		NAME_____SOLUTION________________
ELEC 2120 Su 2013 Roppel
Homework 6
Assigned Mon. July 22    Due Fri. July 26 at the start of class.
Upload your solution to Canvas as a single file.

1. Design both of the following filters. For each filter, show your MATLAB code, the transfer function, pole-zero plot, Bode plot, and Simulink output in (i) the passband, (ii) critical frequency (either one if there are two), and (iii) stopband

	
	type
	order
	passband gain
	Crit. freq. 1
	Crit. freq. 2

	(a)
	Butterworth bandpass
	6
	20 dB
	10 krad/s
	100 krad/s

	(b)
	Chebysev type 1 lowpass
	3
	0 dB, 0.5dB ripple
	10 rad/s
	



Discuss your observations about two issues in particular. (a) What are the effects of the order of the filter? (b) What are some differences between Butterworth and Chebyshev type 1 filters?

SOLUTION
(a) 
	Butterworth bandpass
	6
	20 dB
	10 krad/s
	100 krad/s



The strategy is to design a Butterworth lowpass of appropriate order, and then use frequency transformation to obtain a bandpass with desired properties. To generate a 6-th order BP, we start with a 3rd-order lowpass. The prototype LP produced by MATLAB has a cutoff freq. of 1 rad/s, and a passband gain of zero dB. The example code provided in the assignment is updated to use the pzmap command instead of zplane, and a few cosmetic modifications. From this we obtain the transfer function, Bode plot, and pole-zero plot:

[image: ]



Transfer function (using MATLAB version 2012a):
 
hbp =
 
                                               
                       7.29e15 s^3 + 1.307e08 s
                                               
  -------------------------------------------------------------------
                                                                     
  s^6 + 1.8e05 s^5 + 1.92e10 s^4 + 1.089e15 s^3 + 1.92e19 s^2  + 1.8e23 s + 1e27
                                                                     
The numerator of this transfer function would ideally just be k*s^3, where k = 7.29e15 (approximately). This would put three zeros exactly at the origin. But, due to numerical roundoff error within MATLAB, there is an extra term, which puts two of the poles very slightly offset from the origin. An earlier version of MATLAB that I initially used had even more terms in the numerator, also due to roundoff error.


[image: ]

From the figure above, we observe the corners at 104 and 105 rad/s as desired.

In the figure below, we see that placing the data cursor in the passband reveals a gain of 20 dB:

[image: ]

Further examination of the stopband as shown in the next figure reveals the slope:

Slope = -9.45 – (-69.9) db per decade = 60.5 dB/decade. 

This is less than one percent different from the asymptotic value of 60 dB/decade (20 dB/decade contributed by each pole).     

The difference can be explained by observing that (a) the cursor points are not exactly a factor of ten (1 decade) apart, due to the finite resolution of the plot, and (b) the value of 20 dB/decade is an asymptotic approximation which is only exact infinitely far from all poles – the closer to a pole, the more error there is. 

[image: ]

The pole-zero plot produce by the MATLAB pzmap command is shown below. This shows six poles all in the open left-half plane. One group of three is at a greater distance from the origin. We know these correspond to the upper cutoff at 105 rad/s, since the radial distance to the pole corresponds to the frequency of the pole. The other group of three poles, corresponding to the lower cutoff at 104 , are also evident.  Finally, there is a group of three repeated zeros near the origin. (Ideally, these zeros would all be exactly at the origin, but two are slightly off due to numerical roundoff error within MATLAB.)

[image: ]


A Simulink model is constructed by typing simulink at the MATLAB prompt, and drawing the model shown in the figure below:

[image: ]

The Transfer Fcn block is configured by entering the array name  numt for the numerator, and dent for the denominator. These are the coefficient arrays calculated in line 12 of the filter design script m-file above. As long as this script has been run and the arrays are in the MATLAB workspace, Simulink will have access to them. The configuration window (obtained by double-clicking on the Transfer Fcn block) is shown below:

[image: ]

(a) (i) For passband analysis, the Sine Wave source frequency set to 20,000 radians per second, and the amplitude is set to 1. In the dialog box, the only parameter value that should have to be changed is the frequency.

[image: ]


Before a meaningful scope trace can be obtained, some parameters of the simulation must be configured. These are accessed in the Simulink model window via the Simulation / Configuration Parameters (Ctrl-E) menu option. This brings up a large dialog box with lots of options.

[image: ]

The only two parameters that must be changed from default are:
Stop time: 10e-3
Max step size:  1e-6

Stop time determines how long the simulation runs, and step size determines the resolution (data points per second) of the simulation. A frequency of 20,000 rad/s = 3,183 Hz, which corresponds to a period of 0.3 ms. Running the simulation for 10 ms will allow the initial transients to die out so that the steady state output can be observed. Forcing a data point to be generated every microsecond yields a smooth plot – when left on “auto” the plot is often very jagged.

Now, the scope must be adjusted to keep a sufficient amount of data. The appearance of the scope and the location of the setting vary by MATLAB version. However, what you are looking for is a setting that determines how many data point the scope keeps. If there is a check box that limits the number of data points, you will want to uncheck that. In my version, the default is to keep only the last 5000 data points:

[image: ]


If I uncheck the data limit box and run the simulation, the result shown below is obtained:

[image: ]

This does not appear very meaningful, but if I autoscale and zoom in on the steady state part of the output, we can see that the output is actually a clean sinusoid, and we can easily determine the amplitude:






[image: ]


The frequency could be obtained by direct measurement of the period from this plot, although for improved accuracy we would want to zoom in to permit measurement with greater precision. The frequency of the output should be identical to the frequency of the input.

The amplitude of the output is observed to be 10 V/V, which is equivalent to 20 dB, the design value. Evaluation of the transfer function within MATLAB can be performed with the evalfr command:

>> m=abs(evalfr(hbp, j*20000))

m =

    9.9931


(a) (ii) For analysis at the corner frequency, the Sine Wave source frequency can be set to either 10,000 radians per second or 100,000 rad/s. In the dialog box, the only parameter value that needs to be changed is the frequency, which we will set to 100,000 rad/s. The Simulation stop time and Max step size parameters need to be adjusted correspondingly.  Since we are increasing the frequency by a factor of 5, we will reduce both the stop time and the step size by the same factor.  The new parameter values are:
Stop time: 2e-3
Max step size:  2e-7

The resulting output is shown below (after zooming in on the steady state region):

[image: ]

We can see that the amplitude appears to be close to the -3 dB design value  of 10/sqrt(2) = 7.07. Closer examination by zooming reveals the peak value is 7.08, as shown in the figure below:

[image: ]

The small difference can be attributed to the proximity of the other pole.  Evaluation of the transfer function yields the result shown below:

>> m=abs(evalfr(hbp,j*100000))

m =
    7.0711

which is consistent with both the design value and the scope measurement.
(a) (iii) For analysis in the stopband, we can choose either a frequency well below the lower corner, or well above the upper corner. The farther the input is from either pole, the closer the resulting magnitude will be to the asymptotically ideal value. We will choose a frequency two decades below the lower corner, which will make it 100 rad/s. The Sine Wave source frequency should then be set to 100 rad/s. The Simulation stop time and Max step size parameters need to be adjusted correspondingly.  Since we are decreasing the frequency by a factor of 1000 from part (ii), we will increase the stop time by the same factor, and set the Max step size to 10–5 (the latter value is determined by trial and error).  The new parameter values are:
Stop time: 2
Max step size:  1e-5

The resulting output is shown below (after zooming in on the steady state region):

[image: ]

The observed amplitude is approx. 0.8 x 10–5. The value predicted by evaluation of the transfer function is shown below:

 >> m=abs(evalfr(hbp,j*100))

m =
  7.2902e-006

Using the asymptotic approximation in which each pole generates a slope of -20 dB/decade, we would predict a gain at 100 rad/s of 20 dB passband gain – 3 poles x 20 dB/decade x 2 decades = -100 dB = 10–5 V/V.

In summary, in the stopband well away from the nearest pole, we obtain gains of 8 x 10–6 (scope), 7.3 x 10–6 (direct evaluation of transfer function), and 10 x 10–6 (asymptotic approx.). These variations seem significant, and warrant further consideration to explain the differences.[footnoteRef:1]
 [1:  To be performed by an inquisitive student.] 


(b) 
	Chebysev type 1 lowpass
	3
	0 dB, 0.5dB ripple
	10 rad/s


The analysis for the Chebyshev is similar to the Butterworth. The MATLAB commands are shown below:

[image: ]

Running this script yields the following transfer function, Bode plot and pole-zero plot:


Transfer function:

              715.7
---------------------------------
s^3 + 12.53 s^2 + 153.5 s + 715.7
[image: ]


[image: ]

The pole-zero map reveals three poles and no zeros, as expected for a three-pole lowpass.


Changing the vertical zoom on the Bode magnitude plot reveals the passband ripple:
[image: ]


We can see from the above Bode magnitude plot that the passband ripple is limited to a maximum of 0.5 dB, consistent with the design specification.

Further analysis with the Simulink model (similar to that for part (a)) should appear next in your solution…
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