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Abstract—Connected and Automated Mobility (CCAM) is un-
dergoing a paradigm shift, with safety and efficiency increasingly
dependent on connectivity. Cooperative Intelligent Transport
Systems (C-ITS) support this transformation by enabling the
exchange of Cooperative Awareness Messages (CAMs) between
vehicles and roadside infrastructure. These messages, transmitted
periodically at 1–10 Hz, must be digitally signed in compliance
with ETSI standards using Pseudonym Certificates (PCs). How-
ever, this security process introduces a significant overhead, as
the size of the security data can be up to three times larger than
the CAM payload, thereby consuming a considerable portion
of the communication channel bandwidth. In this paper we
propose a new authentication scheme based on deep learning.
Instead of exchanging signed CAMs every time, the vehicles
will authenticate each other once to establish cluster-based
trust relationships, and then they will exchange only unsigned
CAMs during the cluster lifetime. To ensure security within
the cluster, an unsupervised variational autoencoder analyzes
vehicle behavior to detect anomalies and confirm that each
vehicle remains the same entity originally authenticated. Through
simulations using OMNeT++, SUMO, and Artery, our method
achieved a 48.9% reduction in the volume of messages exchanged
between vehicles, significantly decreasing communication channel
overhead.

Index Terms—Cooperative and Connected Automated Mobility
(CCAM); Communication Overhead; Clustering; Cybersecurity;
Digital Signature; Authentication; Variational Autoencoder; Deep
Learning; Cooperative Intelligent Transport Systems (C-ITS).

I. INTRODUCTION

With global vehicle numbers projected to exceed 2.5 billion
by 2050 [1], issues related to road safety, congestion, and
environmental pollution are increasingly critical. Each year,
road accidents are responsible for nearly 1.35 million fatalities
and millions of injuries [2]. To mitigate these challenges,
Cooperative Intelligent Transportation Systems (C-ITS) have
been introduced, aiming to enhance road safety and mobility
efficiency. C-ITS relies on vehicle-to-everything (V2X) com-
munications to enable interaction between vehicles, drivers,
and roadside units (RSUs). Within this framework, vehicles
exchange standardized message types. According to the Euro-
pean Telecommunications Standards Institute (ETSI), C-ITS
communication is organized through a layered protocol that
includes Cooperative Awareness Messages (CAMs) and De-
centralized Environmental Notification Messages (DENMs),

standardized in ETSI EN 302 637-2 [3] and ETSI EN 302
637-3 [4]. Message dissemination is achieved via the GeoNet-
working protocol (ETSI EN 302 636-4-1) [5], which supports
both direct (single-hop) and relayed (multi-hop) geographic
communication. The ITS-G5 framework, which functions over
the 5 GHz band [6], supports periodic CAM transmission with
frequencies varying from 1 to 10 Hz. According to ETSI TS
103 097 [7], message security—covering privacy, authentica-
tion, and integrity—is ensured via pseudonym certificates is-
sued and controlled under a PKI system. In this study, we focus
on the CAM standard. CAMs are periodic messages that allow
vehicles to share status information, such as GPS coordinates,
speed, and heading. CAMs contain payload content along
with a pseudonym-based certificate and a signature. They
are transmitted regularly by vehicles to neighboring nodes
at intervals corresponding to 1–10 Hz. To ensure security,
CAMs are signed with the pseudonym certificate. Attaching
both a signature and a certificate to each CAM introduces
considerable overhead, leading to higher channel utilization
and bandwidth demand. In fact, the additional security data
(300 bytes) enlarges the payload nearly threefold compared to
the original CAM size of 100 bytes.

This study introduces an innovative method that combines
deep learning with trust clustering to minimize the cost
generated by continuous CAM authentication. Our method
enables nearby vehicles to authenticate once and establish
mutual trust, forming a trust cluster valid for a defined period.
During this interval, vehicles stop sending signed CAMs and
instead send only unsigned CAMs, significantly reducing the
communication load. To ensure message reliability during
this trust period, we integrate an unsupervised deep learning
model—specifically, an LSTM based variational autoencoder
(VAE) to monitor the behavior of neighboring vehicles and
detect any inconsistencies that could indicate compromised
vehicles. The proposed approach was assessed through simu-
lations conducted with OMNeT++, SUMO, and Artery under
various scenarios on the A4 highway (Paris–Reims, France).
The structure of the paper is as follows: Section II discusses
existing literature, Section III presents the developed architec-
ture, Section IV reports the simulation environment together
with the results, and Section V summarizes the conclusions.979-8-3315-9878-5/25/$31.00 © 2025 IEEE
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II. RELATED WORK

The following section reviews significant contributions in
the field of security mechanisms for connected vehicles.
The authors in [8] introduced a trust-based mechanism in
which cluster-heads are chosen according to their reliability
scores. The approach secures communication by applying
public–private key encryption, compelling each sender to
sign and encrypt its messages. While effective in ensuring
integrity, the scheme suffers from high latency in collaborative
environments where fast, and sometimes plaintext, exchanges
are necessary.

The study in [9] proposed two privacy-preserving crypto-
graphic solutions. The first relies on zone-based encryption
combined with anonymous authentication to prevent eaves-
dropping and restrict communication to authorized vehicles. Its
main weakness is the 224-byte overhead added to each mes-
sage, which increases bandwidth usage and delays transmis-
sion. The second scheme, better adapted to vehicular environ-
ments, allows nodes to distribute keys among themselves. The
use of compact group signatures reduces demand on network
bandwidth and memory resources, while maintaining robust
privacy. However, the revocation procedure remains complex
during attacks and does not fully provide non-repudiation.

In [10], the authors proposed a privacy-preserving scheme
built on digital signatures. To address the burden of certificate
handling, the network is divided into multiple domains. The
design also integrates a Hash Message Authentication Code
(HMAC) to optimize the management of certificate revocation
lists. This addition enhances the efficiency of integrity verifi-
cation and reduces the number of rejected messages, thereby
decreasing both computational load and communication over-
head.

The authors in [11] presented a clustering-based authentica-
tion framework intended to overcome the drawbacks of con-
ventional cryptographic solutions in highly dynamic VANET
environments. The method builds stable groups of vehicles
to preserve trust across the network and designates cluster
heads from nodes considered the most reliable. Additional
mechanisms were suggested to detect malicious participants,
while a few vehicles were tasked with monitoring the behavior
of their neighbors. Although this strategy leverages signatures
and asymmetric cryptography to enhance protection, it still
suffers from limitations similar to those identified in [8].

In [12], a decentralized authentication method was pro-
posed, where message signatures replace the need for a
central authority. This design reduces verification time and
communication overhead. However, its main weakness lies
in the revocation process: if a vehicle is compromised, every
pseudonym linked to it needs to be revoked together, which
rapidly enlarges the revocation list.

The work in [14] proposed an identity-based authentica-
tion approach that also incorporates ring signatures, but its
efficiency is limited due to high computational costs during
signing and verification.

In a related study, [15] suggested a variant that couples ring
signatures with bilinear pairings and adds batch verification to

lower the computational load. Despite these improvements, the
scheme remains inefficient for single signature operations.

Similarly, [16] introduced a certificateless aggregate authen-
tication method. This construction combines ring signatures
with bilinear pairings on elliptic curves to enhance privacy and
reduce verification delays. Overall, these contributions share
the objective of minimizing resource consumption through
lightweight authentication, but none explores adaptive or on-
demand activation of security services as a means of conserv-
ing bandwidth.

The problem of anomaly detection has recently drawn
significant focus, with machine learning providing the means
to identify complex abnormal patterns. A considerable body
of research highlights the use of LSTM architectures for
detecting irregularities in multiple scenarios. The study in [17]
introduced a cluster-driven framework that deploys a small
fraction of nodes as monitoring agents, strategically placed
within the network. Operating in promiscuous mode, these
agents use statistical evaluation to reveal irregularities in rout-
ing misbehavior. In [18], a recurrent variational autoencoder
was developed to capture respiratory dynamics. By calculating
the KL divergence between original and reconstructed signals,
the framework identified apnea occurrences through signal am-
plitude fluctuations combined with threshold-based detection.

III. PROPOSED METHODOLOGY

The frequent transmission of signed CAMs, each including
a certificate and a signature, introduces significant commu-
nication overhead and increases channel load. The security
information alone can triple the size of a standard CAM, which
typically has a payload of around 100 bytes. To overcome
this limitation, we introduce a trust-based strategy whereby
vehicles, after a single authentication step, may broadcast
unsigned CAMs for the duration of a predefined trust win-
dow. The details of this mechanism, which enables one-time
authentication followed by lightweight message exchange, are
presented in the following, along with the overall procedure
of our approach.

A. Cluster Dynamics in Trust-Based Approach

1) Cluster Construction: In the proposed method, nearby
vehicles form a cluster, assuming that all are within mu-
tual communication range. To initiate this process, vehicles
synchronize to verify their eligibility for cluster formation.
If no new neighbor information is received within a prede-
fined time period, the vehicles proceed to elect a Cluster
Head (CH). Each vehicle then calculates the cluster’s ge-
ographic center using latitude and longitude data extracted
from neighboring vehicles’ CAM messages (as illustrated in
Figure 1). This involves converting the geographic coordinates
into Cartesian coordinates (Xi, Yi, Zi), averaging these values
(Xmean, Ymean, Zmean), and transforming the averages back into
geographic coordinates (LonG,LatG) to define the cluster
center. Once selected, the Cluster Head (CH) initiates au-
thentication with neighboring vehicles by sending a certificate
request along with its List of Neighboring Vehicles (LNV).
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In response, the vehicles send back their own certificates and
LNVs, allowing each vehicle to verify the CH’s identity and to
check for consistency across neighbor lists. If verification suc-
ceeds, the vehicles temporarily form a cluster. If verification
fails, vehicles pause briefly before retrying the process. This
authentication and cluster formation cycle repeats periodically.

2) Cluster Update:: Once a cluster is formed, vehicles trust
each other and communicate using unsigned CAM messages.
To ensure security and guard against malicious alterations,
every node continuously observes the behavior of its neighbors
with the help of a deep learning–based anomaly detection
model, explained later in this section. If an anomaly is de-
tected, the vehicle sends a certificate request to re-authenticate
the suspicious node. When a new vehicle joins the cluster,
the first vehicle that detects it initiates a certificate request.
Conversely, if a vehicle leaves the cluster, it is removed from
the list of authenticated neighbors.

Fig. 1. The procedure for cluster construction.

B. Trust Management

In this section, we describe how our approach maintains a
high level of security, while reducing the security overhead.
The dynamics of a cluster is related to managing the trust of
each vehicle towards all other cluster members. During this
phase, each vehicle frequently checks the behaviors and the
trajectories of its neighbors. To do so, each vehicle uses the
content of the CAMs that are received from its neighbors as
parameters to detect unsound CAMs. The key idea is that a
vehicle continues to trust the sender and accepts its unsigned
CAMs as long as the sender’s behavior remains consistent.
In order to assess the consistency of a vehicle’s behavior,
a detection system is proposed. The model functions as an
approximation tool for complex estimations that are otherwise
difficult to compute directly. It is trained on calibrated data to
estimate relevant parameters and improve accuracy. Building
on this, we propose an unsupervised deep learning strategy
that tracks changes in the behavior of surrounding vehicles.
When the observed deviation goes beyond a set threshold,
the system flags the sender as potentially compromised and

requests certificate renewal for validation. The details of this
mechanism are outlined below.

1) Background of Variational Autoencoder: An autoen-
coder is defined as an unsupervised neural model aimed at ex-
tracting compact encoding–decoding patterns from data [20].
A Variational Autoencoder (VAE) is a generative probabilistic
framework that integrates Bayesian inference with the au-
toencoder structure [23]. It establishes a relation between the
observed input x, latent variables z, and model parameters θ.
The prior distribution of z is noted as p(z), and the likelihood
of observing x given z is written as pθ(x|z). Consequently,
the marginal distribution of x is expressed as:

p(x) =

∫
pθ(x|z) p(z) dz. (1)

Since this integral is usually intractable, the VAE introduces an
approximation of the posterior distribution, denoted qϕ(z|x).
In this formulation, the encoder with parameters ϕ estimates
qϕ(z|x), whereas the decoder with parameters θ reconstructs
x from z. Applying Jensen’s inequality shows that optimiz-
ing this approximate posterior corresponds to maximizing a
tractable lower bound of the log-likelihood, known as the
Evidence Lower Bound (ELBO) [24]:

L = −DKL(qϕ(z|x) ∥ p(z)) + Ez∼qϕ(z|x)
[
log pθ(x|z)

]
. (2)

Here, DKL denotes the Kullback–Leibler divergence, which
encourages the latent distribution to remain close to the
prior. To make training feasible with gradient descent, the
reparameterization trick is applied:

z = µϕ(x) + σϕ(x)ε, ε ∼ N (0, 1). (3)

Under Gaussian assumptions, the ELBO can be expanded as:

L ≈ 0.5
∑
j

(
1 + log σ2

j (x)− µ2
j (x)− σ2

j (x)
)

+
1

M

∑
l

log pθ(x|zl). (4)

where M is the number of Monte Carlo samples from
the latent space and J is the latent dimensionality. The final
objective combines a reconstruction error with a regularization
term, leading to the following loss:

Loss = MSE + KL, (5)

where the reconstruction term is measured by the mean
squared error (MSE):

MSE =
1

N

∑
(x− x′)2, (6)

with x denoting the original input, x′ the reconstruction, and
N the total number of samples.
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2) Offline Variational Autoencoder Training Phase: The
variational autoencoder operates under an unsupervised learn-
ing paradigm, meaning that no labeled datasets are required for
distinguishing between normal and abnormal driving patterns.
In the context of C-ITS, we generated a dataset of 40 million
CAM messages generated by simulating one thousand vehicles
driving on the A4 highway between Reims and Paris in France.
Each vehicle sends a CAM every 100 ms. We then pre-
processed these CAMs to extract two key parameters that
characterize vehicle behavior. To do so, we calculated the
distance between each pair of consecutive CAMs sent by the
same vehicle, using Vincenty’s formula to compute the three-
dimensional geodesic distance based on latitude, longitude,
and altitude. The resulting dataset includes the following input
variables: heading and distance. The dataset was segmented
into groups of 10 consecutive CAMs, corresponding to an
interval of one second. These segments were provided as input
to a long short-term memory (LSTM) architecture. The en-
coder LSTM transformed each sequence into feature vectors,
which were then mapped onto the mean µϕ(x) and variance
σ2
ϕ(x) using separate linear layers. From this representation, a

latent variable z was sampled and passed through a decoder
LSTM tasked with reconstructing the original sequence. Model
training was guided by a composite loss that integrates the
mean squared error (MSE) with the Kullback–Leibler (KL)
divergence, encouraging the reconstructions to remain consis-
tent with the input data. Once the model was trained, the limit
for anomaly detection was set by identifying the highest mean
absolute error (MAE) obtained from the training data. During
evaluation, whenever the reconstruction error of a given time
segment surpasses this limit, the corresponding CAM sequence
is marked as anomalous; otherwise, it is treated as valid.

3) Processing Phase: During dynamic clustering, vehicles
periodically activate the VAE within a reserved time slot to
evaluate the CAM messages exchanged with neighbors, as
depicted in Fig. 2. Each vehicle processes the most recent 10
CAMs obtained from surrounding nodes. The pre-processing
is identical to what was done during training. Afterward,
the VAE reconstructs the time-window input and compares
the reconstruction error against the threshold defined in the
training phase. If the error for a given sample surpasses this
threshold, that message is classified as inconsistent. If an
anomaly is detected, the vehicle issues a certificate request
to the suspected neighbor. In the absence of a response, it
halts the exchange of unsigned CAMs and withdraws from
the cluster.

IV. PERFORMANCE EVALUATION

To evaluate the proposed approach in a simulation envi-
ronment that closely reflects real-world conditions, we used
several simulators and frameworks. First, we employed the
OMNeT++ network simulator [26], which is developed as a set
of independent modules that can be combined to form complex
systems. OMNeT++ is designed to model communication sys-
tems, networks, multiprocessors, and other distributed systems.
It is based on the C++ programming language and uses NED

Fig. 2. Overview of the proposed VAE-driven method for detecting incon-
sistencies.

(Network Description Language) to define network topology.
The simulator relies on discrete event scheduling rather than
continuous-time simulation. We also used the Artery frame-
work [25], Artery provides support for V2X communications
and extends the simulator with modular and event-driven
capabilities. Each simulated vehicle was equipped with the
full C-ITS protocol stack, including security mechanisms.
The exchange of messages was performed through the IEEE
802.11p physical layer as provided by the VEINS framework.
Traffic mobility was simulated using SUMO [27], which
generates realistic vehicle movements and traffic flows. Artery
was coupled with SUMO to achieve synchronization between
mobility and communication in real time. This setup enabled
a quantitative assessment of the effectiveness of the proposed
scheme in reducing communication overhead within C-ITS.
To assess the efficiency of the proposed scheme, simulations
were conducted under realistic traffic conditions. The A4
highway (Paris-Reims, France), was used as the reference
environment. The road infrastructure was reconstructed from
OpenStreetMap data and imported into SUMO to emulate
actual driving conditions. Traffic density was varied by gener-
ating scenarios with 10, 20, and 30 vehicles traveling unidirec-
tionally from Reims toward Paris. Vehicle mobility included
controlled randomness, introduced through a Gaussian noise
parameter (σ = 0.5), to reproduce fluctuations in speed and
trajectory observed in real traffic. During the simulation, each
vehicle checks the last 10 CAMs received from its neighbors
every 5 seconds, using extracted heading and position data
for anomaly detection. Figure 3 shows the cumulative number
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Fig. 3. The cumulative number of inconsistencies every 10s in the three
scenarios.

of inconsistent behaviors detected by vehicles based on CAM
messages received from neighbors, cumulated every 10 sec-
onds for the three tested scenarios. As illustrated, the number
of detected inconsistencies rises proportionally with vehicle
density. A larger fleet leads to more simultaneous detections of
the same anomaly by neighboring vehicles, thereby amplifying
the anomaly count. In the initial simulation phase (0–1000
s), there is a noticeable peak in inconsistencies across all
scenarios. This behavior occurs due to the initial proximity
and frequent exchanges among vehicles, resulting in multiple
simultaneous detections by neighboring vehicles. During the
intermediate phase (1000–1800 s), the number of detections
decreases significantly, indicating fewer vehicle interactions as
the distances between vehicles increase, limiting the formation
of clusters and thus reducing anomaly detection activity. In the
final simulation phase (1800–3000 s), the number of detected
inconsistencies increases again, particularly in scenario 3 (30
vehicles). This is due to more stable vehicle trajectories, result-
ing in frequent cluster formations and consequently activating
the anomaly detection mechanism more regularly.

Table I presents the percentage of inconsistencies detected
by the vehicles and the number of inconsistent events rel-
ative to the total CAM messages exchanged during the
simulation. In all scenarios, more than 99.5% of the CAM
messages were consistent. Our model detected only a small
fraction of anomalies in vehicle behavior, demonstrating its
effectiveness in identifying real-time inconsistencies in the
CAM data. The VAE recorded significantly lower rates of
detected inconsistencies—0.46%, 0.51%, and 0.58% in the
three scenarios—showing how our deep learning-based ap-
proach accurately distinguishes normal data and minimizes
false detections.

In scenario 3, the evaluation focused on communication
overhead by assigning standard payload sizes defined in the
C-ITS specifications: 300 bytes for authenticated CAMs and
100 bytes for unauthenticated ones. Based on these values, the
total data volume exchanged over the course of the simulation
was derived, allowing a comparison between transmissions
with signed and unsigned messages. The temporal evolution of

Fig. 4. Volume of exchanged data in Scenario 3, measured each second.

TABLE I
THE PERCENTAGE OF INCONSISTENCIES DETECTED BY THE VEHICLES

AND THE NUMBER OF INCONSISTENT EVENTS COMPARED TO THE
NORMAL CAM

2*S Real Anomaly Anomaly Detected Sound Cams
Number % Number % Number %

1 1940 0.41% 2187 0.46% 470227 %99.59
2 6199 0.42% 7741 0.51% 1495743 %99.58
3 12018 0.45% 15531 0.58% 2662441 %99.55

transmitted data is illustrated in Figure 4, which highlights a
clear distinction between the standard C-ITS protocol and the
proposed variational framework. Unlike the baseline, where
all CAMs are authenticated, our strategy reduces the amount
of information exchanged by transmitting unsigned CAMs
once trust is established. This substitution translates into
a measurable gain, with message sizes reduced by 48.9%.
Such a reduction directly impacts network reliability, since
the communication channel is less prone to congestion. The
underlying reason for this efficiency lies in the trust-cluster
paradigm: vehicles avoid redundant signatures while anomaly
detection is ensured by the VAE-based monitoring process.

V. CONCLUSIONS

In this study, we introduced a cluster-based trust strategy
combined with variational autoencoders to address commu-
nication efficiency in C-ITS. Instead of authenticating every
transmitted message, vehicles authenticate once and can sub-
sequently exchange unsigned CAMs within a controlled trust
window. This significantly reduces the size of the CAMs,
alleviates channel congestion, and improves the scalability
of the system. Through simulations, our method achieved a
48.9% reduction in message load compared to the conventional
C-ITS standard, while preserving reliability in anomaly detec-
tion. The proposed framework therefore balances security and
efficiency by leveraging unsupervised learning for real-time
monitoring of vehicle behavior. Future work will focus on
strengthening the resilience of this approach against diverse
cyber threats and extending its validation to more heteroge-
neous traffic environments.
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