx and Dy are diagonal

matrices of the respective eigenvalues. Then ∆̂ that minimizes

La(∆) is given by

∆̂=Qx

[

B ◦ [Q⊤
x

(

Σ̂x − Σ̂y + ρ(W −U)
)

Qy]
]

Q⊤
y (11)

where the symbol ◦ denotes the Hadamard product and B ∈
R

mp×mp organizes the diagonal of (Dy ⊗Dx + ρI)−1 in a

matrix withBjk = 1/([Dx]jj [Dy]kk + ρ). Note that the eigen-

decomposition of Σ̂x and Σ̂y has to be done only once. Thus

∆
(i+1) =Qx

[

B ◦ [Q⊤
x

(

Σ̂x − Σ̂y + ρ(W (i) −U (i))
)

Qy]
]

Q⊤
y

(12)

Update (b): Here we have the group lasso solution [35],

[36], [37]

(W (kℓ))(i+1)

=

(

1 − (λ/ρ)

‖(∆(i+1) +U (i))(kℓ)‖F

)

+

(∆(i+1) +U (i))(kℓ)

(13)

where (a)+ =max(0, a).
A pseudocode for the ADMM algorithm, MA-ADMM, used

in this paper is given in Algorithm 1 where we use the stopping

(convergence) criterion following [38, Sec. 3.3.1] and varying

Algorithm 1 ADMM Algorithm MA-ADMM

Input: Data {x(t)}nx

t=1, x ∈ R
mp, and {y(t)}ny

t=1, y ∈ R
mp,

regularization and penalty parameters λ and ρ0, tolerances τabs
and τrel, variable penalty factor µ, maximum number of itera-

tions imax.

Output: estimated ∆̂sym and Ê∆.

1: Calculate sample covariances Σ̂x = 1
nx

∑nx

t=1 x(t)x
⊤(t)

and Σ̂y =
1
ny

∑ny

t=1 y(t)y
⊤(t).

2: Initialize: ∆
(0) =U (0) =W (0) = 0, where ∆,U ,W ∈

R
(mp)×(mp), ρ(0) = ρ0.

3: Eigendecompose Σ̂x and Σ̂y as Σ̂x =QxDxQ
⊤
x and

Σ̂y =QyDyQ
⊤
y .

4: converged = FALSE, i= 0

5: while converged = FALSE AND i≤ imax, do

6: Construct B ∈ R
mp×mp with Bjk =

1/([Dx]jj [Dy]kk + ρ(i)).

7: Set ∆
(i+1) =Qx

[

B ◦ [Q⊤
x

(

Σ̂x − Σ̂y + ρ(W (i) −
U (i))

)

Qy]
]

Q⊤
y .

8: With (a)+ := max(0, a), A= (∆(i+1) +U (i))(kℓ) and

k, ℓ ∈ [p], update m×m subblocks of W as

(W (i+1))(kℓ) =
(

1 − (λ/ρ)

‖A‖F

)

A.

9: Dual update U (i+1) =U (i) +
(

∆
(i+1) −W (i+1)

)

.

10: Check convergence. Set tolerances

τpri =mpτabs + τrel max(‖∆(i+1)‖F , ‖W (i+1)‖F )
τdual =mpτabs + τrel ‖U (i+1)‖F /ρ(i) .

Define ep = ‖∆(i+1) −W (i+1)‖F and ed =
ρ(i)‖W (i+1) −W (i)‖F . If (ep ≤ τpri)AND (ed ≤
τdual), set converged = TRUE.

11: Update penalty parameter ρ: If ep > µed, set ρ(i+1) =
2ρ(i), else if ed > µep, set ρ(i+1) = ρ(i)/2, otherwise

ρ(i+1) = ρ(i). We also need to set U (i+1) =U (i+1)/2 for

ep > µed and U (i+1) = 2U (i+1) for ed > µep.

12: i← i+ 1

13: end while

14: Set ∆̂sym = 1
2
(W +W⊤). If ‖∆̂(jk)

sym‖F > 0, assign edge

{j, k} ∈ Ê∆, else {j, k} 6∈ Ê∆.

penalty parameter ρ following [38, Sec. 3.4.1]. The stopping cri-

terion is based on primal and dual residuals being small where,

in our case, at (i+ 1)st iteration, the primal residual is given

by ∆
(i+1) −W (i+1) and the dual residual by ρ(i)(W (i+1) −

W (i)). Convergence criterion is met when the norms of these

residuals are below primary and dual tolerances τpri and τdual,
respectively; see line 10 of Algorithm 1. In turn, τpri and τdual
are chosen using an absolute and relative criterion as in line 10

of Algorithm 1 where τabs and τrel are user chosen absolute

and relative tolerances, respectively. Line 10 of Algorithm 1

follows typical choices given in [38, Sec. 3.4.1]. For all nu-

merical results presented later, we used ρ0 = 2, µ= 10, and

τabs = τrel = 10−4.
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Algorithm 2 ADMM Algorithm SA-ADMM

Input: As in Algorithm 1.

Output: Estimated ∆̂sym and Ê∆.

1: Follow lines 1-7 of Algorithm 1

2: With (a)+ := max(0, a), A=(∆(i+1) +U (i))(kℓ) and

k, ℓ ∈ [mp], update [W ]kℓ ∈ R as

[W (i+1)]kℓ =
(

1 − (λ/ρ)
∣

∣[A]kℓ
∣

∣

)

+
[A]kℓ .

3: Follow lines 9-14 of Algorithm 1

Algorithm 3 PGD Algorithm MA-PGD

Input: Data {x(t)}nx

t=1, x ∈ R
mp, and {y(t)}ny

t=1, y ∈ R
mp,

tolerance ǫ, maximum number of iterations imax

Output: Estimated ∆̂sym and Ê∆.

1: Calculate sample covariances Σ̂x = 1
nx

∑nx

t=1 x(t)x
⊤(t)

and Σ̂y =
1
ny

∑ny

t=1 y(t)y
⊤(t).

2: Set η = 1/
(

φmax(Σ̂x)φmax(Σ̂x)
)

. Initialize: ∆(0) = 0.

3: converged = FALSE, i= 0

4: while converged = FALSE AND i≤ imax, do

5: Set A=∆
(i) − η

(

Σ̂x∆
(i)
Σ̂y − (Σ̂x − Σ̂y)

)

.

6: For k, ℓ ∈ [p], update m×m subblocks as

(∆(i+1))(kℓ) =
(

1 − λη

‖A(kℓ)‖F

)

+
A(kℓ) .

7: If
Lλ(∆

(i+1),Σ̂x,Σ̂y)−Lλ(∆
(i),Σ̂x,Σ̂y)

Lλ(∆(i),Σ̂x,Σ̂y)
≤ ǫ, set converged

= TRUE .

8: i← i+ 1

9: end while

10: Set ∆̂sym = 1
2
(∆+∆

⊤). If ‖∆̂(jk)

sym‖F > 0, assign edge

{j, k} ∈ Ê∆, else {j, k} 6∈ Ê∆.

Algorithm 4 PGD Algorithm SA-PGD

Input: As in Algorithm 3

Output: Estimated ∆̂ and Ê∆
1: Follow lines 1-5 of Algorithm 3

2: For k, ℓ ∈ [mp], update

[∆(i+1)]kℓ =
(

1 − λη
∣

∣[A]kℓ
∣

∣

)

+
[A]kℓ .

3: Follow lines 7-10 of Algorithm 3

We will compare our approach with three other approaches in

Sec. V-A. One of them is the single attribute (SA) based ADMM

approach (see [8], [28]). A pseudocode of our implementation

of this approach, SA-ADMM, is in Algorithm 2 which differs

from in Algorithm 1 only in line 8 where we replace group lasso

with elementwise lasso.

B. Proximal Gradient Descent Approach

It is a first-order method that is based on objective function

values and gradient evaluations. A pseudocode of the PGD

method of [11], MA-proximal, is in Algorithm 3, and that of

[9], SA-proximal, is in Algorithm 4. Algorithm 4 differs from

in Algorithm 3 only in line 8 where we replace group lasso with

element-wise lasso. For all numerical results presented later, we

used ǫ= 10−3 in line 7.

C. Computational Complexity

The computational complexity of ADMM and PGD methods

has been discussed in [9] for SA differential graphs, and it

is of the same order for MA graphs, because the difference

lies only in lasso versus group lasso, i.e., element-wise soft-

thresholding versus group-wise soft-thresholding. Noting that

we have mp×mp precision matrices, by [9], the computational

complexity of the ADMM approaches (our proposed and that

of [8], [28]) is O((mp)3) while that of the PGD methods of [9],

[11] is either O((mp)3) when as implemented in Algorithms 3

and 4, or O((nx + ny)(mp)2) when an alternative implementa-

tion of the cost gradient in line 5 of Algorithms 3 and 4 is used

(see [9, Sec. 2.2]). For nx + ny ≥mp, there is no advantage to

this alternative approach.

D. Convergence of ADMM

The objective function (4) is strictly convex. It is also closed,

proper and lower semi-continuous. Hence, for any fixed ρ > 0,

the (two-block) ADMM algorithm is guaranteed to converge

[38, Sec. 3.2], in the sense that we have primal residual con-

vergence to 0, dual residual convergence to 0, and objective

function convergence to the optimal value. For varying ρ, the

convergence of ADMM has not been proven, but if we addi-

tionally impose ρ(i) = ρ(i0) > 0 for i≥ i0 for some i0, we have

convergence [38, Sec. 3.4.1].

E. Model Selection

Following the lasso penalty work of [8] (who invokes

[12]), we use the following criterion for selection of group

lasso penalty:

BIC(λ) = (nx + ny) ‖Σ̂x∆̂Σ̂y − (Σ̂x − Σ̂y)‖F
+ ln(nx + ny) |∆̂|0 (14)

where |A|0 denotes number of nonzero elements in A and

∆̂ obeys (5). Choose λ to minimize BIC(λ). Following [8]

we term it BIC (Bayesian information criterion) even though

the cost function used is not negative log-likelihood although

ln(nx + ny) |∆̂|0 penalizes over-parametrization as in BIC. It

is based on the fact that true ∆
∗ satisfies Σ

∗
x∆

∗
Σ

∗
y − (Σ∗

x −
Σ

∗
y) = 0. Since (14) is not scale invariant, we scale both Σ̂x and

Σ̂y (and ∆̂ commensurately) by Σ̄
−1

where Σ̄= diag{Σ̂x} is

a diagonal matrix of diagonal elements of Σ̂x.

In our simulations we search over λ ∈ [λℓ, λu], where λℓ and

λu are selected via a heuristic as in [17]. Find the smallest λ,

labeled λsm for which we get a no-edge model; then we set

λu = λsm/2 and λℓ = λu/10.

IV. THEORETICAL ANALYSIS

Here we analyze the properties of ∆̂. Theorem 1 follows

the approach(es) of [8], [16], [28], [29], [31] while Theorem 2
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follows the general framework of [30]. The general method of

[31] used in [8], [16], [28], [29] requires an irrepresentability

condition (see (20)) which is not needed by the method of

[30]. On the other hand, our Theorem 2 does not have a result

like Theorem 1(ii), the oracle property, or support recovery

Theorem 1(iv).

First some notation. Define the true differential edgeset

S =E∆∗ = {{k, ℓ} : ‖∆∗(kℓ)‖F 6= 0}, s= |S|. (15)

Define

Γ
∗ =Σ

∗
y ⊠Σ

∗
x, Γ̂= Σ̂y ⊠ Σ̂x. (16)

Also, recall the operator C(·) defined in Sec. I-C. In the rest of

this section, we allow p, s and λ to be a functions of sample

size n, denoted as pn, sn and λn, respectively. Define

M =max{‖C(Σ∗
x)‖∞, ‖C(Σ∗

y)‖∞}, (17)

MΣ =max{‖C(Σ∗
x)‖1,∞, ‖C(Σ∗

y)‖1,∞}, (18)

κΓ = ‖C(Γ∗
S,S)

−1‖1,∞, (19)

α= 1 −max
e∈Sc

‖C(Γ∗
e,S(Γ

∗
S,S)

−1)‖1, (20)

σ̄xy =max{max
i

[Σ∗
x]ii, max

i
[Σ∗

y]ii} (21)

C0 = 40mσ̄xy

√

2
(

τ + ln(4m2)/ ln(pn)
)

(22)

where S and Γ
∗ have been defined in (15) and (16). In (20), we

require 0 < α < 1, and the expression

max
e∈Sc

‖C(Γ∗
e,S(Γ

∗
S,S)

−1)‖1 ≤ 1 − α

for some α ∈ (0, 1) is called the irrepresentability condition.

Similar conditions are also used in [8], [16], [28], [29], [31].

Let ∆̂ be as in (5).

Theorem 1: For the system model of Sec. II, under (15) and

the irrepresentability condition (20) for some α ∈ (0, 1), if

λn =max

{

8

α
,

3

αC̄α
snκΓMCMκ

}

C0

√

ln(pn)

n
(23)

n=min(nx, ny)> max

{

1

min{M 2, 1} , 81M 2s2
nκ

2
Γ,

9s2
n

(αC̄α)2
(κΓMCMκ)

2

}

C2
0 ln(pn) (24)

where C̄α=
1 −α

2(2M+1)−2αM and CMκ=1.5
(

1+κΓ min{snM 2,

M 2
Σ}

)

, then with probability > 1 − 2/pτ−2
n , for any τ > 2, we

have

(i) ‖C(∆̂−∆
∗)‖∞ ≤ (Cb1 + Cb2)C0

√

ln(pn)
n

where Cb1 = 3κΓ max

{

8

α
,

3

αC̄α
snκΓMCMκ

}

Cb2 = 9snκ
2
ΓM

2.

(ii) ∆̂Sc = 0.

(iii) ‖C(∆̂−∆
∗)‖F ≤√

sn ‖C(∆̂−∆
∗)‖∞.

(iv) Additionally, if min(k,ℓ)∈S ‖(∆∗)(kℓ)‖F ≥
2(Cb1 + Cb2)C0

√

ln(pn)
n , then P (G∆̂ = G∆∗)>

1 − 2/pτ−2
n (support recovery).

The proof of Theorem 1 is given in Appendix A.

Now we present Theorem 2 that follows the general frame-

work of [30]. Let ∆̂ be as in (5).

Theorem 2: For the system model of Sec. II, under (15), if

λn ≥ (4 + 6MsnC1)C0

√

ln(pn)

n
(25)

n=min(nx, ny)> max

{

1

M 2
,

(

96Msn
φ∗
min

)2
}

C2
0 ln(pn)

(26)

where C1 =max{k,ℓ}∈V×V ‖(∆∗)(kℓ)‖F and φ∗
min =

φmin(Σ
∗
x)φmin(Σ

∗
y), then with probability > 1 − 2/pτ−2

n , for

any τ > 2, we have

‖∆̂−∆
∗‖F ≤ 12

√
sn

φ∗
min

(4 + 6MsnC1)C0

√

ln(pn)

n
. (27)

The proof of Theorem 2 is given in Appendix B. Note that

‖C(∆̂−∆
∗)‖F = ‖∆̂−∆

∗‖F when comparing Theorems 1

and 2.

Remark 1: Convergence Rate. If M , MΣ and κΓ stay

bounded with increasing sample size n, we have ‖C(∆̂−
∆

∗)‖F =OP (s
1.5
n

√

ln(pn)/n). Therefore, for ‖C(∆̂−
∆

∗)‖F → 0 as n→∞, we must have s1.5
n

√

ln(pn)/n→ 0.

The SA results in [8] need s3.5
n

√

ln(pn)/n→ 0 when we take

into account the dependence of various constants on sn in

[8]. Notice that MΣ constrains covariances Σ
∗
x and Σ

∗
y which

can be dense even if Ω
∗
x and Ω

∗
y are sparse (they need not

be sparse for differential estimation), making them possibly

unbounded with increasing sample size n. In this case we

use min{snM 2,M 2
Σ}= snM

2 in CMκ and Cb1, with M
bounded, leading to ‖C(∆̂−∆

∗)‖F =OP (s
2.5
n

√

ln(pn)/n).
On the other hand, in Theorem 2, we always have

‖C(∆̂−∆
∗)‖F =OP (s

1.5
n

√

ln(pn)/n). ¤

Remark 2: Our results assume Gaussian data. Theorems 1

and 2 continue to hold for more general sub-Gaussian distribu-

tions (Gaussian distribution is a sub-Gaussian distribution) ex-

cept that the zeros in the precision matrix (see (1)), or in the dif-

ference of two precision matrices, no longer signify conditional

independence (or change in conditional independence) of the

random vectors associated with the respective nodes; they only

imply zero partial correlation. We state Lemma 1 in Appendix A

for sub-Gaussian distributions, following [31, Lemma 1].

Lemma 2 is then specialized to Gaussian distributions by setting

the sub-Gaussian parameter σsg = 1. If σsg 6= 1, then the only

changes required in Theorems 1 and 2 is a scaling of C0 in (22)

where one needs to replace the factor of 40 with 8(1 + 4σ2
sg).¤

Remark 3: Theorems 1 and 2 assume a constant number of

attributes m, with only p, s and λ allowed to be functions of

sample size n, and our Remark 1 reflects this fact. In terms ofm,

the bounds in Theorem 1(i) and Theorem 2 are O(m3), which

follows from M =O(m) and CMκ =O(m2) in Theorem 1,

and M =O(m), C1 =O(m) and C0 =O(m) in Theorem 2.

Therefore, for large m, one would need much higher number of

samples n, and it is not clear how to circumvent this bottleneck.

A different class of models based on matrix-valued graphical

modeling [40], [41], [42] is a potential solution. In a matrix
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graph set-up, one has matrix-valued observations Z, which

in our context would require attributes (components of zi) to

be arranged along rows and nodes i along columns, with the

covariance of vec(Z) having a Kronecker-product structure.

This structure drastically reduces the number of unknowns from

O((mp)2) to O(m2 + p2). Prior reported work ([40], [41],

[42]) is on matrix graph estimation, with no reported work on

differential matrix graphs. ¤

V. NUMERICAL EXAMPLES

We now present numerical results for both synthetic and real

data to illustrate the proposed approach. In synthetic data exam-

ples the ground truth is known and this allows for assessment of

the efficacy of various approaches. In real data examples where

the ground truth is unknown, our goal is visualization and ex-

ploration of the differential conditional dependency structures

underlying the data.

A. Synthetic Data: Erdös-Rènyi and Barabási-Albert Graphs

We consider two types of graphs: Erdös-Rènyi (ER) graph

and Barabási-Albert (BA) graph [43], [44]. The BA graphs

are an example of scale-free graphs with power law degree

distribution [43]. In the ER graph, p= 100 nodes are con-

nected to each other with probability per = 0.5 and there

are m= 3 attributes per node whereas in the BA graph,

we used p= 100 and mean degree of 2 to generate a BA

graph using the procedure given in [44] (MATLAB function

BAmodel.m from https://github.com/ShanLu1984/Scale-Free-

Network-Generation-and-Comparison). In the upper triangular

Ωx, we set [Ω(jk)
x ]st = 0.5|s−t| for j = k = 1, · · · , p, s, t=

1, · · · ,m. For j 6= k, if the two nodes are not connected in

the graph (ER or BA), we have Ω
(jk) = 0, and if nodes j and

k are connected, then [Ω(jk)]st is uniformly distributed over

[−0.4,−0.1] ∪ [0.1, 0.4]. Then add lower triangular elements

to make Ωx a symmetric matrix. To generate Ωy , we follow

[8] and first generate a differential graph with ∆ ∈ R
(mp)×(mp)

as an ER graph (regardless of whether Ωx is based on ER or

BA model), with connection probability per = 0.05 (sparse): if

nodes j and k are connected in the Ωx model, then each of m2

elements of ∆(jk) is independently set to ±0.9 with equal prob-

abilities. Then Ωy =Ωx +∆. Finally add γI to Ωy and to Ωx

and pick γ so that Ωy and Ωx are both positive definite. With

ΦxΦ
⊤
x =Ω

−1
x , we generate x=Φw with w ∈ R

mp as zero-

mean Gaussian, with identity covariance, and similarly for y.

We generate n= nx = ny i.i.d. observations for x and y, with

m= 3, p= 100, n ∈ {100, 200, 300, 400, 800, 1200, 1600}.

Simulation results based on 100 runs are shown in Figs. 1–4.

By changing the penalty parameter λ and determining the re-

sulting edges, we calculated the true positive rate (TPR) and

false positive rate 1-TNR (where TNR is the true negative rate)

over 100 runs. The receiver operating characteristic (ROC) for

ER graphs is shown in Fig. 1 for our MA-ADMM approach

(labeled “MA”) as well as for a SA-ADMM approach (labeled

“SA”), based on [28], where we first estimate an mp-node dif-

ferential graph, and then use ‖∆̂(kℓ)‖F 6= 0 ⇔{{k, ℓ} ∈ E∆}.

It is seen from Fig. 1 that our MA-ADMM approach out-

performs the SA-ADMM approach (that uses the same cost

Fig. 1. ROC curves for ER graph based on ADMM approaches. TPR=true
positive rate, TNR=true negative rate.

Fig. 2. ROC curves for BA graph based on ADMM approaches. TPR=true
positive rate, TNR=true negative rate.

Fig. 3. ROC curves for ER graph based on ADMM as well as proximal
approaches.

but element-wise lasso penalty instead of group-lasso penalty).

Fig. 2 is the counterpart of Fig. 1 for BA graphs., and comments

made regarding Fig. 1 apply here too.

In Fig. 3 we compare ROC curves of our MA-ADMM

approach with that for the MA-proximal and SA-proximal

approaches of [11] and [9], respectively, for n= 300 and 800.
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TABLE I
COMPARISONS AMONG VARIOUS APPROACHES: ERDÖS-RÈNYI GRAPH,

n= 300, 800, 3000, 6000, p= 100, m= 3. TUNING PARAMETER λ PICKED TO YIELD THE

HIGHEST F1 SCORE. RESULTS BASED ON 100 RUNS

Approach F1 Score (±σ) timing (s) (±σ) TPR (±σ) 1-TNR (±σ)

n = 300

MA-ADMM 0.6152 ±0.0705 2.5044 ±0.2939 0.6067 ±0.1230 0.0184 ±0.0080
MA-proximal 0.6686 ±0.0639 6.6931 ±0.3743 0.6845 ±0.1253 0.0184 ±0.0085

SA-ADMM 0.4549 ±0.0332 0.1739 ±0.0173 0.5795 ±0.1132 0.0506 ±0.0186
SA-proximal 0.4772 ±0.0328 0.3517 ±0.0195 0.6263 ±0.1157 0.0524 ±0.0193

n = 800

MA-ADMM 0.8537 ±0.0491 2.1911 ±0.0639 0.9037 ±0.0703 0.0111 ±0.0041
MA-proximal 0.8898 ±0.0408 4.8277 ±0.2647 0.9526 ±0.0537 0.0009 ±0.0041

SA-ADMM 0.6336 ±0.0055 0.1510 ±0.0081 0.7468 ±0.1017 0.0316 ±0.0090
SA-proximal 0.6612 ±0.0401 0.2533 ±0.0143 0.7917 ±0.0931 0.0314 ±0.0090

n = 3000

MA-ADMM 0.9795 ±0.0152 2.1436 ±0.0624 0.9928 ±0.0018 0.0012 ±0.0041
MA-proximal 0.9914 ±0.0106 3.8312 ±0.3948 0.9964 ±0.0121 0.0007 ±0.0007

n = 6000

MA-ADMM 0.9914 ±0.0087 1.9459 ±0.0544 0.9997 ±0.0013 0.0008 ±0.0009
MA-proximal 0.9979 ±0.0037 3.5170 ±0.1829 0.9998 ±0.0011 0.0002 ±0.0004

It is seen that the MA-proximal approach outperforms our

MA-ADMM approach, while both significantly outperform the

SA-proximal approach (and the SA-ADMM approach whose

ROC curves are in Fig. 1). In Table I, for the ER graph (n=
300, 800, p= 100, m= 3) we compare the four approaches

(MA-ADMM, SA-ADMM, MA-proximal, SA-proximal) in

terms of the F1 score, execution time (based on tic-toc functions

in MATLAB), TPR and 1-TNR, for fixed penalty parameter

λ selected from a grid of values (the same as for computing

the ROC curves) to maximize the F1 score averaged over 100

runs. All algorithms were run on a Window 10 Pro operating

system with processor Intel(R) Core(TM) i7-10700 CPU @2.90

GHz with 32 GB RAM, using MATLAB R2023a. Notice that

while the MA-proximal approach outperforms our MA-ADMM

approach, it also takes more than twice the computation time

for the MA-ADMM approach. Similarly, the SA-proximal ap-

proach takes more than twice the computation time for the SA-

ADMM approach. The latter observation is consistent with the

findings of [9].

In Table I, we also show results for n= 3000 and 6000 for

MA-ADMM and MA-proximal approaches in order to provide

further empirical validation of the theoretical results stated in

Theorem 1. Theorem 1 states that for sufficiently large sample

size n, one can recover the differential graph structure ex-

actly w.h.p. It is seen that the F1 score approaches one with

increasing n, implying graph support recovery, as claimed in

Theorem 1(iv). Note that Theorem 1(iv) holds w.h.p., not with

probability one, implying a nonzero probability of possibly

inexact graph recovery, yielding an F1-score less than 1 for

n= 3000, 6000. The sample sizes of n= 300, 800 are not large

enough to yield an F1-score close to 1. There is a lower bound

(24) on n for Theorem 1(iv) to hold w.h.p. The sample sizes of

n= 300, 800 are apparently less than the bound (which is not

easily computable since it needs α and κΓ).

In Fig. 4 we show the results based on 100 runs for our

approach when BIC parameter selection method (Sec. III-E) is

applied in conjunction with the MA-ADMM approach. Here we

show the TPR, 1-TNR and F1 score values along with the ±σ

Fig. 4. BIC based results for ER graph: F1-scores, TPR and 1-TNR.

error bars. The proposed approach works well both in terms of

F1 score and TPR vs 1-TNR.

B. Real Data: Beijing Air-Quality Dataset [45]

Here we consider Beijing air-quality dataset [45], [46], down-

loaded from https://archive.ics.uci.edu/ml/datasets/Beijing+

Multi-Site+Air-Quality+Data. This data set includes hourly

air pollutants data from 12 nationally-controlled air-quality

monitoring sites in the Beijing area from the Beijing Municipal

Environmental Monitoring Center, and meteorological data

in each air-quality site are matched with the nearest weather

station from the China Meteorological Administration. The

time period is from March 1st, 2013 to February 28th, 2017.

The six air pollutants are PM2.5, PM10, SO2, NO2, CO,

and O3, and the meteorological data is comprised of five

features: temperature, atmospheric pressure, dew point, wind

speed, and rain; we did not use wind direction. Thus we have

eleven features. We used data from 8 sites: 4 suburban/rural

sites – Changping, Huairou, Shunyi, Dingling, and 4 urban

area stations – Aotizhongxin, Dongsi, Guanyuan, Gucheng
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Fig. 5. Differential graphs comparing Beijing air-quality datasets [45] for years 2013-14 and 2014-15: 8 monitoring stations and 11 features (m= 8, p= 11,
nx = ny = 365). The features are numbered 1-11 beginning PM2.5 (PM2.5) and moving counter-clockwise in (b).

[46, Fig. 1]. The data are averaged over 24 hour period to yield

daily averages. We used one year of daily data resulting in

nx = ny = 365 days. The stations are used as attributes, with

m= 8 for comparison between years 2013-14 and 2014-15,

and m= 4 for comparison between suburban/rural sites and

urban sites using 2013-14 year data.

We pre-process the data as follows. Given ith feature data

zi(t) ∈ R
m, we transform it to z̄i(t) = ln(zi(t)/zi(t− 1)) and

then detrend it (i.e., remove the best straight-line fit using the

MATLAB function detrend). Finally, we scale the detrended

scalar sequence to have a mean-square value of one over nx or

ny samples. The logarithmic transformation and detrending of

each feature sequence makes the sequence closer to (univariate)

stationary and Gaussian, while scaling “balances” the possible

wide variations in the scale of various feature measurements.

All temperatures were converted from Celsius to Kelvin to

avoid negative numbers, and if a value of a feature is zero (e.g.,

wind speed), we added a small positive number to it, so that the

logarithmic transformation is well-defined.

Fig. 5 shows the estimated differential graphs when com-

paring daily-averaged data from 2013-14 (x-data) to that from

2014-15 (y-data), with air-quality and meteorological variables

as p= 11 features measured at 8 monitoring sites (m= 8).

The objective is to visualize and explore differential condi-

tional dependency relationships among the 11 variables, com-

paring one year to another, to investigate if pollution reduction

measures have had any impact. Our intuition is that one does

not expect such rapid changes within a short period of one

year (see also [45]), therefore, our method should confirm our

intuition. Fig. 5(a)–(b) show estimated ‖∆̂(kℓ)‖F for various

edges {k, ℓ}, where it is unscaled in Fig. 5(a) but scaled in

Fig. 5(b) so that the largest ‖∆̂(kℓ)‖F (including k = ℓ) is

normalized to one. It is seen that differential graph weights

are essentially zero (very sparse), implying that there are no

year-to-year changes in the conditional dependency relation-

ships among the 11 variables. This observation conforms to

the findings of [45], [46]: no significant year-to-year changes.

We also estimated the MA graphs for each year separately

as ‖Ω̂(kℓ)

x ‖F and ‖Ω̂(kℓ)

y ‖F (shown in Fig. 5(c)–(d)), using

the approach of [17], and based on the individual estimates,

we computed the differential graph ‖Ω̂(kℓ)

y − Ω̂
(kℓ)

x ‖F (shown

in Fig. 5(e)–(f)). It is seen the separate-estimation approach

does not yield a sparse differential graph, even though the two

individual graphs in Fig. 5(c)–(d) are not all that different.

Fig. 6 shows the estimated differential graphs when compar-

ing daily-averaged data over the period 2013-14, from four sub-

urban/rural sites (x-data) to that from four urban sites (y-data),

with air-quality and meteorological variables as p= 11 features

measured at two sets of 4 monitoring sites (m= 4). The ob-

jective again is to visualize and explore differential conditional

dependency relationships among the 11 variables, but in this

case comparing one subregion to another. There are significant

differences in meteorological conditions and pollutant sources,

levels and mutual interactions, among suburban and urban areas

[45], [46]. The suburban areas (located toward north) are less
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Fig. 6. Differential graphs comparing Beijing air-quality datasets [45] acquired from two sets of monitoring stations, 4 stations per set, year 2013-14: 4
monitoring stations and 11 features (m= 4, p= 11, nx = ny = 365).

polluted than the urban areas (located toward south) [45], [46].

Automobile exhaust is the main cause of NO2 which is likely to

undergo a chemical reaction with Ozone O3, thereby, lowering

its concentration [46]. Cold, dry air from the north reduces both

dew point and PM2.5 particle concentration in suburban areas

while southerly wind brings warmer and more humid air from

the more polluted south that elevates the PM2.5 concentration

[45]. The urban stations neighbor the south of Beijing which

is heavily installed with iron, steel and cement industries in

Hebei province [45]. Fig. 6(a)–(b) show estimated ‖∆̂(kℓ)‖F
for various edges {k, ℓ}, where it is unscaled in Fig. 6(a) but

scaled in Fig. 6(b) so that the largest ‖∆̂(kℓ)‖F (including

k = ℓ) is normalized to one. It is seen that quite a few of the

differential graph weights are significantly non-zero in Fig. 6(a),

unlike that in Fig. 5(a), implying significant differences in

the conditional dependency relationships among the 11 vari-

ables for suburban and urban areas. This observation conforms

to the findings of [45], [46]. The comments made regarding

Fig. 5(c)–(f) apply as well to Fig. 6(c)–(f).

VI. CONCLUSION

A group lasso penalized D-trace loss function approach for

differential graph learning from multi-attribute data was pre-

sented. An ADMM algorithm was presented to optimize the

convex objective function. Theoretical analysis establishing

consistency of the estimator in high-dimensional settings was

performed. We tested the proposed approach on synthetic as

well as real data. In the synthetic data example, the multi-

attribute approach is shown to outperform a single-attribute

approach in correctly detecting the differential graph edges with

ROC as the performance metric.

APPENDIX A

TECHNICAL LEMMAS AND PROOF OF THEOREM 1

In this Appendix, we provide a proof of Theorem 1. A nec-

essary and sufficient condition for minimization of convex

Lλ(∆, Σ̂x, Σ̂y) given by (4) w.r.t. ∆ ∈ R
mp×mp is that ∆̂

minimizes (4) iff the zero matrix belongs to the sub-differential

of Lλ(∆, Σ̂x, Σ̂y). That is,

0 =
∂L(∆, Σ̂x, Σ̂y)

∂∆
+ λZ(∆)

∣

∣

∣

∆=∆̂

= Σ̂x∆̂Σ̂y − (Σ̂x − Σ̂y) + λZ(∆̂) (28)

where Z(∆) ∈ ∂
∑p

k,ℓ=1 ‖∆(kℓ)‖F ∈ R
mp×mp, the sub-

differential of group lasso penalty term, is given by

[36], [37]

(Z(∆))(kℓ)

=











∆
(kℓ)

‖∆(kℓ)‖F
if ‖∆(kℓ)‖F 6= 0

V ∈ R
m×m, ‖V ‖F ≤ 1, if ‖∆(kℓ)‖F = 0

. (29)

Authorized licensed use limited to: Auburn University. Downloaded on January 08,2024 at 21:04:57 UTC from IEEE Xplore.  Restrictions apply. 



TUGNAIT: LEARNING HIGH-DIMENSIONAL DIFFERENTIAL GRAPHS FROM MA DATA 425

In terms of m×m submatrices of ∆, Σ̂x, Σ̂y and Z(∆)
corresponding to various graph edges, using bvec(ADB) =
(B⊤

⊠A) bvec(D) [33, Lemma 1], we may rewrite (28) as

(Σ̂y ⊠ Σ̂x)bvec(∆̂)− bvec(Σ̂x − Σ̂y) + λ bvec(Z(∆̂)) = 0

(30)

Then (30) can be rewritten as
[

Γ̂S,S Γ̂S,Sc

Γ̂Sc,S Γ̂Sc,Sc

] [

bvec(∆̂S)

bvec(∆̂Sc)

]

−
[

bvec((Σ̂x − Σ̂y)S)

bvec((Σ̂x − Σ̂y)Sc)

]

+ λ

[

bvec(Z(∆̂S))

bvec(Z(∆̂Sc))

]

=

[

0

0

]

. (31)

The general approach of [31] (followed in [8], [16], [28],

[29]) is to first solve the hypothetical constrained optimization

problem with known edgeset S

∆̃= arg min
∆:∆Sc=0

Lλ(∆, Σ̂x, Σ̂y) (32)

where Sc is the complement of S. Since, by construction,

∆̃Sc = 0, in this case (31) reduces to

Γ̂S,Sbvec(∆̃S)− bvec((Σ̂x − Σ̂y)S) + λ bvec(Z(∆̃S)) = 0.
(33)

In the approach of [31], one investigates conditions under which

the solution ∆̂ to (4) is the same as the solution ∆̃ to (32). This

is done by showing that ∆̂ satisfies (31). The choice ∆̂= ∆̃

implies that ∆̂Sc = 0 and (33) is true with ∆̃ replaced with ∆̂.

In order to satisfy (31), it remains to show that for any edge

e ∈ Sc, we have strict feasibility

‖Γ̂e,Sbvec(∆̃S)− bvec((Σ̂x − Σ̂y)e)‖2 < λ, (34)

where for a ∈ R
q , ‖a‖2 =

√
a⊤a. This requires a set of suffi-

cient conditions stated in Theorem 1.

Lemma 1 follows from [31, Lemma 1]. It is stated for more

general sub-Gaussian distributions as in [31, Lemma 1], but

will be used later for Gaussian distributions, a subset of sub-

Gaussian distributions.

Lemma 1: Suppose Σ̂= (1/n)
∑n

t=1 x(t)x
⊤(t), given n

i.i.d. samples {x(t)}nt=1 of zero-mean sub-Gaussian x ∈ R
mp

with covariance Σ∗ such that each component xi/
√

Σ∗
ii is sub-

Gaussian with parameter σsg. Define σmax =max1≤i≤mpn
Σ∗

ii

and

C̃0 = 8(1 + 4σ2
sg)mσmax

√

2
(

τ + ln(4m2)/ ln(pn)
)

. (35)

Then

P
(

‖C(Σ̂−Σ
∗)‖∞ > C̃0

√

ln(pn)/n
)

≤ 1/pτ−2
n (36)

for any τ > 2 and n > 2m2(ln(4m2) + τ ln(pn)).
Proof: By [31, Lemma 1], with b= 8(1 + 4σ2

sg), we have

P
(

|[Σ̂−Σ
∗]ij |> δ

)

≤ 4 exp(−c∗nδ
2) (37)

for any δ ∈ (0, b σmax) where c−1
∗ = 2b2σ2

max. For any edge

{k, ℓ} of the MA graph, with m2 edges {i, j} of the correspond-

ing SA graph associated with {k, ℓ}, using the union bound,

we have

P
(

|[C(Σ̂−Σ
∗)]kl|> δ

)

≤ P

(

max
{i,j}∈{k,ℓ}

([Σ̂−Σ
∗]ij)

2 >
δ2

m2

)

≤m2P

(

|[Σ̂−Σ
∗]ij |>

δ

m

)

= 4m2 exp

(

− c∗n
δ2

m2

)

.

(38)

Applying the union bound once more over all p2
n entries

P
(

‖C(Σ̂−Σ
∗)‖∞ > δ

)

≤ 4(mpn)
2 exp

(

−c∗n
δ2

m2

)

=:Ptb.

(39)

Choose δ= C̃0

√

ln(pn)/n= bmσmax

√

2 ln(4pτnm
2)/n . Then

we have

Ptb =4(mpn)
2 exp

(

ln(4pτnm
2)−1

)

= 1/pτ−2
n (40)

provided δ ∈ (0, bσmax). Therefore, we need to have

C̃0

√

ln(pn)/n < bσmax requiring n > 2m2(ln(4m2) +
τ ln(pn)). This completes the proof.

Using the union bound, Lemma 1 and Gaussian assumption,

we have Lemma 2.

Lemma 2: Let Σ̂x and Σ̂y be as in (2), σ̄xy as in (21),

C0 as in (22) and assume data are Gaussian. Define n=
min(nx, ny) and

A=max
{

‖C(Σ̂x −Σ
∗
x)‖∞, ‖C(Σ̂y −Σ

∗
y)‖∞

}

. (41)

Then for any τ > 2 and n > 2m2 ln(4m2pτn),

P
(

A>C0

√

ln(pn)/n
)

≤ 2/pτ−2
n (42)

Proof: For Gaussian distribution, the sub-Gaussian param-

eter σsg of Lemma 1 equals 1. Then 8(1 + 4σ2
sg) = 40. Let

C0x = 40m(maxi Σ
∗
x,ii)

√

2
(

τ + ln(4m2)/ ln(pn)
)

and C0y =

40m(maxi Σ
∗
y,ii)

√

2
(

τ + ln(4m2)/ ln(pn)
)

(where Σ∗
x,ii =

[Σ∗
x)]ii, etc.). Then using Lemma 1 and union bound,

P
(

A>C0

√

ln(pn)/n
)

≤ P
(

‖C(Σ̂x −Σ
∗
x)‖∞ >C0

√

ln(pn)/n
)

+ P
(

‖C(Σ̂y −Σ
∗
y)‖∞ >C0

√

ln(pn)/n
)

≤ 2/pτ−2
n (43)

since C0 ≥ C0x and C0 ≥ C0y .

Recall (16)-(20) and define

∆x =Σ̂x −Σ
∗
x, ∆y = Σ̂y −Σ

∗
y, ∆Γ = Γ̂− Γ

∗, (44)

∆Σ =∆x −∆y, ǫx = ‖C(∆x)‖∞, (45)

ǫy =‖C(∆y)‖∞, ǫ >max{ǫx, ǫy}. (46)

Lemma 3: Assume that

κΓ <
1

3sn(ǫ2 + 2Mǫ)
. (47)

Let (Γ−∗
S,S denotes (Γ∗

S,S)
−1)

R(∆Γ) = Γ̂
−1

S,S − Γ
−∗
S,S + Γ

−∗
S,S(∆Γ)S,SΓ

−∗
S,S . (48)
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Then we have

‖C(R(∆Γ))‖∞ ≤ 3

2
κ3
Γsn(ǫ

2 + 2Mǫ)2, (49)

‖C(R(∆Γ))‖1,∞ ≤ 3

2
κ3
Γs

2
n(ǫ

2 + 2Mǫ)2, (50)

‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖∞

≤ κ2
Γ(ǫ

2 + 2Mǫ)
(

1 + 1.5snκΓ(ǫ
2 + 2Mǫ)

)

, (51)

‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖1,∞ ≤ sn‖C(Γ̂

−1

S,S − Γ
−∗
S,S)‖∞. (52)

Proof: We have

∆Γ = Σ̂y ⊠ Σ̂x −Σ
∗
y ⊠Σ

∗
x

=∆y ⊠∆x +Σ
∗
y ⊠∆x +∆y ⊠Σ

∗
x. (53)

By [16, Lemma 14],

‖C(AB)‖1,∞ ≤ ‖C(A)‖1,∞‖C(B)‖1,∞ (54)

and by [16, Lemma 15],

‖C(AB)‖∞ ≤ ‖C(A)‖∞‖C(B⊤)‖1,∞. (55)

Since ‖A⊗B‖F = ‖A‖F ‖B‖F and A⊠B= [Aij ⊠B]ij =
[[Aij ⊗Bkℓ]kℓ]ij , we have

‖C(A⊠B)‖∞ ≤ ‖C(A)‖∞‖C(B)‖∞. (56)

From (17), (46), (53) and (56),

‖C(∆Γ)‖∞ ≤ ǫxǫy +Mǫx +Mǫy < ǫ2 + 2Mǫ (57)

and since |S|= sn,

‖C((∆Γ)S,S)‖1,∞ ≤ sn‖C((∆Γ)S,S)‖∞ ≤ sn‖C(∆Γ)‖∞
< sn(ǫ

2 + 2Mǫ). (58)

By assumption (47),

κΓ‖C((∆Γ)S,S)‖1,∞ = ‖C((Γ∗
S,S)

−1)‖1,∞‖C((∆Γ)S,S)‖1,∞

<
1

3
. (59)

By (59) we can invoke [31, Lemma 5] to have

R(∆Γ) = Γ
−∗
S,S(∆Γ)S,SΓ

−∗
S,S(∆Γ)S,SJΓ

−∗
S,S (60)

where J =
∑∞

k=0(−1)k
(

Γ
−∗
S,S(∆Γ)S,S

)k
. Using (54), (55) and

(60), we have

‖C(R(∆Γ))‖∞ ≤ ‖C(Γ−∗
S,S(∆Γ)S,S)‖∞

× ‖C(Γ−∗
S,S(∆Γ)S,SJΓ

−∗
S,S)

⊤‖1,∞

≤ ‖C(Γ−∗
S,S)‖3

1,∞‖C((∆Γ)S,S)‖∞‖C((∆Γ)S,S)‖1,∞

× ‖C(J⊤)‖1,∞. (61)

Now using (59),

‖C(J⊤)‖1,∞ ≤
∞
∑

k=0

‖C(Γ−∗
S,S)‖k1,∞‖C((∆Γ)S,S)‖k1,∞

=
1

1 − ‖C(Γ−∗
S,S)‖1,∞‖C((∆Γ)S,S)‖1,∞

=
1

1 − κΓ‖C((∆Γ)S,S)‖1,∞

(59)
<

1

1 − (1/3)
=

3

2
. (62)

Using (57), (59), (61) and (62), we have

‖C(R(∆Γ))‖∞ ≤ 3

2
κ3
Γsn‖C((∆Γ)S,S)‖2

∞

<
3

2
κ3
Γsn(ǫ

2 + 2Mǫ)2. (63)

This proves (49), from which (50) immediately follows.

Using (19), (48), (54), (55) and (57) we have

‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖∞ ≤ ‖C(R(∆Γ))‖∞

+ ‖C(Γ−∗
S,S(∆Γ)S,SΓ

−∗
S,S)‖∞

≤ ‖C(R(∆Γ))‖∞ + ‖C(Γ−∗
S,S)‖2

1,∞‖C((∆Γ)S,S)‖∞
< κ2

Γ(ǫ
2 + 2Mǫ)

(

1 + 1.5snκΓ(ǫ
2 + 2Mǫ)

)

. (64)

This proves (51). The claim (52) follows by noting that |S|=
sn. This completes the proof.

Lemma 4: Assume (47) and the following conditions:

0 < α < 1 where α is as in (20), (65)

ǫ <min

{

M,
αλn

2(2 − α)

}

, (66)

αCα min{λn, 1} ≥ 3snǫMκΓBs (67)

where

Cα =
αλn + 2ǫα− 4ǫ

2Mαλn + αλn + 2ǫα
, (68)

Bs =
[

1 + κΓ

(

3snǫM +min{snM 2,M 2
Σ}

)

×
(

4.5snǫMκΓ + 1
)

]

. (69)

Then we have

(i) bvec(∆̂Sc) = 0.

(ii) ‖C(∆̂−∆
∗)‖∞ ≤ 2λnκΓ + 3snǫMκ2

Γ

(

4.5snǫMκΓ

+ 1
)(

2M + 2λn

)

Proof: To establish part (i), we need to show that (34) is true.

Let d denote the left-side of (34). It follow from (33) that

bvec(∆̃S) = Γ̂
−1

S,S

(

bvec((Σ̂x − Σ̂y)S)− λ bvec(Z(∆̃S))
)

.

(70)

Substitute (70) in the left-side of (34) to yield

d= ‖Γ̂e,S

[

Γ̂
−1

S,S

(

bvec((Σ̂x − Σ̂y)S)− λ bvec(Z(∆̃S))
)]

− bvec((Σ̂x − Σ̂y)e)‖2. (71)

At the true values we have

0 =
∂Lλ(∆,Σ∗

x,Σ
∗
y)

∂∆

∣

∣

∣

∆=∆∗

=Σ
∗
x∆

∗
Σ

∗
y − (Σ∗

x −Σ
∗
y)

implying

Γ
∗bvec(∆∗)− bvec(Σ∗

x −Σ
∗
y) = 0, (72)

which, noting that (∆∗)Sc = 0, can be rewritten as (cf. (31))

Γ
∗
S,Sbvec(∆∗

S) = bvec(Σ∗
x)S − bvec(Σ∗

y)S , (73)

Γ
∗
e,Sbvec(∆∗

S) = bvec(Σ∗
x)e − bvec(Σ∗

y)e. (74)
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Therefore, (A−∗ = (A∗)−1),

Γ
∗
e,SΓ

−∗
S,S

(

bvec(Σ∗
x)S − bvec(Σ∗

y)S
)

− bvec(Σ∗
x)e + bvec(Σ∗

y)e = 0. (75)

Recalling (44) and using (75) in (71),

d= ‖Γ̂e,SΓ̂
−1

S,Sbvec((∆Σ)S)

+
(

Γ̂e,SΓ̂
−1

S,S − Γ
∗
e,SΓ

−∗
S,S

)(

bvec(Σ∗
x)S − bvec(Σ∗

y)S
)

− λ Γ̂e,SΓ̂
−1

S,Sbvec(Z(∆̃S))− bvec((∆Σ)e)‖2. (76)

We now bound various terms in (76). Note that Γ̂e,S ∈
R

m2×(m2sn), Γ̂
−1

S,S ∈ R
(m2sn)×(m2sn), and bvec((∆Σ)S) ∈

R
m2sn where ∆Σ ∈ R

(mpn)×(mpn). Consider Ae,S ∈
R

m2×(m2sn). Then

‖Ae,Sbvec((∆Σ)S)‖2 = ‖
∑

f∈S

Ae,fvec((∆Σ)f )‖2 (77)

where edge f ∈ S, Ae,f ∈ R
m2×m2

and (∆Σ)f ∈ R
m×m. By

the triangle inequality

‖Ae,Sbvec((∆Σ)S)‖2 ≤
∑

f∈S

‖Ae,fvec((∆Σ)f )‖2. (78)

With Bi. denoting the ith row of matrix B and using Cauchy-

Schwartz inequality, we have

‖Ae,fvec((∆Σ)f )‖2 =

( m2

∑

i=1

(

[Ae,f ]i.vec((∆Σ)f )
)2

)1/2

≤
( m2

∑

i=1

‖[Ae,f ]i.‖2
2 ‖vec((∆Σ)f )‖2

2

)1/2

= ‖vec((∆Σ)f )‖2

(

m2

∑

i=1

‖[Ae,f ]i.‖2
2

)1/2

= ‖vec((∆Σ)f )‖2 ‖Ae,f‖F . (79)

Therefore, using (78) and (79),

‖Ae,Sbvec((∆Σ)S)‖2

≤
(

∑

f∈S

‖Ae,f‖F
)

max
g∈S

‖vec((∆Σ)g)‖2

= ‖C(Ae,S)‖1 ‖C(∆Σ)‖∞. (80)

Using (80), we have

‖Γ̂e,SΓ̂
−1

S,Sbvec((∆Σ)S)‖2

≤ ‖C(Γ̂e,SΓ̂
−1

S,S)‖1 ‖C(∆Σ)‖∞, (81)

‖
(

Γ̂e,SΓ̂
−1

S,S − Γ
∗
e,SΓ

−∗
S,S

)(

bvec(Σ∗
x)S − bvec(Σ∗

y)S
)

‖2

≤ ‖C(Γ̂e,SΓ̂
−1

S,S − Γ
∗
e,SΓ

−∗
S,S)‖1 ‖C(Σ∗

x −Σ
∗
y)‖∞, (82)

‖Γ̂e,SΓ̂
−1

S,Sbvec(Z(∆̃S))‖2

≤ ‖C(Γ̂e,SΓ̂
−1

S,S)‖1 ‖C(Z(∆̃S))‖∞, (83)

‖bvec((∆Σ)e)‖2 ≤ ‖C(∆Σ)‖∞. (84)

By (29), (44) and (46)

‖C(Σ∗
x −Σ

∗
y)‖∞ ≤ ‖C(Σ∗

x)‖∞ + ‖C(Σ∗
y)‖∞ ≤ 2M, (85)

‖C(Z(∆̃S))‖∞ ≤ 1, (86)

‖C(∆Σ)‖∞ ≤ ‖C(∆x)‖∞ + ‖C(∆y)‖∞ < 2ǫ. (87)

Using (76) and (81)-87),

d < 2ǫ‖C(Γ̂e,SΓ̂
−1

S,S)‖1 + 2M‖C(Γ̂e,SΓ̂
−1

S,S − Γ
∗
e,SΓ

−∗
S,S)‖1

+ λ ‖C(Γ̂e,SΓ̂
−1

S,S)‖1 + 2ǫ. (88)

Therefore, d < λ for any edge e ∈ Sc if

Ub1 := max
e∈Sc

2M‖C(Γ̂e,SΓ̂
−1

S,S − Γ
∗
e,SΓ

−∗
S,S)‖1

+ 2ǫ(1 + ‖C(Γ̂e,SΓ̂
−1

S,S)‖1)≤ αλn(1 − Cα), (89)

Ub2 := max
e∈Sc

‖C(Γ̂e,SΓ̂
−1

S,S)‖1 ≤ 1 − (1 − Cα)α. (90)

It remains to show that (89) and (90) are true under the

assumptions of Lemma 4. Since

Γ̂e,SΓ̂
−1

S,S − Γ
∗
e,SΓ

−∗
S,S = (Γ̂e,S − Γ

∗
e,S)Γ

−∗
S,S

+ Γ
∗
e,S(Γ̂

−1

S,S − Γ
−∗
S,S) + (Γ̂e,S − Γ

∗
e,S)(Γ̂

−1

S,S − Γ
−∗
S,S), (91)

we have

‖C(Γ̂e,SΓ̂
−1

S,S − Γ
∗
e,SΓ

−∗
S,S)‖∞

≤ ‖C(Γ̂e,S − Γ
∗
e,S)‖∞‖C(Γ−∗

S,S)‖1,∞

+ ‖C(Γ∗
e,S)‖∞‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖1,∞

+ ‖C(Γ̂e,S − Γ
∗
e,S)‖∞‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖1,∞. (92)

With edge e= {i, k} ∈ Sc and edge f = {j, ℓ} ∈ S, consider

Γ̂e,f − Γ
∗
e,f = Γ̂ik,jℓ − Γ

∗
ik,jℓ

= Σ̂
(ij)

y ⊗ Σ̂
(kℓ)

x −Σ
∗(ij)
y ⊗Σ

∗(kℓ)
x

=∆
(ij)
y ⊗∆

(kℓ)
x +Σ

∗(ij)
y ⊗∆

(kℓ)
x +∆

(ij)
y ⊗Σ

∗(kℓ)
x . (93)

It then follows that

|C(Γ̂e,f − Γ
∗
e,f )| ≤ ‖∆(ij)

y ‖F ‖∆(kℓ)
x ‖F

+ ‖Σ∗(ij)
y ‖F ‖∆(kℓ)

x ‖F + ‖∆(ij)
y ‖F ‖Σ∗(kℓ)

x ‖F
≤ ǫyǫx +Mǫx +Mǫy < ǫ2 + 2Mǫ. (94)

Hence

‖C(Γ̂e,S − Γ
∗
e,S)‖∞ <ǫ2 + 2Mǫ, (95)

‖C(Γ̂e,S − Γ
∗
e,S)‖1 <sn(ǫ

2 + 2Mǫ). (96)

Since Γ
∗
e,f =Σ

∗(ij)
y ⊗Σ

∗(kℓ)
x , we have |Γ∗

e,f | ≤M 2 and

‖C(Γ∗
e,S)‖∞ ≤M 2, ‖C(Γ∗

e,S)‖1 ≤ snM
2. (97)

Authorized licensed use limited to: Auburn University. Downloaded on January 08,2024 at 21:04:57 UTC from IEEE Xplore.  Restrictions apply. 



428 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Alternatively, with e= {i, k} ∈ Sc and f = {j, ℓ} ∈ S,

‖C(Γ∗
e,S)‖1 =

∑

f∈S

|C(Σ∗(ij)
y ⊗Σ

∗(kℓ)
x )|

≤
∑

{j,ℓ}∈S

‖Σ∗(ij)
y ‖F ‖Σ∗(kℓ)

x ‖F

≤
(

p
∑

j=1

‖Σ∗(ij)
y ‖F

)(

p
∑

ℓ=1

‖Σ∗(kℓ)
x ‖F

)

≤ ‖C(Σ∗
y)‖1,∞ ‖C(Σ∗

x)‖1,∞ ≤M 2
Σ. (98)

From (91)-(98) and Lemma 3, we have

‖C(Γ̂e,SΓ̂
−1

S,S − Γ
∗
e,SΓ

−∗
S,S)‖1

≤ ‖C(Γ̂e,S − Γ
∗
e,S)‖1‖C(Γ−∗

S,S)‖1,∞

+ ‖C(Γ∗
e,S)‖1‖C(Γ̂

−1

S,S − Γ
−∗
S,S)‖1,∞

+ ‖C(Γ̂e,S − Γ
∗
e,S)‖1‖C(Γ̂

−1

S,S − Γ
−∗
S,S)‖1,∞

≤ sn(ǫ
2 + 2Mǫ)κΓ +

[

min{snM 2,M 2
Σ}+ sn(ǫ

2 + 2Mǫ)
]

×
[

sn(ǫ
2 + 2Mǫ)κ2

Γ

](

1 + 1.5sn(ǫ
2 + 2Mǫ)κΓ

)

ǫ<M
≤ 3snǫMκΓBs ≤ αCα min{λn, 1}, (99)

where Bs is as in (69) and we used ǫ <M to infer ǫ2 + 2Mǫ <
3Mǫ. Using the triangle inequality |a| − |b| ≤ |a− b| ≤ |a|+
|b|, we have ‖C(Γ̂e,SΓ̂

−1

S,S −Γ
∗
e,SΓ

−∗
S,S)‖1 ≥‖C(Γ̂e,SΓ̂

−1

S,S)‖1−
‖C(Γ∗

e,SΓ
−∗
S,S)‖1, which, using (65) and (99), leads to

‖C(Γ̂e,SΓ̂
−1

S,S)‖1 ≤ ‖C(Γ∗
e,SΓ

−∗
S,S)‖1 + αCα min{λn, 1}

≤ 1 − α+ αCα min{λn, 1} ≤ 1 − (1 − Cα)α. (100)

This establishes (90). To show (89), using (99)-(100),

Ub1 ≤ 2MαCα min{λn, 1}+ 2ǫ(1 + 1 − (1 − Cα)α)

≤ 2MαCαλn + 2ǫ(2 − (1 − Cα)α)
(68)
= αλn(1 − Cα).

(101)

This proves (89), and thus, part (i) of Lemma 4.

We now turn to the proof of Lemma 4(ii). Since ∆̂= ∆̃, for

any edge {k, ℓ} ∈ S, we have

‖(∆̂−∆
∗)(kℓ)‖F = ‖(∆̃−∆

∗)(kℓ)‖F
= ‖vec(∆̃

(kℓ)
)− vec((∆∗)(kℓ))‖2. (102)

Using (33) and (73)

bvec((∆̃−∆
∗)S) = Γ̂

−1

S,Sbvec((∆Σ)S) + (Γ̂
−1

S,S − Γ
−∗
S,S)

× bvec((Σ∗
x −Σ

∗
y)S)− λnΓ̂

−1

S,S bvec(Z(∆̃S)). (103)

Since Γ̂
−1

S,S = Γ̂
−1

S,S − Γ
−∗
S,S + Γ

−∗
S,S ,

‖C(Γ̂−1

S,S)‖1,∞ ≤ ‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖1,∞ + ‖C(Γ−∗

S,S)‖1,∞.

(104)

By (103), for any edge f = {k, ℓ} ∈ S, we have

‖vec((∆̃−∆
∗)(kℓ))‖2 ≤ ‖(Γ̂−1

S,S − Γ
−∗
S,S)f,S

× bvec
(

(∆Σ)S + (Σ∗
x −Σ

∗
y)S − λnZ(∆̃S)

)

‖2

+ ‖(Γ−∗
S,S)f,S bvec

(

(∆Σ)S − λnZ(∆̃S)
)

‖2

≤ ‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖1,∞

(

‖C(∆Σ)‖∞ + ‖C(Σ∗
x −Σ

∗
y)‖∞

+ λn

)

+ ‖C(Γ−∗
S,S)‖1,∞

(

‖C(∆Σ)‖∞ + λn

)

≤ snκ
2
Γ(ǫ

2 + 2Mǫ)
(

1 + 1.5sn(ǫ
2 + 2Mǫ)κΓ

)

× (2ǫ+ 2M + λn) + κΓ(2ǫ+ λn) =: Ub3. (105)

By (66), for 0 < α < 1, we have 2ǫ < αλn/(2 − α)< αλn <
λn. Therefore, κΓ(2ǫ+ λn)< 2κΓλn and 2ǫ+ 2M + λn <
2M + 2λn. Since ǫ <M by (66), we also have ǫ2 + 2Mǫ <
3Mǫ. Using these relations and (105), it follows that

Ub3 ≤ 3snǫMκ2
Γ

(

1 + 4.5snǫMκΓ

)(

2M + 2λn

)

+ 2λnκΓ.

Finally,

‖C(∆̂−∆
∗)‖∞ = max

f={k,ℓ}∈S
‖vec((∆̃−∆

∗)(kℓ))‖2,

proving the desired result.

Proof of Theorem 1: Here we first show that under

the sufficient conditions of Theorem 1, the assumptions of

Lemmas 2-4 holds true. We pick ǫ= C0

√

ln(pn)/n, imply-

ing, by Lemma 2, that ‖C(Σ̂x −Σ
∗
x)‖∞ ≤ ǫ and ‖C(Σ̂y −

Σ
∗
y)‖∞ ≤ ǫ. with probability ≥ 1 − 2/pτ−2

n , τ > 2. We first

show that with this choice of ǫ, condition (66) of Lemma 4

holds true. By the choice of λn, we have λn ≥ 8ǫ/α. Clearly,

for 0 < α < 1, (α/8)< α/(4(2 − α)). Therefore

ǫ≤ αλn

8
<

αλn

4(2 − α)
<

αλn

2(2 − α)
. (106)

By a choice of n in (24), we have n > C2
0 ln(pn)/M

2. Hence,

ǫ= C0

√

ln(pn)/n <M . Thus, (66) of Lemma 4 holds true.

Next we show that condition (47) of Lemma 3 holds. By

a choice of n in (24), we have n > 81C2
0 ln(pn)M

2s2
nκ

2
Γ.

Therefore,

κΓ <
1

C0

√

n

ln(pn)
× 1

9snM
=

1

9snMǫ
<

1

3sn(ǫ2 + 2Mǫ)
(107)

since ǫ <M . This proves (47) of Lemma 3 holds.

Now we show that (67) of Lemma 4 holds. Since ǫ <
αλn/(4(2 − α)), by (68), we have

Cα =
αλn + 2ǫα− 4ǫ

2Mαλn + αλn + 2ǫα
>

αλn − 4ǫ

2Mαλn + αλn + 2ǫα

>
αλn − αλn/(2 − α)

αλn(2M + 1) + 2ǫα
=

1 − α

(2 − α)
[

2M + 1 + 2ǫα
λnα

]

>
1 − α

(2 − α)(2M + 1) + α
= C̄α (108)
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where in the last inequality above, we used ǫ < αλn/(2(2 − α))
from (106). Consider the right-side 3snǫMκΓBs of (67). From

(107), κΓ < 1/(9snMǫ). Therefore,

Bs < 1 + κΓ

(

min{snM 2,M 2
Σ}+

1

3κΓ

)(

1

2
+ 1

)

= 1.5 + 1.5κΓ min{snM 2,M 2
Σ}= CMκ. (109)

By (23), λn ≥ 4.5ǫ(αC̄α)
−1snMκΓ(1 + κΓ min{snM 2,

M 2
Σ}). Hence, using (108), we have

3snǫMκΓBs <αC̄αλn < αCαλn, (110)

proving part of (67) for our choice of λn. To show that we

also have 3snǫMκΓBs < αC̄α, consider the choice of n in (24)

given by

n > C2
0 ln(pn)

9s2
n

(αC̄α)2
(κΓMCMκ)

2. (111)

Then

ǫ= C0

√

ln(pn)

n
<

αC̄α

3snMκΓCMκ
, (112)

and from (110),

3snǫMκΓBs < αC̄α < αCα. (113)

Thus, all assumptions of Lemma 4 hold true.

Therefore, Lemma 4(i) applies, proving Theorem 1(ii). By

(107), 9snǫMκΓ < 1. Using this fact in Lemma 4(ii),

‖C(∆̂−∆
∗)‖∞ ≤ 2λnκΓ + 9snǫMκ2

Γ

(

M + λn

)

≤ 3λnκΓ + 9snǫM
2κ2

Γ. (114)

Since, by (23), 3λnκΓ = C0

√

ln(pn)/nCb1 and we picked ǫ=
C0

√

ln(pn)/n, we have

‖C(∆̂−∆
∗)‖∞ ≤ (Cb1 + Cb2)C0

√

ln(pn)/n,

proving Theorem 1(i). To prove part (iii), since ∆̂Sc = ∆̃Sc =
∆

∗
Sc = 0, we have

‖C(∆̂−∆
∗)‖F =

(

∑

{k,ℓ}∈S

‖∆̂(kℓ) − (∆∗)(kℓ)‖2
F

)1/2

≤ ‖C(∆̂−∆
∗)‖∞

√
sn. (115)

Finally, to establish part (iv), note that parts (i)-(iii) hold with

probability > 1 − 2/pτ−2
n (with high probability (w.h.p.)).

Recall that G∆ = (V, E∆) denotes the MA differential graph

with edgeset E∆ = {{k, ℓ} : ‖∆(kℓ)‖F > 0}. Let G∆∗ and

G∆̂ denoted true and estimated graphs based on ∆
∗ and ∆̂,

respectively. If min(k,ℓ)∈S ‖(∆∗)(kℓ)‖F ≥ 2‖C(∆̂−∆
∗)‖∞,

then ‖C(∆̂−∆
∗)‖∞=‖C((∆̂−∆

∗)S)‖∞≤(1/2)min(k,ℓ)∈S

‖(∆∗)(kℓ)‖F , therefore, min(k,ℓ)∈S ‖(∆̂S)
(kℓ)‖F ≥ (1/2)

min(k,ℓ)∈S ‖(∆∗)(kℓ)‖F > 0, while ∆̂Sc = 0 w.h.p.

APPENDIX B

TECHNICAL LEMMAS AND PROOF OF THEOREM 2

In order to invoke [30], we first vectorize (3), using θ =
bvec(∆) ∈ R

m2p2

, as (cf. (30))

L(θ) = 1

2
θ⊤(Σ̂y ⊠ Σ̂x)θ − θ⊤bvec(Σ̂x − Σ̂y) (116)

where previous L(∆, Σ̂x, Σ̂y) is now L(θ). To include sparse-

group penalty, recall that the submatrix ∆
(kℓ) of ∆ corresponds

to the edge {k, ℓ} of the MA graph. We denote its vectorized

version as θGt ∈ R
m2

(subscript G for grouped variables [30])

with index t= 1, 2, · · · , p2. Then θGt = vec(∆(kℓ)) where

t= (k − 1)p+ ℓ, ℓ= t mod p, and k = ⌊t/p⌋+ 1. Using this

notation, the penalty λ
∑p

k,ℓ=1 ‖∆(kℓ)‖F = λ
∑p2

t=1 ‖θGt‖2.

In the notation of [30], the regularization penalty

R(θ) = ‖θ‖Ḡ,2 :=
p2

∑

t=1

‖θGt‖2 (117)

where the index set {1, 2, · · · , (mp)2} is partitioned into a set

of NG = p2 disjoint groups Ḡ = {G1, G2, · · · , Gp2}. As shown

in [30, Sec. 2.2], R(θ) is a norm. The counterpart to penalized

Lλ(∆, Σ̂x, Σ̂y) of (4) is (we denote λ by λn, as in Appendix A)

Lλ(θ) = L(θ) + λnR(θ). (118)

As discussed in [30, Sec. 2.2], w.r.t. the usual Euclidean inner

product 〈u,v〉= u⊤v for u,v ∈ R
m2p2

and given any subset

SḠ ⊆ {1, 2, · · · , NG} of group indices, define the subspace

M= {θ ∈ R
m2p2 |θGt = 0 for all t 6∈ SḠ} (119)

and its orthogonal complement

M⊥ = {θ ∈ R
m2p2 |θGt = 0 for all t ∈ SḠ}. (120)

The chosen R(θ) is decomposable w.r.t. (M,M⊥) since

R(θ(1) + θ(2)) =R(θ(1)) +R(θ(2)) for any θ(1) ∈M and

θ(2) ∈M⊥ [30, Sec. 2.2, Example 2].

In order to invoke [30], we need the dual norm R∗ of regu-

larizer R w.r.t. the inner product 〈u,v〉= u⊤v. It is given by

[30, Eqns. (14)–(15)]

R∗(v) = sup
R(u)≤1

〈u,v〉 = max
t=1,2,···p2

‖uGt‖2. (121)

We also need the subspace compatibility index [30], defined as

Ψ(M) = sup
u∈M\{0}

R(u)

‖u‖2

. (122)

For group lasso penalty, Ψ(M) =
√
sn [30, Sec. 9.2 (Supple-

mentary)], where sn = |SḠ |= number of edges in the true MA

differential graph. We need to establish a restricted strong con-

vexity condition [30] on L(θ). With θ∗ = bvec(∆∗) denoting

the true value, and θ = θ∗ + θ̃, define

δL(θ̃,θ∗) = L(θ∗ + θ̃)− L(θ∗)− 〈∇L(θ∗), θ̃〉 (123)

where the gradient ∇L(θ∗) at θ = θ∗ is

∇L(θ∗) = (Σ̂y ⊠ Σ̂x)θ
∗ − bvec(Σ̂x − Σ̂y). (124)
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Hence (123) simplifies to

δL(θ̃,θ∗) = θ̃
⊤
(Σ̂y ⊠ Σ̂x)θ̃ = θ̃

⊤
Γ̂θ̃, (125)

which may be rewritten as

δL(θ̃,θ∗) =θ̃
⊤
Γ
∗θ̃ + θ̃

⊤
(Γ̂− Γ

∗)θ̃. (126)

By the sparsity assumption, θ∗ = θ∗
M, hence, θ∗

M⊥ = 0, where

θM and θM⊥ denote projection of θ on subspaces M and M⊥,

respectively.

Similar to (5), suppose

θ̂ = argmin
θ

{

L(θ) + λnR(θ)
}

, (127)

and we consider (123) and (125) with θ̂ = θ∗ + θ̃. Then

θ̂ − θ∗ = θ̂M − θ∗ + θ̂M⊥ = θ̃M + θ̃M⊥ . (128)

By [30, Lemma 1],

R(θ̃M⊥)≤ 3R(θ̃M) + 4R(θ∗
M⊥), (129)

if

λn ≥ 2R∗(∇L(θ∗)). (130)

Since in our case θ∗
M⊥ = 0, we have R(θ∗

M⊥) = 0.

Lemma 5: Under (15) and using the notation of Appendix A,

R∗(∇L(θ∗)) ≤ (ǫ2 + 2Mǫ)sn max
t=1,··· ,p2

‖θ∗
Gt‖2 + 2ǫ

Proof: Using (44), (72) and (124), we have

∇L(θ∗) =∆Γθ
∗ + bvec(∆y)− bvec(∆x). (131)

Expressing it group-wise, with groups t and t1 corresponding

to edges {j, k} and {ℓ, q}, respectively,

(∇L(θ∗))Gt1
=

p2

∑

t=1

(∆Γ)Gt1,Gtθ
∗
Gt + bvec(∆y)Gt1

− bvec(∆x)Gt1
. (132)

Therefore, by the Cauchy-Schwartz inequality, and using (45),

(46) and (57), we have

‖(∇L(θ∗))Gt1
‖2 ≤

p2

∑

t=1

‖(∆Γ)Gt1,Gt‖F ‖θ∗
Gt‖2

+ ‖bvec(∆y)Gt1
‖2 + ‖bvec(∆x)Gt1

‖2

≤ ‖C(∆Γ)‖∞
p2

∑

t=1

‖θ∗
Gt‖2 + ‖∆(ℓq)

y ‖∞ + ‖∆(ℓq)
y ‖∞

≤ (ǫ2 + 2Mǫ)sn max
t=1,··· ,p2

‖θ∗
Gt‖2 + ǫ+ ǫ. (133)

By (121) and (133) we have the desired result.

Lemma 6: Under (15) and the notation of Appendix A,

δL(θ̃,θ∗)≥ κL ‖θ̃‖2
2 (134)

where κL = 1
2
φ∗
min − 8sn(ǫ

2 + 2Mǫ).
Proof: We have

θ̃
⊤
(Γ̂− Γ

∗)θ̃ =

p2

∑

t1=1

p2

∑

t2=1

θ̃
⊤

Gt1
(∆Γ)Gt1,Gt2

θ̃Gt2
. (135)

Therefore,

|θ̃⊤
(Γ̂− Γ

∗)θ̃| ≤
p2

∑

t1=1

p2

∑

t2=1

|θ̃⊤

Gt1
(∆Γ)Gt1,Gt2

θ̃Gt2
|

≤
p2

∑

t1=1

p2

∑

t2=1

‖θ̃Gt1
‖2 ‖(∆Γ)Gt1,Gt2

‖F ‖θ̃Gt2
‖2

≤ ‖C(∆Γ)‖∞
p2

∑

t1=1

p2

∑

t2=1

‖θ̃Gt1
‖2 ‖θ̃Gt2

‖2

≤ (ǫ2 + 2Mǫ) ‖θ̃‖2
Ḡ,2, (136)

where we used (117). We have

‖θ̃‖2
Ḡ,2 = ‖θ̃M + θ̃M⊥‖2

Ḡ,2 = (‖θ̃M‖Ḡ,2 + ‖θ̃M⊥‖Ḡ,2)2

(129)
≤ 16 ‖θ̃M‖2

Ḡ,2

(122)

≤ 16sn‖θ̃M‖2
2 ≤ 16sn‖θ̃‖2

2. (137)

Noting that θ̃
⊤
Γ
∗θ̃ ≥ φ∗

min ‖θ̃‖2
2 and using (126), (136) and

(137), we have

δL(θ̃,θ∗)≥
(

1

2
φ∗
min − 8sn(ǫ

2 + 2Mǫ)

)

‖θ̃‖2
2 = κL ‖θ̃‖2

2,

proving the desired result.

Proof of Theorem 2: First choose ǫ to make κL > 0 in

Lemma 6. For instance, suppose we take 8sn(ǫ
2 + 2Mǫ)≤

φ∗
min/4. Then κL > φ∗

min/4. Now pick

ǫ= C0

√

ln(pn)/n ≤ min

{

M,
φ∗
min

96snM

}

, (138)

leading to 8sn(ǫ
2 + 2Mǫ)≤ 24snMǫ≤ φ∗

min/4. These upper

bounds can be ensured by picking appropriate lower bounds

to sample size n and invoking Lemma 2. The choice of n
specified in (26) satisfies (138) with probability > 1 − 2/pτ−2

n .

Using ǫ= C0

√

ln(pn)/n≤M , the lower bound on λn given

in (25) satisfies (130) with R∗(∇L(θ∗)) as in Lemma 5. By

[30, Theorem 1], θ̂ given by (127) satisfies

‖θ̂ − θ∗‖2 ≤3λn

κL
Ψ(M). (139)

The left-side of (139) equals ‖∆̂−∆
∗‖F while the right-

side of (139) equals right-side of (27) using Ψ(M) =√
sn, κL > φ∗

min/4, and noting that maxt=1,··· ,p2 ‖θ∗
Gt‖2 =

max{k,ℓ}∈V×V ‖(∆∗)(kℓ)‖F . This proves Theorem 2.

REFERENCES

[1] S. L. Lauritzen, Graphical Models. Oxford, U.K.: Oxford Univ.
Press, 1996.

[2] J. Whittaker, Graphical Models in Applied Multivariate Statistics.
New York, NY, USA: Wiley, 1990.

[3] P. Danaher, P. Wang, and D. M. Witten, “The joint graphical lasso for
inverse covariance estimation across multiple classes,” J. Roy. Statist.

Soc., Ser. B (Methodological), vol. 76, no. 2, pp. 373–397, Mar. 2014.
[4] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance

estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–
441, Jul. 2008.

[5] N. Meinshausen and P. Bühlmann, “High-dimensional graphs and vari-
able selection with the Lasso,” Ann. Statist., vol. 34, no. 3, pp. 1436–
1462, 2006.

Authorized licensed use limited to: Auburn University. Downloaded on January 08,2024 at 21:04:57 UTC from IEEE Xplore.  Restrictions apply. 



TUGNAIT: LEARNING HIGH-DIMENSIONAL DIFFERENTIAL GRAPHS FROM MA DATA 431

[6] K. Mohan, P. London, M. Fazel, D. Witten, and S. I. Lee, “Node-based
learning of multiple Gaussian graphical models,” J. Mach. Learn. Res.,
vol. 15, no. 13, pp. 445–488, 2014.

[7] Y. Wu, T. Li, X. Liu, and L. Chen, “Differential network inference via
the fused D-trace loss with cross variables,” Electron. J. Statist., vol. 14,
no. 1, pp. 1269–1301, 2020.

[8] H. Yuan, R. Xi, C. Chen, and M. Deng, “Differential network analysis
via lasso penalized D-trace loss,” Biometrika, vol. 104, no. 4, pp. 755–
770, Dec. 2017.

[9] Z. Tang, Z. Yu, and C. Wang, “A fast iterative algorithm for high-
dimensional differential network,” Comput. Statist., vol. 35, pp. 95–
109, Mar. 2020.

[10] B. Zhao, Y. S. Wang, and M. Kolar, “Direct estimation of differential
functional graphical models,” in Proc. 33rd Conf. Neural Inf. Process.
Syst. (NeurIPS), Vancouver, BC, Canada, 2019, pp. 2575–2585.

[11] B. Zhao, Y. S. Wang, and M. Kolar, “FuDGE: A method to estimate
a functional differential graph in a high-dimensional setting,” J. Mach.
Learn. Res., vol. 23, no. 82, pp. 1–82, 2022.

[12] S. D. Zhao, T. T. Cai, and H. Li, “Direct estimation of differential
networks,” Biometrika, vol. 101, pp. 253–268, Jun. 2014.

[13] E. Belilovsky, G. Varoquaux, and M. B. Blaschko, “Hypothesis testing
for differences in Gaussian graphical models: Applications to brain
connectivity,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 29,
Dec. 2016, pp. 595–603.

[14] J. Chiquet, G. Rigaill, and M. Sundquist, “A multiattribute Gaussian
graphical model for inferring multiscale regulatory networks: An ap-
plication in breast cancer,” in Gene Regulatory Networks (Methods in
Molecular Biology), vol. 1883, G. Sanguinetti and V. Huynh-Thu, Eds.,
New York, NY, USA: Humana Press, 2019.

[15] M. Kolar, H. Liu, and E. P. Xing, “Markov network estimation from
multi-attribute data,” in Proc. 30th Int. Conf. Mach. Learn. (ICML),
Atlanta, GA, USA, 2013, pp. 1110–1118.

[16] M. Kolar, H. Liu, and E. P. Xing, “Graph estimation from multi-attribute
data,” J. Mach. Learn. Res., vol. 15, no. 51, pp. 1713–1750, 2014.

[17] J. K. Tugnait, “Sparse-group lasso for graph learning from multi-attribute
data,” IEEE Trans. Signal Process., vol. 69, pp. 1771–1786, 2021.
(Corrections, vol. 69, p. 4758, 2021).

[18] G. Marjanovic and V. Solo, “Vector l0 sparse conditional independence
graphs,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), 2018, pp. 2731–2735.

[19] Z. Yue, P. Sundaram, and V. Solo, “Fast block-sparse estimation for
vector networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), 2020, pp. 5505–5509.

[20] P. Sundaram, M. Luessi, M. Bianciardi, S. Stufflebeam, M. Hämäläinen,
and V. Solo, “Individual resting-state brain networks enabled by massive
multivariate conditional mutual information,” IEEE Trans. Med. Imag.,
vol. 39, pp. 1957–1966, Jun. 2020.

[21] Z. Yue and V. Solo, “Comparing vector networks via frequency domain
persistent homology,” in Proc. 60th IEEE Conf. Decision Control (CDC),
Dec. 2021, pp. 126–131.

[22] K. Tsai, O. Koyejo, and M. Kolar, “Joint Gaussian graphical model
estimation: A survey,” Wiley Interdiscip. Rev. Comput. Stat., vol. 14,
no. 6, Nov./Dec. 2022, Art. no. e1582.

[23] B. Zhang et al., “Differential dependency network analysis to identify
condition-specific topological changes in biological networks,” Bioinfor-
matics, vol. 25, no. 4, pp. 526–532, 2009.

[24] P. Xu and Q. Gu, “Semiparametric differential graph models,” in Proc.
30th Conf. Neural Inf. Process. Syst. (NIPS), Barcelona, Spain, 2016,
pp. 1064–1072.

[25] S. Liu, J. A. Quinn, M. U. Gutmann, T. Suzuki, and M. Sugiyama,
“Direct learning of sparse changes in Markov networks by density ratio
estimation,” Neural Comput., vol. 26, no. 6, pp. 1169–1197, 2014.

[26] S. Liu, T. Suzuki, R. Relator, J. Sese, M. Sugiyama, and K. Fukumizu,
“Support consistency of direct sparse-change learning in Markov net-
works” Ann. Statist., vol. 45, no. 3, pp. 959–990, 2017.

[27] S. Liu, K. Fukumizu, and T. Suzuki, “Learning sparse structural changes
in high-dimensional Markov network: A review on methodologies and
theories,” Behaviormetrika, vol. 44, pp. 265–286, Jan. 2017.

[28] B. Jiang, X. Wang, and C. Leng, “A direct approach for sparse quadratic
discriminant analysis,” J. Mach. Learn. Res., vol. 19, no. 31, pp. 1–
37, 2018.

[29] T. Zhang and H. Zou, “Sparse precision matrix estimation via lasso
penalized D-trace loss,” Biometrika, vol. 101, no. 1, pp. 103–120,
Mar. 2014.

[30] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, “A unified
framework for high-dimensional analysis of M-estimators with decom-
posable regularizers,” Statist. Sci., vol. 27, no. 4, pp. 538–557, 2012.

[31] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, “High-
dimensional covariance estimation by minimizing 1-penalized log-
determinant divergence,” Electron. J. Statist., vol. 5, pp. 935–980,
Jan. 2011.

[32] J. K. Tugnait, “Estimation of high-dimensional differential graphs from
multi-attribute data,” in Proc. IEEE Int. Conf. Acoust., Speech Signal

Process. (ICASSP), Rhodes Island, Greece, Jun. 4–9, 2023, pp. 1–5.
[33] D. S. Tracy and K. G. Jinadasa, “Partitioned Kronecker products of

matrices and applications,” Can. J. Statist., vol. 17, pp. 107–120,
Mar. 1989.

[34] S. Liu, “Matrix results on Khatri-Rao and Tracy-Singh products,” Linear

Algebra Appl., vol. 289, pp. 267–277, Mar. 1999.
[35] M. Yuan and Y. Lin, “Model selection and estimation in regression with

grouped variables,” J. Roy. Statist. Soc., Ser. B (Methodol.), vol. 68,
no. 1, pp. 49–67, Feb. 2006.

[36] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group lasso
and a sparse group lasso,” Jan. 5, 2010, arXiv:1001.0736v1.

[37] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group
lasso,” J. Comput. Graphical Statist., vol. 22, no. 2, pp. 231–245, 2013.

[38] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating direction
method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1,
pp. 1–122, 2010.

[39] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[40] C. Leng and C. Y. Tang, “Sparse matrix graphical models,” J. Am. Statist.

Assoc., vol. 107, pp. 1187–1200, Sep. 2012.
[41] T. Tsiligkaridis, A. O. Hero, III, and S. Zhou, “On convergence of

Kronecker graphical lasso algorithms,” IEEE Trans. Signal Process.,
vol. 61, no. 7, pp. 1743–1755, Apr. 2013.

[42] X. Lyu, W. W. Sun, Z. Wang, H. Liu, J. Yang, and G. Cheng, “Tensor
graphical model: Non-convex optimization and statistical inference,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8, pp. 2024–2037,
Aug. 2020.

[43] A-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[44] S. Lu, J. Kang, W. Gong, and D. Towsley, “Complex network compar-
ison using random walks,” in Proc. 23rd Int. Conf. World Wide Web

(WWW) Companion, Seoul, Korea, Apr. 2014, pp. 727–730.
[45] S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, and S. X. Chen, “Cautionary

tales on air-quality improvement in Beijing,” Proc. Roy. Soc. A: Math.,

Phys. Eng. Sci., vol. 473, 2017, Art. no. 20170457.
[46] W. Chen, F. Wang, G. Xiao, J. Wu, and S. Zhang, “Air quality of Beijing

and impacts of the new ambient air quality standard,” Atmosphere, vol. 6,
no. 8, pp. 1243–1258, 2015.

Jitendra K. Tugnait (Life Fellow, IEEE) received
the B.Sc. (Hons.) degree in electronics and elec-
trical communication engineering from Punjab En-
gineering College, Chandigarh, India, in 1971, the
M.S. and E.E. degrees in Electrical Engineering
from Syracuse University, Syracuse, NY, USA, in
1973 and 1974, respectively, and the Ph.D. degree
in Electrical Engineering from the University of
Illinois Urbana-Champaign, in 1978. From 1978 to
1982, he was an Assistant Professor in electrical
and computer engineering with the University of

Iowa, Iowa City, IA, USA. He was with the Long Range Research Division,
Exxon Production Research Company, Houston, TX, USA, from June 1982
to September 1989. He joined the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL, USA, in September 1989, as a
Professor, where he is now a James B. Davis Professor. His current research
interests are in statistical signal processing and machine learning for signal
processing. He has served as an Associate Editor of IEEE TRANSACTIONS

ON AUTOMATIC CONTROL, IEEE TRANSACTIONS ON SIGNAL PROCESSING,
IEEE SIGNAL PROCESSING LETTERS, and IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, and as a Senior Area Editor of IEEE TRANSACTIONS ON

SIGNAL PROCESSING and IEEE WIRELESS COMMUNICATIONS LETTERS.

Authorized licensed use limited to: Auburn University. Downloaded on January 08,2024 at 21:04:57 UTC from IEEE Xplore.  Restrictions apply. 


