A Primer for MATLAB® —Tutorial and Documentation
for Auburn University

Chemical Engineering Students

Profs. W. Robert Ashurst and T. Placek

Version 1.0
12/15/11

Auburn University
Chemical Engineering Department
212 Ross Hall

(© 2011, Prof. W. R. Ashurst,
All Rights Reserved, Worldwide.

Contents

Preface

Revision History
Nomenclature

1 Introduction and Scope

2 Solving Algebraic Equations
2.1 Solving One Equation for One Real Variable
2.2 Solving a System of Linear Equations
2.3 Solving One Equation for One Complex Variable
2.4 Solving a System of Non-Linear Equations
2.5 Passing Additional Function Arguments Though fsolve
2.6 Chapter SUmMmMAry oot e

3 Solving Ordinary Differential Equations
3.1 Solving One First Order ODE
3.2 Solving a System of First Order ODEs
3.3 Solving One Second Order ODE
3.4 Solving a System of ODEs with Parameters Passed Through ode45

4 Fitting Data to Nonlinear Model Functions
4.1 Model Functions of One Independent Variable
4.2 Model Functions of More than One Independent Variable
4.3 Characterizing “Goodness of Fit” oL o o

5 Probability and Statistics
5.1 Definitions and Basic Concepts
5.2 Characteristics of Probability Distributions,

6 Hypothesis Testing
6.1 Ome Sample Tests e
6.2 Two Sample Tests

7 Miscellaneous Notes
7.1 Functions and Function Handles
7.2 Elements of Style

Index

ii

iii

11
11
15
17

19
19
19
19
19

20
20
20
20

21
21
21

22
22
22

23
23
23

24

Preface

Preface here.

Revision History

Original document
W. R. Ashurst and T. D. Placek
Date: December 15, 2011.

ii

Nomenclature

Throughout this document, the following typesetting conventions will be used.

Description

Typesetting Example

A scalar variable (single number)

x (lowercase)

A vector or matrix

X (uppercase)

A MATLAB command roots
>> A = [6, 4; 7, 4];
A MATLAB Session >> B = [-2; 1];
>> A\B

A MATLAB Function (M-File)

function result = my_fun(x)
result = x + x;
end

MATLAB Output

ans =
3.0000
-5.0000

iii

Chapter 1

Introduction and Scope

This document is intended to supplement the text “Introduction to MATLAB for Engineers” by
William J. Palm, III, in the context of CHEN 3600, Computer Aided Chemical Engineering at
Auburn University. This document covers several essential MATLAB functions such as fsolve,
ode45 and nlinfit which are either not covered or receive minimal coverage in the Palm text. It is
assumes that you are using the most current release of MATLAB (Version 7.11.0.584 (R2010b)) as
of the writing of this document and have access to the Optimization Toolbox as well as the Statistics
Toolbox. These components are part of the Student Edition of MATLAB and are available on all
College of Engineering computers.

MATLAB is a versatile and powerful, high level scripting language that has many mathematical
operations of use to engineering available as “built-in” functions. Consequently, our department
has elected to utilize this modern engineering tool throughout the curriculum. You will encounter
the use of MATLAB in other courses, including heavy use in CHEN 3650 and use of the SIMULINK
Package in CHEN 4170. It is in your best interest to fully utilize MATLAB.

Chapter 2

Solving Algebraic Equations

Throughout your career as an engineer, you will be faced with situations in which you have an
equation (or set of equations) and need to determine the value of some quantity (or quantities) that
satisfy the given equation(s). This activity is referred to as “solving” the equation(s). Depending
on the type of variables, structure of the equation(s), number of equation(s) and sensitivity of the
solution, this activity can be tedious, imperiled or even dubious.

Ultimately, you are responsible for the correctness of your solution. You must realize that
MATLAB has no sense of scale and is incapable of applying any sort of engineering judgment. The
philosophy is that you develop the solution strategy and use MATLAB as a tool to carry out your
will.

Professor Ashurst’s Special Note #1:
One should not attempt solving a problem using MATLAB without a well planned approach
for a solution prior to beginning typing in MATLAB.

2.1 Solving One Equation for One Real Variable

Consider that you are working with the van der Waals equation of state and you need to determine
the molar volume for air at a given temperature and pressure. The van der Waals equation is can
expressed as shown in Eq. 2.1.

a
V2
If we take T', P, and V as variables and recognize that R is the gas constant, then Eq. (2.1) is said
to be parameterized in a and b. In our assumed problem scenario, we are operating with a given
T and P. It is assumed that we would determine a and b from literature or reference information.
We are therefore in the situation of solving Eq. 2.1 for V. Specifically, this means that we seek a
certain value of V' such that the right hand side of Eq. 2.1 is exactly equal to the left hand side of
Eq. 2.1. Since Eq. 2.1 is actually cubic in V, there are (in principle) three values to V' that may
satisfy the equation. There are several approaches we may take with MATLAB to identify these
solutions. They include (in no particular order):

[P— }(V—b):RT (2.1)

1. Plotting the equation (first re-casting it into function form) and estimating where f(V') =0
2. Manually guessing V' and checking the right hand side against the left

3. Utilize the fzero function
4

Utilize the fsolve function

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 3

5. Re-cast the Equation into function form, taking its absolute value and utilizing the fminbnd
function

6. Re-cast the equation into cubic polynomial function form and use the roots function

Certainly there are advantages and drawbacks to each of the approaches enumerated. Let us begin
our coverages of these approaches with the first one listed. For your parameters a and b, the gas
COs is chosen at the conditions of 10 atm and 300 K. For COsy, a = 3.59 and b = 0.0427 in
consistent units. The MATLAB session is as follows, and the plot generated is shown in Fig. 2.1

>> a = 3.59 % atm L~2/mol"2
>> b = 0.0427 % L/mol

>> R = 0.082; 7% (L atm/K mol),
>> P = 10; % atm

>> T = 300; % K

>> vdw = Q(V) (P-a./V."2).x(V-b)-RxT;
>> v = linspace(-1, 3, 300);

>> plot(v, vdw(v), ’k’, ’LineWidth’, 3)
>> axis([-1, 3, -50, 50]); grid on

>> xlabel(’Molar Volume, V’);

>> ylabel(P£(V)?)

Note that in the MATLAB session the anonymous function handle vdw was created. Also note
that this function is a wvectorized MATLAB function which means that the supplied with a vector
argument of length n, the function returns a vector of length n, each value being the value of the
function at the corresponding value (by index) of the input vector. We will make use of this feature
in subsequent approaches.

The three roots for our chosen case are approximately V' = 2.6,0.03 and —0.2 in L/mol. We
know that we may discard the negative root since it is physically unrealistic and we treat the

-1 -0.5 0 0.5 1 15 2 2.5 3
Molar Volume, V

Figure 2.1: Plot of the van der Waals function, f(V') for CO2 at 10 atm and 300 K. The circles
indicate the roots of the function, and represent the molar volume values we seek.

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 4

smaller magnitude as being associated with the liquid phase molar volume and the larger as that
for the gas phase. However, MATLAB will not (and cannot) make this distinction for us and will
only assist us in finding the numeric values for these roots.

Let us now utilize the roots approach. First we must algebraically re-arrange Eq. 2.1 into a
polynomial in V. The result is shown in Eq. 2.2.

PV3 4+ (=RT —bP)V? —aV +ab=0 (2.2)
Therefore, the session (as a continuation of the previous session) and output is as follows.

>> pcoefs = [P, -R*T-b*P, -a, ax*b]
>> V_star = roots(pcoefs)

pcoefs =

10.000000000000000 -25.027000000000001 -3.590000000000000 0.153293000000000
V_star =

2.636652456997016

-0.168463864799292

0.034511407802278

Note that the elements of the vector pcoefs are the coefficients (in polynomial order) from Eq. 2.2.

Professor Ashurst’s Special Note #2:
The roots command operates on a vector that holds the coefficients of a polynomial. Do not
even contemplate the use of the roots function unless you are working with a polynomial.

Now let us investigate the use of the MATLAB function functions fzero, fsolve and fminbnd.
At this point, the doc system information for these functions should be examined. Briefly, the func-
tion fzero locates a root by identification of a sign change in the value of the function. Therefore,
fzero is used to find the root(s) of an equation of the form f(x) = 0 where x represents a single
variable.

On the other hand, fsolve utilizes more sophisticated numerical methods and can solve the
same type of problems as fzero as well as solving multiple equations in multiple unknowns. The
approach employed by fminbnd is similar to fzero in that only one variable will be adjusted,
and the determination of a minimum in the absolute value of the function will almost always be
co-located with a root.

Each of these three methods require an initial guess for the root that should be near the root.
In the case of fminbnd, the initial guess must be a range that contains the root or else fminbnd
will fail to identify the root.

In the session that follows (which is again a continuation of the previous session), the three
methods will be invoked for each root.

>> % Look for root at about V = 2.6 with all three ’function’ function methods
>> Vi_star_fzero = fzero(vdw, 2.6)

>> V1_star_fsolve = fsolve(vdw, 2.6)

>> avdw = @Q(V) abs(vdw(V))

>> V1_star_fminbnd = fminbnd(avdw, 2.5, 2.7)

>> % Look for root at about V = 0.03 with all three ’function’ function methods

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS

>> V2_star_fzero = fzero(vdw, 0.03)
>> V2_star_fsolve = fsolve(vdw, 0.03)
>> V2_star_fminbnd = fminbnd(avdw, 0.02, 0.04)

>> % Look for root at about V = -0.2 with all three ’function’ function methods
>> V3_star_fzero = fzero(vdw, -0.2)

>> V3_star_fsolve = fsolve(vdw, -0.2)

>> V3_star_fminbnd = fminbnd(avdw, -0.4, -0.1)

Vi_star_fzero =
2.636652456997014

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

Vi_star_fsolve =
2.636652456986320
avdw =
@ (V) abs (vdw(V))
Vi_star_fminbnd =
2.636665870993662
V2_star_fzero =
0.034511407802278

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

V2_star_fsolve =
0.034511407802278

V2_star_fminbnd =
0.034495689933276

V3_star_fzero =
-0.168463864799292

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

V3_star_fsolve =
-0.168463864797615

V3_star_fminbnd =
-0.168471663591385

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 6

Note that fsolve by default reports a healthy bit of text information to the display. One can (and
often should) suppress this output by setting the option flag Display to off by using the optimset
function. Further, since we have a vectorized function, we may use fsolve to find all three values
simultaneously. The following session utilizes the options structure and locates all three roots with
one call to fsolve.

>> opts = optimset(’Display’,’off’);
>> vguess = [-0.2, 0.03, 2.6];
>> V_star_fsolve = fsolve(vdw, vguess, opts)

V_star_fsolve =
-0.168463864799292 0.034511407802278 2.636652456997014

This approach works because the initial guess passed into £solve is a length 3 vector. This causes
the anonymous function vdw to return a length 3 vector. fsolve then independently varies each
element of the initial guess vector until the function returns a length 3 vector of zeros. This is the
same, mathematically, as writing down the van der Waals equation of state three times with a dif-
ferent symbol for V| and then solving the system of equations (3 equations, 3 unknowns, uncoupled
system). The functions fzero and fminbnd are not capable of solving systems of equations or for
finding more than one root at a time.

It is of interest to note that the selection of the initial guess then using fsolve can have
awkward consequences. For example, suppose that we were seeking the minimum root, and so we
make an initial guess of V' = —1. It is left to the reader to verify that £solve produces the result
V = 2.63665, the upper root. Figure 2.2 illustrates the effect of the initial guess on the returned
result of fsolve. It is noteworthy that the most probable solution seems to be the upper root,
while the root that has the narrowest initial guess window seems to be the root closest to zero, and
this root is found with the selection of two ranges of initial guesses.

For another (simpler) example of the use of fsolve we will consider the function f(z) = z2.
Clearly, this function has one repeated root, namely x = 0, and the root is real. Let us apply the
commands fsolve, fzero, fminbnd and roots. We will pretend that we do not know the root in
advance, and make an initial guess around x = 1. The session and output follow.

>> clear all; clc;

>> opts = optimset(’Display’,’off’);

>> the_func = @0(x) x.72;

>> root_fsolve = fsolve(the_func, 1, opts)

>> root_fzero = fzero(the_func, 1, opts)

>> root_fminbnd = fminbnd(the_func, -1, 1, opts)
>> root_roots = roots([1, 0, 0])

root_fsolve =
0.007812507392371
root_fzero =
NaN
root_fminbnd =
-2.775557561562891e-017
root_roots =
0
0

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 7

251 1

1.5F 1

Result returned by fsolve
=
i

-1 i i i i i i i
-1 -0.5 0 0.5 1 15 2 25 3

Initial guess for V

Figure 2.2: Mapping of the result returned by fsolve operating on Eq. (2.1) using initial guesses
for the root between -1 and 3.

Note that, as expected, the roots function returns the exact result, correct with repeated roots.
Also note that the function that returns the value closest to zero is fminbnd. Furthermore, fsolve
returns a number that is only about eight thousandths away from zero, while fzero fails. It is not
unexpected that fzero would fail, because this function detects roots by identification of a sign
change in the function value. Since the base quadratic never changes sign, (always positive) fzero
can never find the root except for the special case where the initial guess is close enough to the
root that the convergence criteria are satisfied on the initial pass.

Now, one might say the fsolve has done a poor job of finding the root. This may be because the
root is so obvious and that zero is a special number to people. The error of about eight thousandths
would probably not stand out if the root were a number like 4.5382 (say versus 4.5301 or 4.5462).
Regardless, we can control the accuracy of the function functions by the use of other parameters in
optimset. Specifically TolFun and TolX are useful. Consider the session (and output) that follows.

>> clear all; clc;

>> opts = optimset(’Display’,’iter’, ’TolFun’, le-10 , ’TolX’, 1le-10);
>> the_func = 0(x) x.72;

>> root_fsolve = fsolve(the_func, 1, opts)

>> root_fminbnd = fminbnd(the_func, -1, 1, opts)

Norm of First-order Trust-region
Iteration Func-count f(x) step optimality radius
0 2 1 2 1
1 4 0.0625 0.5 0.25 1
2 6 0.00390625 0.25 0.0313 1.25
3 8 0.000244141 0.125 0.00391 1.25
4 10 1.52588e-005 0.0625 0.000488 1.25
5 12 9.53675e-007 0.03125 6.1e-005 1.25
6 14 5.96048e-008 0.015625 7.63e-006 1.25

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS

7 16 3.7253e-009 0.0078125 9.54e-007 1.25
8 18 2.32832e-010 0.00390625 1.19e-007 1.25
9 20 1.45521e-011 0.00195312 1.49e-008 1.25
10 22 9.09522e-013 0.000976562 1.86e-009 1.25
11 24 5.68469e-014 0.000488281 2.33e-010 1.25
12 26 3.55315e-015 0.000244141 2.91e-011 1.25

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.

root_fsolve =
2.441480736870023e-004

Func-count X f(x) Procedure
1 -0.236068 0.0557281 initial
2 0.236068 0.0557281 golden
3 0.527864 0.27864 golden
4 -2.77556e-017 7.70372e-034 parabolic
5 3.33333e-011 1.11111e-021 parabolic
6 -3.33334e-011 1.11111e-021 parabolic

Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-010

root_fminbnd =
-2.775557561562891e-017

>> clear all;

>> opts = optimset(’Display’,’iter’, ’TolFun’, 1le-10 ,
’TolX’, 1le-10, ’MaxIter’, 50000, ’MaxFunEvals’, 200000,
’Algorithm’, ’Levenberg-Marquardt’);

>> the_func = 0(x) x.72;

>> root_fsolve = fsolve(the_func, 1, opts)

>> root_fminbnd = fminbnd(the_func, -1, 1, opts)

clc;

First-Order Norm of
Iteration Func-count Residual optimality Lambda step
0 2 1 2 0.01
1 4 0.0631258 0.252 0.001 0.498753
2 6 0.00396107 0.0316 0.0001 0.250374
3 8 0.00024796 0.00395 1e-005 0.125386
4 10 1.55074e-005 0.000494 1e-006 0.0627331
5 12 9.69458e-007 6.18e-005 1e-007 0.0313745
6 14 6.05973e-008 7.72e-006 1e-008 0.0156888
7 16 3.78749e-009 9.66e-007 1e-009 0.00784474
8 18 2.36723e-010 1.21e-007 1e-010 0.00392244
9 20 1.47954e-011 1.51e-008 1le-011 0.00196123
10 22 9.24729e-013 1.89e-009 le-012 0.000980618
11 24 5.77974e-014 2.36e-010 1e-013 0.000490309
12 26 3.61256e-015 2.95e-011 le-014 0.000245155
13 28 2.25812e-016 3.68e-012 1le-015 0.000122577

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 9

14 30 1.41167e-017 4.61e-013 2.22045e-016 6.12887e-005
15 32 8.82723e-019 5.76e-014 2.22045e-016 3.06444e-005
16 34 5.52238e-020 7.21e-015 2.22045e-016 1.53222e-005

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.

root_fsolve =
1.532962917156759e-005

Func-count X f(x) Procedure
1 -0.236068 0.0557281 initial
2 0.236068 0.0557281 golden
3 0.527864 0.27864 golden
4 -2.77556e-017 7.70372e-034 parabolic
5 3.33333e-011 1.11111e-021 parabolic
6 -3.33334e-011 1.11111e-021 parabolic

Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-010

root_fminbnd =
-2.775557561562891e-017

Note that the call to optimset in the latter input utilized several options. It is left to the reader
to examine the doc system for optimset for details on each option.

Note that if you issue the command >> doc optimset, you will be shown the help for the
basic options structure. Within this description is a note with a link to the reference page for the
enhanced optimset function in the Optimization Toolbox. Since the Optimization Toolbox comes
with the Student Edition and it is installed on the lab computers, the enhanced option structure
is the appropriate reference to consult for optimset.

Professor Ashurst’s Special Note #3:

The Levenberg-Marquardt method is a hybrid conjugate gradient/steepest descent approach
with generally good convergence and is also generally fast. I generally recommend it. For
further reading see e.g., Numerical Recipes 3rd Edition: The Art of Scientific Computing by
Press, Teukolsky, Vetterling and Flannery, Cambridge University Press,

2.2 Solving a System of Linear Equations

Suppose that you are in a position where you need to solve a system of linear equations. This
would be a typical case where there were n equations and n unknowns, and each of the unknowns
appeared linearly in the equations. An example of such equation set is given as Eq. 2.3

20+ 3y + 132z = 1.618
bx + Ty + 17z 2.718 (2.3)
21z —y+5z = 3.141

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 10

MATLAB is very capable of performing matrix operations. In fact, the name of the software is
an abbreviation of its former name, MATrix LABoratory. As such, the solution to a simple linear
system is as straightforward as the session that follows.

> A =1[2, 3, 13; 5, 7, 17; 21, -1, 5];
>> B = [1.618, 2.718, 3.141]°;

>> A\B

ans =

0.134255707762557
0.091651826484018
0.082656392694064

This solution is exact, (to numerical precision) and is attained through the use of matrix op-
erations. We will now use fsolve to achieve the solution. First, the system of equations must be
re-cast into a system of functions. These functions must be expressed in terms of a vector whose
elements will be zero when a solution is found. The function must have one argument (at least)
that is a vector of length equal to the number of unknowns in the system. This single vector will
be adjusted by fsolve until the function returns a zero vector. Additionally, fsolve requires an
initial guess, which in this case is taken to be the vector [1,1,1]. The reader may verify that the
solution produced by fsolve is not sensitive to this initial guess. The session that follows contains
a reiteration of the exact analytic solution and the solution produced by fsolve. Note that the
solutions differ by less than eps. The initial guesses may be changed to outlandish values where
this is not the case.

>> clear all; clc;

> A = [2, 3, 13; 5, 7, 17; 21, -1, 5];
>> B = [1.618, 2.718, 3.141]°;

>> linsol_leftdivide = A\B

>> opts = optimset(’Display’,’off’, ’TolFun’, 1le-10 ,
’TolX’, 1le-10, ’MaxIter’, 50000, ’MaxFunEvals’, 200000,
’Algorithm’, ’Levenberg-Marquardt’);
>> eqsys = @(U) [2+U(1) + 3*U(2) + 13*U(3) - 1.618;
5xU(1) + 7xU(2) + 17xU(3) - 2.718;
21%U(1) - U(2) + 5%U(3) - 3.141];
>> linsol_fsolve = fsolve(eqgsys, [1,1,1], opts)’ 7% note use of transpose

linsol_leftdivide =
0.134255707762557
0.091651826484018
0.082656392694064

linsol_fsolve =
0.134255707762557
0.091651826484018
0.082656392694064

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 11

2.3 Solving One Equation for One Complex Variable

It is of note that none of the methods described thus far are natively capable of handing complex
roots, except for the roots function, which only is used for finding the roots of polynomials.
However, we may utilize a bit of mathematics to decompose an equation into its real and complex
parts and solve for the complex root piecewise. This practice is almost always done in computation,
although programs generally hide the details of the operation from the user.

For this illustration, consider the function f(z) = 222 + 1 which clearly has complex conjugate

roots of x = 0 + (\/g> 1. We will prepare a function file and pass its handle into fsolve. The

form of the solution returned by fsolve will be a two element vector where the first element is the
real part and the second element is the magnitude of the imaginary part. The function file will
“assemble” a complex number from the guessed solution, carry out the complex computation, and
split the result back into its real and imaginary magnitude. The function file is as follows.

function make_me_zero = the_eq(X)

xx = complex(X(1), X(2));
make_me_zero(1) = real(cplxfun(xx));
make_me_zero(2) = imag(cplxfun(xx));

function result = cplxfun(x)
result = 2%x.72+1;
end

end

Note the use of a nested function for clarity. We now call £solve as shown in the session below.

>> cplx_roots(l,:) = fsolve(@the_eq, [1, +5], opts);
>> cplx_roots(2,:) = fsolve(@the_eq, [1, -5], opts);
>> cplx_roots

cplx_roots =
0.000000000000001 0.707106781186548
0.000000000000001 -0.707106781186548

Note that there are two calls to fsolve since the function is designed to process one complex
number at a time. Also note the use of the @ character to create the function handle. The initial
guesses of 1 4+ 5¢ are capricious.

2.4 Solving a System of Non-Linear Equations

Frequently, engineers will be in a situation where the solution of a system of nonlinear equations is
required. Fortunately, fsolve is an excellent tool for this application. As an example, suppose that
one has a series of three tanks, where each tank drains into the next by gravity assuming potential
fluid flow behavior. The last tank drains to the surroundings. The first tank has a constant inlet
flow rate. The applicable steady state model for this system is given below. (Note that for an
unsteady state model, the zeros on the left hand side of the first three equations would be replaced

by terms of the form A; ddf;i, and initial conditions would be required.)

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 12

q1
q2
q3
do
Ao
g

qo — q1
q1 — Qg2
q2 —qs3

Ao\/2ghy

Aor/29h2 (2.4)
Ao\/2ghs

0.002 (m3/s)

0.001 (m?)

9.81 (m/s%)

It is clearly possible (and straightforward) to combine these nine equations in such a way that there
were only three. However, such simplification is generally not needed when using MATLAB, and
so it is advisable to type in more “short” equations rather than fewer “complicated” equations.

Professor Placek’s Special Note #1:

The matching (or mis-matching) of parentheses has caused many problems in MATLAB code.
Parentheses control the order of operation when a statement is evaluated and a high degree of
care must be exercised when typing in equations with many levels of parenthesis. I recommend
typing in first the structure of the equation and then filling in the terms with variables.

The general setup is that constants are declared and assigned first, followed by constitutive
equations and finally the balance equations. It must be kept in mind that the statements
within a function are evaluated sequentially. The function file is as follows.

function make_me_zero = tanksys(HH)

h1l = HH(1); h2 = HH(2); h3 = HH(3);
0.002; A_o = 0.001; g = 9.81;

q-0

q_1 = A_o*xsqrt(2*g*hi);
q_2 = A_o*xsqrt(2*g*h2);
q_3 = A_o*sqrt(2*g*h3);

make_me_zero = [q_0 - q_1;
q-1 - q-2;
q_2 - q_3];
end

Note that the return is a column vector of length 3. A row vector could also have been used
because fsolve uses a process called “linear indexing” to order the returned values. The session

to invoke several solutions is as follows.

>> opts = optimset(’Display’,’iter’);

>> ss_hsl = fsolve(@tanksys, [1,1,1], opts);

>> ss_hsl

>> opts = optimset(’Display’,’iter’, ’TolFun’, 1le-10 ,

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS

’TolX’, 1e-10, ’MaxIter’, 50000, ’MaxFunEvals’, 200000,
’Algorithm’, ’Levenberg-Marquardt’);

>> ss_hs2 = fsolve(@tanksys, [1,1,1], opts);

>> ss_hs?2

>> opts = optimset(’Display’,’iter’,’Algorithm’,’Levenberg-Marquardt’) ;
>> ss_hs3 = fsolve(@tanksys, [1,1,1], opts);

>> ss_hs3
Norm of First-order Trust-region
Iteration Func-count f(x) step optimality radius
0 4 5.90221e-006 5.38e-006 1
1 8 1.39916e-006 1 4.96e-006 1
2 12 2.18563e-007 0.611479 3e-006 2.5
3 16 3.15269e-009 0.103757 2.83e-007 2.5

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

ss_hsl =
0.203873111827341 0.192586544502948 0.192586544502948

First-Order Norm of
Iteration Func-count Residual optimality Lambda step
0 4 5.90221e-006 5.38e-006 0.01
1 8 5.89643e-006 5.38e-006 0.001 0.000537528
2 12 5.83937e-006 5.34e-006 0.0001 0.00532468
3 16 5.33555e-006 4.99e-006 1e-005 0.0487638
4 20 3.07138e-006 2.89e-006 1e-006 0.282167
5 24 3.82345e-007 8.65e-007 1e-007 0.815761
6 28 2.27791e-008 6.28e-007 1e-008 0.388891
7 32 1.0154e-010 4.73e-008 1e-009 0.0457323
8 36 1.53896e-015 1.92e-010 1e-010 0.00268356
9 40 4.86124e-025 3.13e-015 le-011 8.81639e-006
10 44 1.12847e-036 2.13e-021 1e-012 2.2975e-010

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.

ss_hs2 =
0.203873598369011 0.203873598369011 0.203873598369011

First-Order Norm of

Iteration Func-count Residual optimality Lambda step
0 4 5.90221e-006 5.38e-006 0.01

1 8 5.89643e-006 5.38e-006 0.001 0.000537528

2 12 5.83937e-006 5.34e-006 0.0001 0.00532468

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 14

3 16 5.33555e-006 4.99e-006 1e-005 0.0487638
4 20 3.07138e-006 2.89e-006 1e-006 0.282167
5 24 3.82345e-007 8.65e-007 1e-007 0.815761
6 28 2.27791e-008 6.28e-007 1e-008 0.388891
7 32 1.0154e-010 4.73e-008 1e-009 0.0457323
8 36 1.53896e-015 1.92e-010 1e-010 0.00268356
9 40 4.86124e-025 3.13e-015 le-011 8.81639e-006
10 44 1.12847e-036 2.13e-021 le-012 2.2975e-010

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

ss_hs3 =
0.203873598369011 0.203873598369011 0.203873598369011

The first solution, ss_hs1 is the result obtained with the default options (except the display). It
should be immediately apparent that there is something odd about the solution. Upon examination
of the form of the model, it should be clear that for steady state to occur, the levels must all be the
same. However, fsolve returned a level for tank 1 that is slightly greater than that for tanks 2 and
3 (which seem identical). Therefore, to investigate the effect of the convergence criteria, another
call to £solve is made with more stringent convergence criteria. The solution that results from
that process, ss_hs2 exhibits the requisite equality. As an aside, a third call to fsolve is shown
where only the Levenberg-Marquardt algorithm is used. It is interesting to note that the solution
is identical, to the second call, even though the options of “TolX” and “TolFun” were not set, and
therefore the default values were used.

As a follow-on example, assume now that tanks 2 and 3 are also each supplied with an input
stream (called g2 and gq 3, respectively) whose magnitude is inversely proportional to the level in
the tank previous to it. The model represented by Eq. (2.4) is modified accordingly to form a new
model as shown below in Eq. (2.5).

= 4qo—q
= qo2t+4q1—q
0 = q3+q—gs
@ = A/2gh
@ = A\/2ghs
g3 = Ao\/2ghs (2.5)

_ 0.001
q0,2 = I

_ 0.005
q0,3 = Iy

@ = 0.002 (m?/s)
A, = 0.001 (m?)
g = 981 (m/s%

Modifying the function tanksys and re-issuing the fsolve command illustrates the effect of the
additional input streams.

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 15

function make_me_zero = tanksys(HH)
h1l = HH(1); h2 = HH(2); h3 = HH(3);
q_0 = 0.002; A_o = 0.001; g = 9.81;

q_1 = A_o*xsqrt(2*g*hi);
q_2 = A_o*xsqrt(2xg*h2);
q_3 = A_o*sqrt(2*g*h3);
q_02 = 0.001/h1;
q_03 = 0.005/h2;

make_me_zero = [q_0 - q_1;
q_02 + q_1 - q_2;
q_03 + q_2 - q_3];
end

>> opts = optimset(’Display’,’off’,’Algorithm’,’Levenberg-Marquardt’) ;
>> ss_hs_mod = fsolve(@tanksys, [1,1,1], opts);
>> ss_hs_mod

ss_hs_mod =
0.203873598395347 2.430123597986995 4.094116152161702

2.5 Passing Additional Function Arguments Though fsolve

It can often be advantageous to parameterize functions in order to make them more general. For
example, consider the function f(z) = sin(ax) where a may be any number such as 3 or 7.7. The
session to plot the function f with a = 3 making use of an anonymous function is:

>> f= @(x, a) sin(ax*x); % handle to f (anonymous)
>> x = linspace(0, 2xpi);
>> plot(x, f(x, 3)) % passes 3 into f as the value of a

As you can see from the plot, there are a number of roots for this function. One root is near the
value x = 1. One might attempt a MATLAB session (with output) involving fsolve to locate a
precise value for this root such as:

>> fsolve(f, 1, []) % note empty bracket placeholder for options

7?77 Input argument "a" is undefined.
Error in ==> @(x,a)sin(a*x)
Error in ==> fsolve at 254
fuser = feval(funfcn{3},x,varargin{:});

Caused by:
Failure in initial user-supplied objective function evaluation. FSOLVE cannot continue.

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 16

Clearly the parameter a was undefined, hence the inability of fsolve to proceed. Thus, a
mechanism to pass parameters into functions through fsolve is needed. Fortunately, fsolve
permits the user to supply extra arguments of any type or number to the target function after its
parameter requirements are satisfied.

>> fsolve(f, 1, [1, 3)
Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

ans =
1.047197551099329

The mechanism by which this is accomplished involves the use of the MATLAB keyword
varargin. The function call to fsolve provided in MATLABis as follows.

function [x,FVAL,EXITFLAG,QUTPUT,JACOB] = fsolve(FUN,x,options,varargin)

It is important to note that to have anything passed into the fourth parameter, varargin, values
or placeholders must be supplied for the first three arguments. The contents (if any) of “varargin”
are supplied verbatim to the function. This is accomplished by statements within fsolve such as:

feval (funfcn{3},x,varargin{:});

In this statement, funfcn{3} represents the target function, which gets evaluated using the feval
function. Thus, the argument x (which represents the current guess of the root) and whatever is in
varargin get passed (in that order) into the target function. Should the options structure not be
needed, the placeholder, (empty brackets, []) must be supplied, as in the example above, if extra
items are to be passed into the target function.

Professor Placek’s Special Note #2:
Unlike Dr. Ashurst, Dr. Placek feels it is not essential to fully understand the above paragraph.

As a more challenging example, let us revisit the van der Waals equation of state, represented
by Eq. (2.1). In section 2.1, the solution to this equation, given a T and P was presented. Suppose
that a range of T' and/or P values need to be investigated. Consider the problem of finding the
compressibility factor, Z = % for air at temperatures between 180 K and 250 K at the pressures
of 1, 5, 10, 20, 40, 60, 80, 100, 200, 300, 400 and 500 bar. In other words, the problem is to fill out
the following look up table with Z values.

P (bar)

T (K) 1{5|10|20 |40 |60 |80 | 100 | 200 | 300 | 400 | 500

180
190
200
210
220
230
240
250

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 17

One could go through and call fsolve as was done in section 2.1, and change T" and P to a value on
the table, do the solving, and store away the result, representing 96 different solutions. However,
this would be time consuming, prone to error and needless. A better alternative is to parameterize
the van der Waals function and create vectors for T, P values to pass in as additional arguments
from within for loops. The session to accomplish this is shown below.

>> format short; clc; clear all;

>> a = 1.372E6; % bar*cm~6/(mol~2)
>> b = 37.24; % cm~3/(mol)

>> R = 83.14472; % bar*cm~3/ (K*mol)
> P =[1, 5, 10, 20:20:100, 200:100:500]; % bar

>> T = [180:10:250]; %K

>> opts = optimset(’Display’,’off’, ’TolFun’, 1le-10 ,
’TolX’, 1e-10, ’MaxIter’, 50000, ’MaxFunEvals’, 200000,
’Algorithm’, ’Levenberg-Marquardt’);
>> vdw_eos = @(V, TT, PP) RxTT/(V-b) - a/V"2 - PP;
>> Z = zeros(length(T), length(P));
>>V = Z;
>> for j = 1l:length(T)
for k = 1:length(P)
V(j,k) = fsolve(vdw_eos, 2000, [1, T(j), P(k));

Z(j,k) = (P(R)*V(],k))/(R*xT(j));
end
end

>> Z

Z =

0.9964 0.9816 0.9629 0.9244 0.8433 0.7612 0.6966 0.6764 0.8907 1.1758 1.4608 1.7418
0.9969 0.9842 0.9682 0.9355 0.8686 0.8030 0.7494 0.7234 0.8905 1.1539 1.4220 1.6875
0.9973 0.9863 0.9726 0.9447 0.8888 0.8353 0.7910 0.7654 0.8940 1.1364 1.3886 1.6399
0.9976 0.9881 0.9762 0.9524 0.9052 0.8610 0.8243 0.8011 0.9005 1.1227 1.3599 1.5980
0.9979 0.9897 0.9794 0.9588 0.9187 0.8818 0.8512 0.8310 0.9091 1.1121 1.3352 1.5610
0.9982 0.9910 0.9820 0.9643 0.9301 0.8990 0.8735 0.8562 0.9190 1.1042 1.3139 1.5283
0.9984 0.9921 0.9843 0.9689 0.9396 0.9134 0.8920 0.8775 0.9296 1.0985 1.2956 1.4992
0.9986 0.9931 0.9863 0.9730 0.9478 0.9255 0.9076 0.8955 0.9403 1.0945 1.2799 1.4734

The anonymous function handle, vdw_eos is formed to require three arguments, V, TT" and
PP. fsolve will provide the first, as required by fsolve, since we seek a root on V. We must then
pass values for T" and P, one element at a time, into the function through fsolve. Consequently,
we must instruct fsolve to pass these quantities through by adding them to the calling line after
the options structure. In the alternative that the default options were sufficient, we would call
fsolve as in:

V(j,k) = fsolve(vdw_eos, 2000, [1, T(j), P(k));

The elements of the Z matrix are populated one at a time, and both Z and V matrices were
pre-allocated.

2.6 Chapter Summary

e The preferred approach to solving algebraic equations involves the use of fsolve

CHAPTER 2. SOLVING ALGEBRAIC EQUATIONS 18

e By default, the convergence criteria are “loose” and should generally be “tightened” via
tailoring the options structure with the use of the command optimset

e For most applications, the following options set should suffice, and this (or similar) should be
included in your MATLAB initialization script

opts = optimset(’Display’,’off’, ’TolFun’, 1le-10 ,
’TolX’, 1le-10, ’MaxIter’, 500, ’MaxFunEvals’, 2000,
’Algorithm’, ’Levenberg-Marquardt’)

Chapter 3

Solving Ordinary Differential
Equations

3.1 Solving One First Order ODE
3.2 Solving a System of First Order ODEs
3.3 Solving One Second Order ODE

3.4 Solving a System of ODEs with Parameters Passed Through
ode4db

19

Chapter 4

Fitting Data to Nonlinear Model
Functions

4.1 Model Functions of One Independent Variable
4.2 Model Functions of More than One Independent Variable

4.3 Characterizing “Goodness of Fit”

20

Chapter 5

Probability and Statistics

5.1 Definitions and Basic Concepts

5.2 Characteristics of Probability Distributions

21

Chapter 6

Hypothesis Testing

6.1 One Sample Tests

6.2 Two Sample Tests

22

Chapter 7

Miscellaneous Notes

7.1 Functions and Function Handles

7.2 Elements of Style

23

Index

D
doc, 4

F

feval, 16

fminbnd, 3, 4, 6, 7

for, 16

fsolve, 1, 3, 4, 6, 7, 10-17
fzero, 2, 4, 6, 7

L
linear indexing, 13

N
nlinfit, 1

O
oded5, 1
optimset, 6, 7, 9, 17

R
roots, iii, 3, 4, 6, 7, 11

\%

varargin, 16

24

	Preface
	Revision History
	Nomenclature
	Introduction and Scope
	Solving Algebraic Equations
	Solving One Equation for One Real Variable
	Solving a System of Linear Equations
	Solving One Equation for One Complex Variable
	Solving a System of Non-Linear Equations
	Passing Additional Function Arguments Though fsolve
	Chapter Summary

	Solving Ordinary Differential Equations
	Solving One First Order ODE
	Solving a System of First Order ODEs
	Solving One Second Order ODE
	Solving a System of ODEs with Parameters Passed Through ode45

	Fitting Data to Nonlinear Model Functions
	Model Functions of One Independent Variable
	Model Functions of More than One Independent Variable
	Characterizing ``Goodness of Fit''

	Probability and Statistics
	Definitions and Basic Concepts
	Characteristics of Probability Distributions

	Hypothesis Testing
	One Sample Tests
	Two Sample Tests

	Miscellaneous Notes
	Functions and Function Handles
	Elements of Style

	Index

