Notes for Fri. 7/6/2012  (In-Class Assignment #12 is at the end of these notes.)

· Test 2 is Wed. 7/11 in class. Study guide is forthcoming.
· There is no regular class meeting on Fri. 7/6

Grand principles of signal processing...

1. Time domain <--> Frequency domain:   Different views of the same physical reality

2. Shannon sampling theorem / Nyquist sampling rate

· Avoid aliasing by sampling a signal at least twice as fast as the highest frequency component.


3. Euler’s equation:
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[image: File:Euler's formula.svg]



4. In the frequency domain,           Output = (system impulse response) x (Input):

[bookmark: _GoBack]Y(ω) = H(ω)X(ω)

Equivalently, in the time domain, Output = (system impulse response) * (Input):

y(t) = h(t) * x(t)  ---continuous time     or   y[n] = h[n] * x[n]  ---discrete time

where * indicates convolution.



Sections 5.5 & 5.6 – A Digital Lowpass Filter


Filters are linear, time-invariant (LTI) systems that are designed to reject, or attenuate, input signals in certain frequency ranges and pass, or amplify, signals in other frequency ranges.

Low-pass filters keep lower frequencies, reject higher frequencies.

The frequency response of an ideal low-pass filter (LPF) is shown in Fig. 5.18:

[image: ]

The approach we have already used in Chapt. 4 to perform filtering is to 
(a) Transform the input signal in the frequency domain using the FFT,
(b) Remove (set to zero) the frequency components we don’t want,
(c) Transform back to the time domain using the inverse FFT.

Although the procedure described above is the one most commonly used, one can achieve the same result using convolution in the time domain. For most practical applications, this is not as fast, but it is worth studying because it helps to solidify our understanding of the equivalence between convolution in the time domain and multiplication in the frequency domain.

As stated on the first page of these notes in “Grand Principle #4”, 

In the frequency domain,  we can write

      Output = (system impulse response) x (Input):       Y(ω) = H(ω)X(ω)

Equivalently, in the time domain, we can write

Output = (system impulse response) * (Input):

                         y(t) = h(t) * x(t)  ---continuous time     or     y[n] = h[n] * x[n]  ---discrete time

where * indicates convolution.

Our objective in this lesson is to implement an ideal lowpass filter without ever transforming the input signal into the frequency domain. The filter will be implemented by a MATLAB m-file that takes a sequence of numbers x[n] as its input, and produces another sequence y[n] as its output. The output y[n] will be the low-pass filtered version of the input.


	x[n] -----> FILTER ------> y[n]

The name of the m-file used here is lowpassfilter.m which is available on the class website.

In order to calculate the discrete-time convolution y[n] = h[n] * x[n], we need the filter impulse response, h[n].  We can calculate this as the inverse DTFT of Fig. 5.18, or more precisely, Fig. 5.23.

[image: ]
The reason we need to use Fig. 5.23 instead of Fig. 5.18 is because, as we learned in Chapt. 4, the DTFT by definition is periodic with period 2π.  In written form, this filter function is

[image: ]

where the function p2B has the usual definition of a pulse with full-width of 2B. The inverse transform of this is given in Table 4.1 (Common DTFT Transform Pairs). The result is

[image: ]

This function is graphed in Fig. 5.24

[image: ]

The physical significance of this is that if the input to the LPF is one at t = 0 and zero at all other times (the discrete time delta function), the output will be as shown in Fig. 5.24.  Notice anything unusual? Yep, the output starts before the input is applied. This is a non-causal system. Therefore, it can’t be implemented in real time (it would have to see into the future). This is actually not terribly surprising since what we are trying to implement is an ideal LPF which would perfectly remove frequencies above the cutoff, B. But, think about it. All the filter “sees” at any point in time is an individual sample value (a number). The value of this sample is the result of summing the contributions of an (infinite) number of various frequency components. How could the filter know what those components were (and thus how to remove them) unless it could “magically” see into the future as well as the past? This just confirms what we already know – anytime we try to get perfectly ideal results, we get strange answers.

In reality, we can never implement an ideal filter with a perfectly sharp cutoff. Also, we always window the input into finitely-long segments of data, and then process those in an off-line buffer. We set  t= 0 to be the center of the buffer. In that way, the filter algorithm can achieve “approximate non-causality” by looking forward from t = 0 to the end of the buffer.

In today’s example, we will assume our input data has been buffered appropriately, so our results will be centered around t = 0, and we will understand this as “buffer time” rather than real-world time.

The LPF algorithm

We will look at the m-file and then at the results.

[image: ]

· Line 8 defines the filter bandwidth, B, to be one-tenth of π. Look back at Fig. 5.23 to visualize this.
· Line 9 establishes the length of the filter impulse response to keep. Look back at Fig. 5.24 to visualize this. Notice that the sinc function decays as it gets farther away from zero, so the larger the range of n, the smaller the error in the output.
· Line 10 calculates the impulse response according to the text’s equation (given in my notes above, just before Fig. 5.24).
· Lines 11-13 generate a stem plot similar to Fig. 5.24 for the particular parameters used here.

The next section of code generates an input waveform.  I chose a square wave, since it is easy to generate. The code generates a square wave with fundamental frequency wx = 2/3 of the filter bandwidth, B. Since higher harmonics are integer multiples of wx, we can be sure all harmonics except the fundamental will be removed by the filter. Therefore, the output should be a pure sinusoid at the fundamental frequency, wx.

[image: ]

· Line 26 generates 1’s for one-half the period of the input square wave.
· Line 27 generates -1’s for the other half of the input period.
· Line 28 “glues” these together to get one full period of the input square wave.
· Lines 30 – 33 glue periods together until the total length of the input waveform equals or exceed the length of the impulse response h[n] that we already have from Line 10. This is somewhat arbitrary, but we have to stop somewhere.
· Lines 34 – 37 plots the input waveform. Changing stem(ax,x) to plot(ax,x) in Line 34 actually gives a “cleaner” picture, but a stem plot reinforces the fact that we are working in discrete time. Line 34 performs the arithmetic so that the t= 0 is in the “center of the buffer” as described earlier.

The last section of code performs the actual convolution that generates the filtered output. This is the simplest part of the whole code – just one line does all the work.

[image: ]

· Line 42 does the “heavy lifting”. Here is where the convolution is computed and the output y[n] is generated.
· Line 43 slides the time axis so that t = 0 is in the center.
· Lines 44-50 generate both a stem plot and a smooth line plot of the output. The smooth plot makes the form of the output much more obvious.




Results:

[image: ]

The plot in the upper left is the filter impulse response, similar to Fig. 5.24. The plot in the upper right is the input square wave. The bottom plots are the output (stem plot in lower left, smooth plot in lower right).

We can see that the output is indeed a pure sinusoid at the fundamental period of the input. Therefore, the filter has removed all higher frequency components. Of course, the output can only be valid during the time for which we provide valid input, which would be the length of the input.

In-Class Assignment #12:

Change Line 23 in lowpassfilter.m   so that the fundamental  frequency of the input square wave is (1/6) of the filter bandwidth. Observe and explain the difference compared with the results above.

Turn this in Monday July 9 in class.
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since the filter is noncausal. For “real-time filtering™ it is necessary to consider a causal
lowpass digital filter. One very simple example is the 2-point MA filter, which is de-
fined by the input/output equation

yln) = = (xln] + xln = 1))

The magnitude and phase functions of this filter are plotted in Figure 5.22. (See Ex-
ample 5.9.) A nice feature of this lowpass filter is the lincar phase characteristic
shown in Figure 5.22b. As noted in Example 5.9, as a consequence of the linear phasc
characteristic, the 2-point MA filter delays any input x[n] by '+ time unit, and thus
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FIGURE 5.24
Unit-pulse response of ideal lowpass digital filer.
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Euler introduced the use of the exponential function and logarithrms in analytic proofs. He discovered ways to
express various logarithmic functions using power series, and he successfully defined logarithms for negative and
complex numbers, thus greatly expanding the scope of mathematical applications of logarithms. %% He also
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Section 5.4 Sampling 245

FIGURE 5.18
Frequency response function of ideal lowpass flter with bandwidth 5

Then if w; = 2B, in the expression (5.51) for X (w) the replicas of X (w) do not over-
lap in frequency. For example, if X () has the form shown in Figure 5.17a, then X, ()
ssoxi1o0in ¢ i - c - I —— |
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™ referred to as a digital filter. ~
s 56.1  Analysis of an Ideal Lowpass Digital Filter
7 As an illustration of its use, the DTFT representation will be applied to the study of an

ideal lowpass digital filter. Consider the discrete-time system with the frequency function

o0

H(O) = Y pu(2 + 27k) (5.74)

pE==

where B < 7. The function H(f2) is plotted in Figure 5.23. Note that in this example,
the magnitude function |H(£2)] is equal to H(£2), and the phase function £ H (%) is
identically zero.

The relationship (5.65) can be used to determine the output response y[n] result-
ing from the sinusoidal input x[n] = A cos(hn).n = 0, £1, £2,.... As seen from
Figure 5.23, H(£2) = 1 for 0 = () < B, and thus from (5.65) the output response is
y[n] = Acos(fdn),n =0, £1, +2,.... Hence, y[n] = x[n] when 0 = () < B, and in
this case the filter passes the input with no attenuation and with no phase shift. From
Figure 5.23, H(£2) = 0 for B < () < m,and therefore, using (5.65) gives y[n] = 0 for

| | ‘ | see (repeas)
t u + 2

"2 |-x lo T 2= |
-21-8 -2t+ B -8B B 21-B 2n+ B

FIGURE 5.23
Frequency function H(£2) given by (5.74)





image5.png
hb. pdf - Adobe Acrobat Pro

File Edt View Document Comments Foms Tools Advanced Window Help x
5 oo~ ) contee + 45 coorte - () secre+ 7 5~ (5] Frms [y winada - connent -
i D 2=l ™G R o@[me] g H D B - 4] B (=] © X /OO F Fisow-

256

563

Chapter 5 Fourier Analysis of Systems

Unit-Pulse Response of Ideal Lowpass Filter

From the transform pairs in Table 4.1, the unit-pulse response k[1] of the filter with the
frequency function (5.74) is given by

h[n) gsmc(gn) n=0+1 £2,.

The unit-pulse response is displayed in Figure 5.24. Note thal the sinc function form of
the unit-pulse response is very similar to the form of the impulse response of an idcal
analog lowpass filter. (See Section )

From Figure 5.24 it is seen that A[n] is not zero for n = 0, and thus the [ilter is
noncausal. Therefore, the filter cannot be implemented online (in real time); but it can
be implemented off-line. In an off-line implementation, the filtering process is applied
to the values of signals that have been stored in the memory of a digital computer or
stored by some other means. So, in the discrete-time case, ideal filters can be used in
practice, as long as the filtering process is carried out off-line.

Causal Lowpass Digital Filters

As noted previously, an ideal lowpass digital filter cannot be implemented in real time,




