
4.3	Euler's Equation

In Chapter 3 the hydrostatic equations were derived by equating the sum of the forces on a fluid element equal to zero. The same ideas are applied in this section to a moving fluid by equating the sum of the forces acting on a fluid element to the element's acceleration, according to Newton's second law. 

The resulting equation is Euler's equation, which can be used to predict pressure variation in moving fluids.

Pressure Distribution in Uniform Linear Acceleration

All of the problems considered to this point were for static fluids.  We will now consider an extension of our static fluid analysis to the case of rigid body motion, where the entire fluid mass moves and accelerates uniformly (as a rigid body).

The container of fluid shown below is accelerated uniformly up and to the right as shown.

[image: ]



The equations governing the analysis for this class of problems are most easily developed from an acceleration diagram.

Acceleration diagram: [image: ]

For the indicated geometry:







and      


Note:   and s2 – s1  is not a vertical dimension
Note:  s is the depth to a given point perpendicular to the free surface or its extension.  s is aligned with  [image: ].

An alternate derivation with easier to apply working equations:

By definition, the total derivative dP is given by:


where the y-direction is selected so that

 
Using the techniques (force balance) developed earlier



       and               
therefore


Integrating (defining Po=P(x=0, z=0) which MUST be in the fluid)


Manipulating this equation, we can determine the slope of the free surface as


and the equation for the free surface is


Hints for “regular containers”
1.  In rectangular tanks, liquids “rotate” around their center-line
2.  If the bottom becomes “dry”, (1) does not apply
3.  If the liquid spills, (1) does not apply
4.  When (1) doesn’t apply, use geometry and the problem statement to establish the location of the free surface.

[image: C:\Temp\\msotw9_temp0.bmp]

Example 4.3  	Pressure in a Decelerating Tank of Liquid
The tank on a trailer truck is filled completely with gasoline, which has a specific weight of 42 lbf/ft3 (6.60 kN/m3). The truck is decelerating at a rate of 10 ft/s2 (3.05 m/s2).

(a)  If the tank on the trailer is 20 ft (6.1 m) long and if the pressure at the top rear end of the tank is atmospheric, what is the pressure at the top front?
(b)  If the tank is 6 ft (1.83 m) high, what is the maximum pressure in the tank?

[image: ]


Review solution in text.


4.4	Pressure Distribution in Rotating Flows

Situations in which a fluid rotates as a solid body are found in many engineering applications. One common application is the centrifugal separator. The centripetal accelerations resulting from rotating a fluid separate the heavier elements from the lighter elements as the heavier elements move toward the outside and the lighter elements are displaced toward the center. A milk separator operates in this fashion, as does a cyclone separator for removing particulates from an air stream.

To learn how pressure varies in a rotating, incompressible flow, apply Euler's equation in the direction normal to the streamlines and outward from the center of rotation. In this case the fluid elements rotate as the spokes of a wheel, so the direction ℓ in Euler's equation, Eq. (4.8), is replaced by r giving

[image: ]                                                                                  (4.9)


Simplified development of working equations provided.


[image: ]


Assume a cylindrical liquid volume is rotated at a constant angular velocity ω around a centerline (CL)
By definition, the total derivative dP is given by:


Using the techniques (force balance) developed earlier


       and               

therefore


Integrating (defining Po=0=P(r=0, z=0) which MUST be the vertex 


The equation for the free surface is


Using “solid geometry” principles

[image: C:\Temp\\msotw9_temp0.bmp]
[image: C:\Temp\\msotw9_temp0.bmp]


Example 4.4	Surface Profile of Rotating Liquid


A cylindrical tank of liquid shown in the figure is rotating as a solid body at a rate of 4 rad/s. The tank diameter is 0.5 m. The line AA depicts the liquid surface before rotation, and the line A′ A′ shows the surface profile after rotation has been established. Find the elevation difference between the liquid at the center and the wall during rotation.

Sketch:
[image: ]



Review solution in text.








Example 4.5	Rotating Manometer Tube
When the U-tube is not rotated, the water stands in the tube as shown. If the tube is rotated about the eccentric axis at a rate of 8 rad/s, what are the new levels of water in the tube?

Problem Definition

Situation: Manometer tube is rotated around an eccentric axis.

Find: Levels of water in each leg. Assumptions: Liquid is incompressible. Sketch:
[image: ]
Plan:

The total length of the liquid in the manometer must be the same before and after rotation, namely
90 cm. Assume, to start with, that liquid remains in the bottom leg. The pressure at the top of the liquid in each leg is atmospheric.

1.  Apply the equation for pressure variation in rotating flows, Eq. (4.13a), to evaluate difference in elevation in each leg.
2.  Using constraint of total liquid length, find the level in each leg.

Solution:

1.  Application of Eq. (4.13a) between top of leg on left (1) and on right (2):

[image: ]

2.  The sum of the heights in each leg is 36 cm.

[image: ]
Solution for the leg heights:

[image: ]


Review

If the result was a negative height in one leg, it would mean that one end of the liquid column would be in the horizontal leg, and the problem would have to be reworked to reflect this configuration.

Note:  A simple geometric interpretation is that the ∆p in the vertical direction is the same as in the case of fluid statics, that is, no element of the vertical acceleration is changed by the rotation.
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