xxvi Nomenclature

- X_m mole fraction of functional group m in UNIFAC method
- mole fraction in liquid phase; mole fraction in any phase; distance; mass fraction in raffinate; mass fraction in underflow; mass fraction of particles
- x' normalized mole fraction = $x_i / \sum_{j=1}^{C} x_j 1$
- x vector of mole fractions in liquid phase
- x_n fraction of crystals of size smaller than L
- mole or mass ratio; mass ratio of soluble material to solvent in overflow; pressure-drop factor for packed columns defined by (6-102); concentration of solute in solvent; parameter in (9-34)

- mole fraction in vapor phase; distance; mass fraction in extract; mass fraction in overflow
- y vector of mole fractions in vapor phase
- Z compressibility factor = Pv/RT; total mass; height
- Z_f froth height on a tray
- Z_L length of liquid flow path across a tray
- \bar{Z} lattice coordination number in UNIQUAC and UNIFAC equations
- mole fraction in any phase; overall mole fraction in combined phases; distance; overall mole fraction in feed; dimensionless crystal size; length of liquid flow path across tray
- z vector of mole fractions in overall mixture

Greek Letters

- α thermal diffusivity, $k/\rho C_P$; relative volatility; surface area per adsorbed molecule
- α^* ideal separation factor for a membrane
- $lpha_{ij}$ relative volatility of component i with respect to component j for vapor-liquid equilibria; parameter in NRTL equation
- $\alpha_j, \; \beta_j \gamma_j$ energy-balance parameters defined by $(10\text{-}23) \; to \; (10\text{-}26)$
- β_{ij} relative selectivity of component i with respect to component j for liquid–liquid equilibria
- Γ film flow rate/unit width of film; thermodynamic function defined by (12-37)
- Γ_k residual activity coefficient of functional group k in UNIFAC equation
- γ specific heat ratio; activity coefficient
- $\Delta \qquad \text{change (final--initial)}$
- δ solubility parameter; film thickness; velocity boundary layer thickness; thickness of the laminar sublayer in the Prandtl analogy
- δ_c concentration boundary layer thickness
- δ_{ij} Kronecker delta
- ϵ exponent parameter in (3-40); fractional porosity; allowable error; tolerance in (10-31)
- ϵ_b bed porosity (external void fraction)
- ϵ_D eddy diffusivity for diffusion (mass transfer)
- ϵ_H eddy diffusivity for heat transfer
- ϵ_M eddy diffusivity for momentum transfer
- ϵ_p particle porosity (internal void fraction)
- η Murphree vapor-phase plate efficiency in (10-73)
- θ area fraction in UNIQUAC and UNIFAC equations; dimensionless concentration change defined in (3-80); correction factor in Edmister group method; cut equal to permeate flow rate to feed flow rate for a membrane; contact angle; fractional coverage in Langmuir equation; solids residence time in a dryer; root of the Underwood equation, (9-28)
- θ_L average liquid residence time on a tray
- к Maxwell-Stefan mass-transfer coefficient in a binary mixture

- Λ_{ij} binary interaction parameter in Wilson equation
- λ *mV/L*; radiation wavelength
- λ_+, λ_- limiting ionic conductances of cation and anion, respectively
- λ_{ij} energy of interaction in Wilson equation
- μ chemical potential or partial molar Gibbs free energy; viscosity
- $\begin{array}{ll} \nu & \text{momentum diffusivity (kinematic viscosity),} \\ \mu/\rho; \text{wave frequency; stoichiometric coefficient} \end{array}$
- $v_k^{(i)}$ number of functional groups of kind k in molecule i in UNIFAC method
- ξ fractional current efficiency; dimensionless distance in adsorption defined by (15-115); dimensionless warped time in (11-2)
- π osmotic pressure; product of ionic concentrations
- ρ mass density
- ρ_b bulk density
- ρ_M crystal density
- ρ_p particle density
- ρ_s true (crystalline) solid density
- σ surface tension; interfacial tension; Stefan-Boltzmann constant = $5.671 \times 10^{-8} \, \text{W/m}^2 \cdot \text{K}^4$
- σ_I interfacial tension
- $\sigma_{s,L}$ interfacial tension between crystal and solution
- τ tortuosity; shear stress; dimensionless time in adsorption defined by (15-116); retention time of mother liquor in crystallizer; convergence criterion in (10-32)
- au_{ij} binary interaction parameter in NRTL equation
- τ_w shear stress at wall
- v number of ions per molecule
- Φ, Φ' volume fraction; parameter in Underwood equations (9-24) and (9-25)
- b local volume fraction in the Wilson equation
- $\phi\{t\}$ probability function in the surface renewal theory
- pure-species fugacity coefficient; association factor in the Wilke-Chang equation; recovery

Nomenclature xxvii

factor in absorption and stripping; volume fracequilibria calculations for single-stage extraction; concentration ratio defined by (15-125) tion; sphericity defined before Example 15.7 partial fugacity coefficient dry-packing resistance coefficient given by Ψ_o froth density fractional entrainment; loading ratio defined by effective relative density of froth defined by (15-126); sphericity (6-48) acentric factor defined by (2-45); segment fracparticle sphericity tion in UNIFAC method segment fraction in UNIQUAC equation; V/F

in flash calculations; E/F in liquid-liquid

Subscripts

A	solute	L	liquid phase; leaching stage
a,ads	adsorption	LM	log mean of two values, A and $B = (A - B)/$
avg	average		ln(A/B)
В	bottoms	LP	low pressure
b	bulk conditions; buoyancy	M	mass transfer; mixing-point condition; mixture
bubble bubble-point condition		m	mixture; maximum
C	condenser; carrier; continuous phase	max	maximum
С	critical; convection; constant-rate period	min	minimum
cum	cumulative	N	stage
D	distillate, dispersed phase; displacement	n	stage
d	drag; desorption	O	overall
d,db	dry bulb	0,0	reference condition; initial condition
des	desorption	out	leaving
dew	dew-point condition	OV	overhead vapor
ds	dry solid	P	permeate
E	enriching (absorption) section	R	reboiler; rectification section; retentate
e	effective; element	r	reduced; reference component; radiation
eff	effective	res	residence time
F	feed	S	solid; stripping section; sidestream; solvent; stage; salt
f	flooding; feed; falling-rate period	S	source or sink; surface condition; solute; satu-
G	gas phase		ration
GM	geometric mean of two values, A and B =	T	total
	square root of A times B	t	turbulent contribution
g	gravity	V	vapor
gi	gas in	W	batch still
go	gas out	w	wet solid-gas interface
H,h	heat transfer	w,wb	wet bulb
<i>I</i> , I	interface condition	ws	wet solid
i	particular species or component	X	exhausting (stripping) section
in	entering	x,y,z	directions
irr	irreversible	δ	at the edge of the laminar sublayer
j	stage number	0	surroundings; initial
k	particular separator; key component	∞	infinite dilution; pinch-point zone

Superscripts

E	excess; extract phase	LF	liquid feed
F	feed	0	pure species; standard state; reference
ID	ideal mixture		condition
(<i>k</i>)	iteration index	p	particular phase