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Abstract—Edge intelligence in space-air-ground integrated net-
works (SAGINs) can enable worldwide network coverage beyond
geographical limitations for users to access ubiquitous and low-
latency intelligence services. Facing global coverage and complex
environments in SAGINSs, edge intelligence can provision large
language models (LLMs) agents for users via edge servers
at ground base stations (BSs) or cloud data centers relayed
by satellites. As LLMs with billions of parameters are pre-
trained on vast datasets, LLM agents have few-shot learning
capabilities, e.g., chain-of-thought (CoT) prompting for complex
tasks, which raises a new trade-off between resource consumption
and performance in SAGINs. In this paper, we propose a
joint caching and inference framework for edge intelligence to
provision sustainable and ubiquitous LLM agents in SAGINs.
We introduce ‘“‘cached model-as-a-resource” for offering LLMs
with limited context windows and propose a novel optimization
framework, i.e., joint model caching and inference, to utilize
cached model resources for provisioning LLM agent services
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along with communication, computing, and storage resources. We
design ‘‘age of thought” (AoT) considering the CoT prompting
of LLMs, and propose a least AoT cached model replacement
algorithm for optimizing the provisioning cost. We propose a
deep Q-network-based modified second-bid (DQMSB) auction to
incentivize satellite/ground network operators in real-time, which
can enhance allocation efficiency by 23% while guaranteeing
strategy-proofness and being free from adverse selection.

Index Terms—Space-air-ground  integrated  networks
(SAGINs), edge intelligence, large language model (LLM)
agents, auction theory, deep reinforcement learning (DRL).

I. INTRODUCTION

PACE-AIR-GROUND integrated networks (SAGINs) pro-

vide global network coverage and enable real-time edge
intelligence services such as image recognition and data analy-
sis [1]. Beyond terrestrial communication systems constrained
by limited network capacity and ground-based station (BS)
coverage, satellites relay computing services from cloud data
centers and supply seamless connectivity in harsh environ-
ments, e.g., oceans and mountains [2]. Edge intelligence in
SAGINs supports smart-ocean applications that range from
real-time aquaculture monitoring to Al assistants for pas-
sengers, crew, and fishermen [3]. Recent advances in large
language models (LLMs) [4], [5], [6] greatly enhance the
capabilities of edge intelligence in SAGINs, enabling Al
agents based on LLMs, i.e., LLM agents, to tackle unseen
and complex reasoning tasks with various data modalities [7].
Moreover, SAGINs can provision low-latency and privacy-
preserving LLM agent services [7] at edge servers of ground
BSs or at cloud data centers relayed by satellites, which act
as autonomous assistants for daily life and work.

Built on billion-parameter models pre-trained on Internet-
scale corpora, LLM agents support few-shot learning [8],
[9], encompassing in-context learning (ICL) for unseen tasks,
chain-of-thought (CoT) prompting for complex reasoning, and
role-playing under specific instructions. Although training and
inference demand substantial computing resources, users with
low-end mobile devices in SAGINs can invoke LLM services
from edge servers at ground BSs or via satellite-backhauled
cloud data centers. Therefore, heterogeneous deployment of
LLM services in SAGINs reduces latency and safeguards user
privacy [10], [11]. However, resource-limited edge servers
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cannot host every model concurrently [S]. Furthermore, few-
shot performance is bounded by the context-window size
dictated by each model architecture [12]. During inference,
accumulated tokens initially enhance output but, once the win-
dow is filled [13], the quality of LLM responses deteriorates
markedly.

As the context windows of running LLMs can be depleted
during provisioning LLM agent services, the cached models
at edge servers of ground BSs should be considered as an
unexplored type of resource analogous to conventional com-
munication, computing, and storage resources [5]. To minimise
provisioning cost, network operators must coordinate these
local LLMs by accounting not only for hardware constraints
but also for the context availability. Model caching, analogous
to content caching, serves as an optimization framework
for edge intelligence that lowers service latency and overall
resource consumption. An effective framework must also
incorporate the few-shot learning capability of LLMs [8], since
each additional demonstration modifies both resource usage
and inference quality. Furthermore, the economic value of
service opportunities tends to be positively correlated across
operators. Satellites, acting solely as relays between end
users and cloud data centres, receive limited cost/performance
feedback and therefore face significant information asymmetry
relative to terrestrial BSs. This asymmetry can give rise to
adverse selection [14] and result in inefficient operator allo-
cation within real-time mechanisms. For instance, in maritime
satellite communications, satellites typically offer flat-rate data
plans without direct visibility into per-task GPU resource
consumption, unlike coastal ground stations that precisely
monitor real-time resource usage [1].

To address these challenges, in this paper, we propose a
joint model-caching and inference framework that delivers sus-
tainable, low-latency, and privacy-aware LLM-agent services
throughout SAGINs. Depending on user location and resource
conditions, LLMs execute on edge servers collocated with
ground BSs or on cloud data centers reached via satellite or
terrestrial relays. Ground BSs therefore furnish nearby users
with prompt responses, whereas satellites extend coverage to
remote oceans and mountains. To raise service quality, we ele-
vate cached LLMs to first-class resources and formulate a joint
caching-and-inference optimisation. Exploiting LLMs’ few-
shot capability, we introduce the age-of-thought (AoT) metric
to gauge the freshness and coherence of intermediate reasoning
states. A least-AoT (LAoT) cache-replacement policy then
removes the model with the largest AoT, thereby minimising
provisioning cost for operators. Finally, we integrate a mod-
ified second-bid auction with a deep Q-network (DQMSB)
that adaptively tunes the price-scaling factor, remains strategy-
proof, and eliminates adverse selection in satellite resource
allocation.

Our main contributions can be summarized as follows.

e We formulate a novel optimization framework for edge
intelligence, i.e., the joint model caching and inference
framework, to provision sustainable and ubiquitous LLM
agents with satellites and ground BSs in SAGINSs.

e In this framework, for the first time, we propose the
concept of “cached model-as-a-resource” to implement
edge intelligence, where cached models are regarded as
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a type of resource similar to conventional communication,
computing, and storage resources, at edge servers at
ground BSs, and cloud datacenters in SAGINS.

e We formulate the LLM agent provisioning problem for
ground BSs to minimize total system cost under resource
and coverage constraints. To tackle this problem effec-
tively, we design a novel least AoT model caching
algorithm to schedule loading and eviction of LLMs
using the AoT, evaluating the relevance and coherence
of intermediate thoughts in context windows.

e To maximize the revenue of network operators in provi-
sioning high-quality LLM agent services, we propose the
DQMSB auction, which can guarantee free of adverse
selection and be fully strategy-proof, by using DRL to
select the optimal pricing scaling factor.

The remaining sections of this paper are organized as
follows. In Section II, we present a review of related work. In
Section III, we describe the system model for provisioning
LLM agents in SAGINs. In Section IV, we formulate the
problem, propose the model caching algorithm, and design
the market. In Section V, we propose the DQMSB auction.
In Section VI, we present the simulation experiments. Finally,
we conclude this paper in Section VIL

II. RELATED WORKS

A. Edge Intelligence in Space-Air-Ground Integrated
Networks

Provisioning Al services in SAGINs can significantly
enhance the intelligent configuration and control of SAGINs
to adapt to their environment, improving various performance
metrics such as latency, energy usage, bandwidth, and real-
time adaptability [1]. Xu et al. in [15] introduce a cloud-edge
aggregated artificial intelligence architecture that leverages the
on-orbit lightweight 5G core and edge computing platform
provided by the Tiansuan constellation. For mission-critical 6G
services, Hou et al. in [16] propose a three-layer architecture
in SAGINSs for ultra-reliable and low-latency edge intelligence
that includes unikernel-based ultra-lightweight virtualization
and microservice-based paradigms for prompt response and
improved reliability. Considering the time-varying character-
istics of content sources and the dynamic demands of users,
Qin et al. in [17] propose a content service-oriented resource
allocation algorithm that aims to achieve a stable matching
based on users’ preferences for SAGINS.

B. Large Language Models for Edge Intelligence

In literature, LLMs are an essential part of next-generation
edge intelligence systems, which have been leveraged to
design, analyze, and optimize edge intelligence [18], [19]. For
instance, Du et al. in [20] investigate the potential of LLMs
as a valuable tool for FPGA-based wireless system devel-
opment. Furthermore, Cui et al. in [21] introduce LLMind,
an Al framework that integrates LLMs with domain-specific
Al modules and IoT devices for executing complex tasks.
In multi-agent systems for 6G communications, Jiang et al.
[22] demonstrated the effectiveness of LLMs in collaborative
data retrieval, planning, and reflection through a seman-
tic communication case study. Considering the issues that
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traditional deep offloading architectures are facing several
issues, including heterogeneous constraints, partial perception,
uncertain generalization, and lack of traceability, Dong et al.
[23] propose an LLM-based offloading framework that uti-
lizes LLMs for offloading decisions, addressing issues like
heterogeneous constraints and uncertain generalization. Nev-
ertheless, the execution of LLMs usually requires enormous
computing resources, which are infeasible for edge environ-
ments. Therefore, considering efficient training and inference
architecture in 6G networks, Lin et al. in [24] explore feasible
techniques such as split learning/inference, parameter-efficient
fine-tuning, quantization, and parameter-sharing inference for
pushing LLMs to the edge. Nevertheless, existing studies
seldom examine how the freshness of cached LLMs affects
network-wide cost; none of them couple freshness with
spectrum, computing, and storage constraints in a unified
optimization.

C. Auction Design for SAGINs

Auctions are efficient and effective methods for real-time
network resource allocation in SAGINSs [25], [26], [27]. In civil
aircraft augmented SAGINSs, Chen et al. [28] propose a truthful
double auction for device-to-device (D2D) communications
and a reverse auction mechanism for spectrum sharing. For
lightweight blockchain-based SAGINs, Yang et al. in [29]
propose a secure sequential Vickrey auction mechanism
to ensure secure and reliable spectrum sharing within the
SAGINs. However, the current auctions treat communication
and computing costs as exogenous and overlook the fact
that valuation depends on model freshness and token-level
usage statistics, which are observable only at ground stations
and not at satellites. This is a gap that motivates our
deep-Q-network modified-second-bid (DQMSB) design.
Therefore, in this paper, we propose DQMSB that can
mitigate adverse selection and increase market efficiency for
SAGINs with DQN-based price scaling factor selection.

III. SYSTEM MODEL

For edge intelligence in SAGINSs, each group of users would
like to utilize LLM agents based on one or several LLMs. In
the system, each group of users can use one LLM agent as their
active assistant because their attention is limited depending
on their preferences and current tasks. In SAGINs, a group
of users needs to select network providers, including satellites
and ground BSs, to access LLM agent services. As shown
in Fig. 1, the system consists of N 4+ 1 network operators,
including one or several Low Earth Orbit (LEO) satellites in
orbit and multiple ground BSs equipped with edge servers, all
connected to the cloud data center via backhaul links. The set
of network operators is represented by N' = {0,1,..., N},
where the LEO satellite is represented by O and the set of
BSs is represented by {1,..., N}. The edge servers at ground
BSs can execute LLM agent services for users while the
rest of the services can be offloaded to cloud data centers
with the relay of satellites or ground BSs. We use the set
T ={1,2,...,I} to denote the available LLM agent services
based on the set of LLMs M = {1,...,M}. As LLMs are
capable of performing multiple downstream tasks in LLM
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Fig. 1. Joint caching and inference framework for provisioning large language
model (LLM) agents in SAGINS.

agent services simultaneously, it is considered that the number
of LLM agent services is far greater than the number of LLMs
[7], i.e., I > M. In the group of users U, covered by network
operator n, R}, = {R}, ; ,|i € Z,m € M} is used to represent
the number of requests generated by LLM agent service ¢ to
execute LLM m for its specific functions, including planning,
memory, tool-using, and embodied actions. Initially, the size
of input data of LLM agent service ¢ can be denoted as d;.
Additionally, the configuration of LLM m consists of the
amount of runtime GPU memory, which is proportion to model
size s,,, the computation required per token e,,, and the size
of context window w,,.

A. Coverage Time Model

The coverage time model for LEO satellite networks
addresses the dynamic positioning of satellites concern-
ing users. Unlike terrestrial networks, whose infrastructure
remains stationary, LEO satellites exhibit constant motion,
necessitating that users establish connections based on specific
geometric metrics [2]. These metrics include the altitude [
of the LEO satellite orbit above the mobile user, the Earth’s
radius F, and the slant distance s from users to the LEO
satellites. The elevation angle 6°¢, delineating the line of sight
between a mogﬂ% user and an LEO satellite, is determined by

+

0°¢ = arccos (T) -sin 69, where 69 represents the geocentric

angle covering the LEO satellite’s service area, calculated as
69 = arccos (ELH) -cos 0 — 0°. Let v° denote the velocity

of LEO satellite 0. The maximal communication duration 7}’
between a mobile user and the LEO satellite is given by
L

Y =5 ()
where L = 209(F + 1) is the arc length over which com-
munication with the LEO satellite is available for users. Due
to its intermediary role as a relay node, a LEO satellite has
inherently limited observability regarding cloud-side resource
consumption and service-level metrics. Conversely, ground
base stations directly interact with computational resources,
thus obtaining precise real-time measurements. Consequently,
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Fig. 2. The workflow of the joint caching and inference framework for provisioning LLM agents with cached models.

satellite operators’ valuations become positively correlated but
privately uncertain, increasing the risk of adverse selection in
resource allocation.

B. Communication Model

To facilitate interaction with LLM agents, a group of users
covered by network operator n, denoted by Uf,, can access
services through network operator n for data transmission.
These users share the same spectral resources, resulting in
mutual interference among them [3]. The channel power gain
from mobile user u € U,, to LEO satellite 0, accounting for
large-scale fading and shadowed-Rician fading, is represented
by gu.0 [30]. Similarly, g,, ., represents the channel power gain
from mobile user u to ground BS n = 1, ..., N, incorporating
large-scale fading and Rayleigh fading for terrestrial commu-
nications. The bandwidth allocated by satellite 0 and ground
BSs n=1,2,..., N, is denoted as By and B,,, respectively.
Consequently, the uplink transmission rate for user v € U, to
transmit input data of LLM agent services to network operators
is given by

Gu,nPu
> jcu\{u} 9imPj + 07

1+ )

Tun = Bn 10g2

where p,, is the transmit power of user v and o2 is the power
of the additive white Gaussian noise (AWGN). The satellite
serves as an intermediary in providing LLM agent services
between mobile users and cloud data centers via the satellite
backbone network [31], with the transmission rate denoted by
TOC . Moreover, ground BSs n = 1,2,..., N connect to cloud
data centers through the terrestrial core network with a fixed
transmission rate r¢

n -

C. Model Caching for LLM Agent Services

To facilitate the provisioning of LLM agent services in
SAGINs, we introduce a joint model caching and inference
framework that enables edge servers located at ground BSs
to cache LLMs and offload requests, optimizing the utiliza-
tion of edge computing resources to provision LLM agent
services for users, as shown in Fig. 2. Specifically, ground
BSs n=1,..., N are tasked with determining local caching

and offloading strategies. Here, af ;. € {0,1} represents
the binary variable that indicates whether model m for ser-
vice 7 is cached at ground BS n during time slot ¢, and
b, im € [0,1] signifies the continuous variable reflecting
the proportion of model m for service ¢ being executed at
ground BS n at time slot ¢. Let al, = {af,,...,af [/}
encapsulate the model caching decisions at ground BS n, with
a' = {al,..., al} aggregating these decisions across all net-
work operators. Furthermore, the request offloading decision
for ground BS n is denoted by bl, = {b, 1 1,..., 0 ; v},
while b = {bf,... bl } represents the collective offloading
decisions of ground BSsn =1, ..., N. To extend the coverage
of ground communication systems, satellite 0 with limited
computing and energy resources acts as a relay between users
and cloud data centers, whose model caching decisions are
al = 0 and request offloading decisions are b} = 0, i.e., all
the LLM agent services are offloaded to cloud data centers for
remote executing relayed by satellite O.

For edge intelligence in SAGINs, LLM agent services
requested by users can be executed at edge servers at ground
BSs when the required LLMs are cached into GPUs. Let G,
denote the GPU computing capacity in terms of GPU memory
of ground BS n. Then, the decision of model caching a’,
should satisfy the following constraint at time slot ¢ for ground
BSn=1,...,N, as

SO alimsm < G,

1€ meM

3)

where s,, is the running size of model m. This indicates that
the edge servers cannot load all the LLMs into GPUs as the
computing resources at edge servers are constrained. After the
models are loaded into the GPUs of edge servers, LLM agent
services can be executed at the ground BSs. Therefore, the
constraint of LLM agent service provisioned at ground BS

n=1,...,N, is represented as
b%,i,ml(Riz,i,m > 0) < a;,i,mv Vi e Ivm € M, (4)
where 1(-) is the indicator function and 1(RI;, > 0)

indicates that there are requests of LLM agent service ¢ for
model m at BS n at time slot ¢. Finally, the total computing
power consumption of edge servers is constrained by the total
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computing capacity of GPUs at ground BS n = 1,..., N,
which can be represented as

Z Z ema’z,i,m(l - bfL,i,m)sz,i,m, < Ep. &)

1€ meM

Nevertheless, in cloud data centers, it could be assumed that
there is no GPU memory constraint or computing capacity
constraint for executing LLMs.

D. Chain-of-Thought Inference Model

To improve the relevance and coherence of LLM agents,
LLMs can leverage CoT prompting to perform step-by-step
reasoning before obtaining the final response [32]. As an
advanced inference approach to elicit the emerging abilities of
LLMs, CoT prompting allows LLMs to generate a sequence
of intermediate reasoning steps towards problem-solving or
concluding, instead of attempting to solve the entire problem
in merely zero-shot manner. During inference of LLMs, given
any task description prompt d, LLM m can generate an answer
by recursively predicting the sequence of next tokens from
the learned distribution p,, conditioned on the concatenation
of d and of the tokens sampled so far. For all sequences of
messages in LLM agent service i, D; = {d, o,...,d; } of at
most w,, tokens, the p,,(D;) follows the general product rule
of probability [33], i.e.,

Pm(Di) = pm(dio, .., dik)
=Pm(di 0)pm(di1|dio) - Pm(dik|dio, - . dik—1),

(6)

which is a good approximation of the true distribution G(D;).

For each CoT prompt in LLM agent service ¢, LLM m
is provided with ¢; varying length CoT examples E; =
{€i0,---,€ir} and each thought e; ;, in E; is a sequence of
k; tokens representing one reasoning step. Those examples are
designed to aid the LLMs in producing correct answers via
CoT generation and thus for service ¢, F; are generated with
true intentions 6* and true context ¢*. To serve LLM agent
service %, for the given E; and a task d; o, LLMs then generate
(di1,-..,di ) messages. To evaluate the performance of the
approximation of LLMs, we have the following definition.

Definition 1 (e-ambiguity [33]): For CoT examples FE; of
LLM service ¢ generated based on true context ¢* and true
intention #*, the ambiguity of the chain ¢(E;) is defined as the
complement of the likelihood of the context ¢* and intentions
0* conditioned on CoT examples F;, i.e.,

G(c*,0%|E;) =1 — e(E;). (7

In addition to the ambiguous definition of LLMs, we define
the quality of contexts in training datasets as follows.
Definition 2: To account for the potentially non-uniform dis-
tribution of contexts in training datasets at network operators,
we introduce a skewness parameter 7, (c*) for each network
operator n, which is defined as
A %
Yn(c) = sup @, ®)
ceC Q(Cn)

where ¢, is the context owned by network operator n.

IEEE TRANSACTIONS ON NETWORKING, VOL. 34, 2026

Ground BSs can collect the context during their provisioning
of LLM agent services, which satisfies the preference of their
local users. Therefore, we have the following assumption.

Assumption 1: The prior distribution associated with true
contexts ¢* is uniform.

Based on the uniform context considered in Assumption 1,
Yn(c*) = 1 guarantees small values or provides CoT examples
that should have small enough ambiguity, so the model with
high certainty could guess the true context ¢* from them [34].
Following Definition 2, we can estimate the difference of
ambiguity measurements between the learned distribution p,,
and the true distribution §, conditioned on input messages D;
of service i, as follows.

Theorem 1: Considering a collection of ¢; varying length
CoT examples, which are generated from the intention 6*
with the optimal context ¢* sampled from ¢,,(c) that satisfies
Assumption 1. Furthermore, let d; o be the input message
or task sampled from ¢(-|63), which is generated from 6
sampled from g, (:|c*). Then, for any sequence of messages
D;, we have

. o e(Biy)
m(Dildi o, Ei) — 4(Dild; 0, c")| < ——,
P (Ds|di 0, Ei) — G( D] 7OC)|—77H176(E”,) ©)
y=1 ’
where n = 2 1i(:l("c’lf)o) depends on the ambiguity of the input.

Proof: We provide a simplified proof to show how to obtain
this bound with the necessary steps and the complete proof can
be found in [34]. Starting from p,,(D;|d; o, E;), we have
4(dio0, Ei)

d(Dia Ei7 C*> + Zc;éc* d(Dia Ei7 C)
A(dio, Eiy c*) + 32 ser 4(dio, Eis )

. . Deser 4(DiyEiyc)
A(Di\{di o}, Ei, ) + =505
S oor d(dio Birc)

1+ q(di,0,Ei,c*)

G(Di\{dio}, Es,c*) + A

Pm(Dildio, E;) =

- 1+7 ’ (19)
where A and T are given by
A= Zc;ﬁc* (j(Di,Ei,C) 47T = Zc;éc* (j(d@o,E@C)
4(di0, Ei, c*) 4(di0, By, c*)
(1D

By leveraging the definition of ambiguity measure for CoT
example E;,, we can establish the following bounds on A
and T as

e(Eiy)
1 — G(Ei7y) )

AT < 2a()eldio) H

1 —e(dio) (12)

y=1
Finally, combining the above components, we have
|pm(Dildi 0, Ei) — 4(Dild; 0, )|
_ A =T4(Di/{dio}dio, )
1+7
< [A+TG(Di/{dso}|di o, ")l
<A+TY

o e(Eiy)
< sY
<n]l 1—e(Biy)’

y=1

(13)
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where n = 2% following Assumption 1 and indi-
e(di,o) . O

cating that v, (c*) = 1 and thus 1 = 25 e
Theorem 1 indicates that the LLM prompted with CoT
example F; is capable of approximating the true natural lan-
guage distribution equipped with true context and intentions.
Assumption 2: The CoT example E; generated from 6* with
a context ¢* ~ ¢(c) is bounded by the ambiguity measure, i.e.,

(E;) = §(c*,0*|E;) < o (14)

where o € [0, %]

Assumption 2 implies that when carefully selected, CoT
examples F; and the true context ¢* can be recovered from
E; with reasonably high certainty, i.e., the probability the c*
is behind FE; is strictly greater than on a half. Given such CoT
examples, we can transform the bound in Theorem 1 into a
geometrical convergence rate with the number of examples

growing large as
|pm (Dildi o, Ei) — 4( )| <nBe,

where the CoT gain is § = 2= € [0,1). Those examples
described in Assumption 2 should be carefully selected to
guarantee low ambiguity requirements. In practice, however, it
can be challenging to collect such chain-of-thought examples,
as there can be an assumption that allows us to measure
ambiguity for a given sequence of thoughts as below.
Assumption 3: For the CoT examples E; generated from
true intentions 6* with the true context context ¢* ~ ¢(c), the
associated ambiguity measure €(E;) vanishes as the length of
sequence grows large as
lim e(E;) = 0.

l—o0

D;|d; 0, c* (15)

0'

(16)

Assumption 3 implies that uncertainty over true context c*
and true intentions 6* for a sequence of thoughts is diminishing
when more of these thoughts are collected. Therefore, for
long enough CoT examples, the asymptotic requirement is
sufficient to guarantee a low ambiguity measure. Satisfying
Assumption 3, we have the following lemma.

Lemma 1: Considering CoT examples F; for any fixed o €
[O, %) there is a length threshold k7, € N. For any k; > k7 ,,
we have

e(E;) < o. (17)

Proof: By selecting o € [0, 1), CoT examples E; following
Assumption 3 have the approximation that lim;_, o €(E;) = 0.
Then, there exists k7, € N such that for any k; > k7, the
inequality e(E;) < o holds. O

Based on Lemma 1, the geometrical convergence rate in
Eq. (15) can be established when the LLM is prompted with
CoT examples E; of sufficient length, i.e., k; > k7, following
Assumption 3. In contrast to the low ambiguity requirement,
CoT examples with low asymptotic ambiguity can be more
attainable. Therefore, during the step-by-step inference of
LLMs, the original CoT examples F; satisfying Assumption 3
can be split or divided into different lengths and sizes of
thoughts E! following the required threshold o € [0, %), which
can be more refined reasoning steps with predefined ambiguity.

LLMs, such as GPT-3, can perform CoT prompting which
indicates that they can learn from past CoT examples for com-
plex tasks presented to them. The intermediate thoughts can
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be used to enhance the performance of LLM agents, as LLMs
can use meta-gradient learning during interaction to fit them
[35]. However, depending on the relevance and coherence of
intermediate thoughts, few-shot learning may have favorable
or unfavorable impacts on the model performance. Based on
the caching decision an im and offloading decision by, ; ,,, the
batch of requests executed as ground BS n can be calculated
as 0, ;= Qi (1=0L ;) RY, 5 ki for service ¢ and model
m, where k; is the size of CoT examples for service ¢ which
can be estimated via Lemma 1. In general, the number of
thoughts increases monotonically when the LLM is cached
into the edge servers, which can be represented as

Kt _ 07 t 0,
n,.,m t—1 + .
Ay 4, m(K + 6n,i,m)a otherwise.

nzm

(18)

Similar to the definition of age of information (Aol), the
AoT measures the freshness of intermediate thoughts within
the cached LLMs for the current inference requests. With a
vanishing factor Af,m of thoughts, the AoT is adjusted by the
non-increasing age utility function, which is represented as

: )0, t=0,

Fim,im al i md b im + Onim — AL}, otherwise.
19)

According to the AoT, the weighted total of the number of
examples in demonstrations may be used to determine the
number of examples in context. The AoT metric is compu-
tationally lightweight and practically implementable without
internal modifications to the LLM inference process. Cal-
culation involves only maintaining two integer counters per
cached model—the accumulated length of reasoning tokens
and the current AoT score. Updating these counters upon infer-
ence completion incurs negligible computational overhead, as
it only requires two integer additions and one comparison
operation. This procedure leverages data (timestamps, token
counts) inherently generated by the inference pipeline, thus
avoiding any modifications to model architecture or inference
mechanisms. Consequently, AoT computation is both efficient
and practically viable for real-world deployments, introducing
no meaningful latency increase.

Based on Eq. (15), the few-shot CoT reasoning performance
A; n of model m in service ¢ can be defined as

A?n,i,m Q,m IOg(l/ﬁ m m)

where «; ,, is the zero-shot accuracy of LLM m for service
i, estimated on a held-out validation set [8]. The factor 3
represents the per-thought attenuation rate of CoT gain that
obtained from the ambiguity upper-bound in Assumption 2,

(20)

and log(1/ BZ ;‘nl ™) is the performance gain of generated CoT
examples of LLM m for service i [33], [34].

IV. PROBLEM FORMULATION, CACHING ALGORITHM
DESIGN, AND MARKET DESIGN

In this section, we first formulate the problem of provi-
sioning LLM agents in SAGINs to maximize the quantity
and quality of LLM agent services. To solve the formulated
problem, we next propose a model caching algorithm for
local cached model management for ground BSs. Furthermore,
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we design an LLM agent market for incentivizing network
operators, i.e., satellites and ground BSs, to contribute their
resources to execute LLM agents.

During the provisioning of LLM agent services, network
operators, i.e., satellite or terrestrial BSs, need to provide com-
munication, computation, storage, and cached model resources
to run the LLM agent services. In detail, the user’s request
and returned results need to be transmitted over the wireless
channel, which costs bandwidth to complete the interaction
between the user and the LLM agent deployed at the edge.
The reasoning process of LLM consumes a lot of computing
resources, especially when LLMs perform CoT reasoning;
they need a large amount of intermediate computation to
obtain the final high-quality results. Since LLM agents use
CoT reasoning to improve the quality of final answers, they
need substantial storage resources to store past CoT examples
locally for demonstration. Finally, since the context window of
LLM is limited, when the model inference is deployed beyond
a certain number of tokens, the model needs to be refreshed,
i.e., to evict the old model and load another fresh model.

A. Cost Structure

As mentioned above, the LLM agent services provisioned
at ground BSs can be handled by edge servers or offloaded to
cloud data centers via the core network. Based on the decisions
of model caching and request offloading, the overall cost of
providing LLM agent services, including the cost at the edge
and the cost at the cloud, can be expressed as follows.

1) Edge Inference Cost: Specifically, the cost of edge
inference includes the cost of switching in GPUs, the cost
of transmitting data across edges, the cost of performing
computations on edges, and the cost of model accuracy.
Based on decisions about model caching, each edge server
must load models into the GPU memory before execution.
During the model loading process, there is a cost associated
with switching between models in GPUs, which includes the
latency of loading the model and the cost of wear and tear on
the hardware [36]. Therefore, the switching cost [; of ground
BS n to load and evict models can be calculated as

ZZAl n7,7n>a’n7,m)

1€ meM

lswztch

2y

where A\ denotes the coefficient for loading and evicting the

model and 1(-) is the indicator function. When af . = >
t—1 . ¢ _ _ t—1
an,i,m’ Le, an,i,m 1 and an i,m 0 1( a, ,4,m > a’n,i,m)

indicates that the loading of an uncached model. Otherwise,
there is no switching cost incurred at edge servers.

When the requested models are cached into the GPU
memory of edge servers, users communicate with the edge
servers to request LLM agent services. Let [{7%"$ denote the
transmission cost of input prompts and inference results. The
transmission cost of ground BS n can be calculated as

=> > anm(nﬁ dcbfmm>7 (22)

i€ meM "'n

l;rans( t bt

where 1, ; = d;/Eyeu, [Tu,n] s the unit transmission cost per
input and result for service ¢ to transmit the input data with
size d; from users U, to ground BS n.
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Let f,, denote the computing capacity of ground BS n.
The execution of LLM agent services at ground BSs incurs
inference latency, which is denoted as [$°"*P for ground BS n.
The edge computing cost can be calculated as

€m
Z Z 6” l m fn

1€EZ meM

15mP (at b') = (23)

where 07, ;. = al, ;. (1 =0, )R}, ki is the total com-
putation token for a batch of LLM agent service ¢. Finally, as
ground BSs might not have sufficient resources for executing
the best-matched model requested by LLM agents, which
might introduce a performance gap, the requests processed by
other LLMs with the equivalent function incur accuracy cost

[2¢¢, which can be represented as

acc t t t
l a b ZZAnzm nzm nzm( bn,z,m)
i€ meM
(24)
where A! ;= = Lotm is the unit accuracy cost

”;,i,m log(1/Bi,m)
following Eq. (20). By sacrificing some accuracy of LLM
agent services, the system can reduce the model missing rate.
Therefore, the total edge inference cost of ground BS n is

L;(at,bt) l‘m”t(h(a )

lt7 an@(a bt )

+ 1P (@, b + 1 (an, ). (25)
The edge inference cost is jointly determined by the caching
decisions and offloading decisions of ground BSs. Never-
theless, the missed or offloaded requests are executed by
cloud data centers. The fourth coordinate /,..(x) makes our
cost model qualitatively different from traditional hardware-
only formulations because it ties monetary expenditure to
LLM-specific freshness. Satellites, lacking direct access to
token-level context-window statistics, can only estimate l,c.
via delayed telemetry, whereas ground BSs observe it in real
time. This information gap creates valuation asymmetry that
the auction mechanism must address.

2) Cloud Inference Cost: The ground BSs are typically
limited in resources and cannot serve all LLM agent service
requests. There are two main reasons for this limitation. First,
the ground BSs’ computing capacities may be insufficient to
load many LLMs into the GPU memory. Second, the ground
BSs’ energy capacity may not be enough to handle all requests.
Therefore, some requests will be offloaded to cloud data
centers for remote execution.

When the requested models are not available or the ground
BS lacks sufficient resources, these user requests are transmit-
ted to the cloud data center, which then allocates resources to
serve them. According to [36], cloud data centers can provide
serverless LLM agent services, charging users on a “pay-as-
you-go” basis. This means that users pay based on the number
of requests rather than the specific resources occupied. How-
ever, this cloud-based inference introduces additional latency
due to data transmission in the core network, which is larger
than the latency at ground BSs. Additionally, the accuracy
cost of offloaded inference requests executed by the cloud
data center is expected to be minimal, as the requests can be
processed using the most accurate model with common CoT
examples owned by the data center.
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Based on the above analysis, we use (S to represent the
total cost of offloading requests to the cloud data center for
remote execution. Then, the total cloud computing cost at time

slot ¢ is
ZZ Z ZOm n,t,m nzm>

L (a',b') = (26)
neN i€ meM

where [y ,,, is the unit process cost of model m at cloud data
centers. Therefore, the total cost Lt°®! for provisioning LLM
agent services at network operator n can be calculated as

L = 257 (L I

teT

27

B. Problem Formulation of Ground Base Stations

To improve the efficiency of mobile edge intelligence,
we take into account both the cost of edge inference and
cloud inference. This includes considering the switching cost,
accuracy cost, transmission cost, and inference cost over a
specific period 7. For ground BSs n = 1,..., N, the problem
of providing LLM agent services is formulated as

Itnlglt Ltotal (2821)
st (3),(4), (5) (28b)
Kf”m < Wy, VieZ, VYmeM (28¢)
bii 4m €[0,1]. (28e)

Constraint (28c) indicates that the context tokens cannot
exceed the size of context windows. To address the opti-
mization problem described above, we need to overcome the
challenge of time-coupled elements, such as GPU memory
and CoT examples, as it takes into account both future
request dynamics and historical CoT examples. Furthermore,
the problem is a mixed-integer programming problem, which
is known to be NP-hard. To solve the problem efficiently, we
require low-complexity algorithms to determine decisions of
model caching and request offloading.

C. The Least Age-of-Thought Caching Algorithm

To effectively serve LLMs for provisioning LLM agent
services, we propose the least AoT algorithm based on the
proposed AoT metric. When additional GPU memory is
required for loading an uncached requested LLM, the least
AoT algorithm counts the value of CoT examples, calculates
them, and removes the cached LLM with the lowest AoT.
Therefore, at each time slot ¢, the model caching decisions
can be obtained by solving the maximization problem of the
number of CoT examples for the cached models, which can
be represented as

maxd Y Kpim (29a)
i€ meM

stY Y ah5m < Gn, YnEN (29b)
i€ meM
Z Z nzmemSEn, VTLEN (29C)
i€ meM
pim €{0,1}. (29d)
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Algorithm 1 The Least Age-of-Thought Cached Model
Replacement Algorithm

1 Imput: Model caching status a’, "', model context status
and LLM agent service requests R%,, GPU memory
capacity G, GPU computing capacity F,,.

2 Output: Model caching decision a‘, and request offloading
decision b},.

3 Initialize af, = 0, bf, = 0,

Gh=Gn—Y.r Dimem aﬁlfi{msm, and E! = 0.
4 for Rmm > 0in R do
5 1famm—1then
6 ‘ an,z,'m <~ 1’
7 end
8 else if G% + s,, < G, then
9 a’ib,i,m — L
10 GY «— GY 4 sm;
11 end
12 else
13 while G%, + s, > G, do
14 (i,m) — argmin, m>{f@fl i € Fnbs
15 if af ﬁ,—landan;m Othen
16 \ Gi Gt —
17 end
18 end
19 if Gt + s, < G, then
20 avtq,,z',m — 17
21 GY — Gb + sm;
22 end
23 end
24 if al, ;,n = 1 and E}, + emal, ; mRh i < Ey, then
25 b:w’m —1;
26 Efb ha E:L + eman,i,mb;,i,mR;,i,m;
27 Update context status mfw-,m following Eq. (19);
28 end
29 if K} ;.. > wy, then
30 im0
31 b im < 0.
32 end
33 end

The available capacity of GPU memory G? of ground BS
n = 1,...,N at time slot ¢ can be calculated as G! =
Gn = ic1 2mem % .i.mSm- This algorithm allows the least
important LLLM to have a higher chance for eviction in the cur-
rent inference task. The complexity of the algorithm increases
linearly as the number of models increases. Therefore, it works
well with a large number of LLMs on ground BSs with limited
GPU memory. Using more intermediate reasoning steps during
inference makes the LLMs perform more accurately. Based
on caching decisions a‘, by solving the optimization problem
in (29a), offloading decisions b!, are obtained by solving the
optimization problem in (28a). The detailed implementation
of the Least AoT algorithm is provided in Algorithm 1. At
each decision slot, the Least AoT scheduler updates Age-of-
Thought scores and identifies the cached model with minimum
score, resulting in a time and memory complexity of O(M),
enabling millisecond-level execution at edge servers.

AoT-based caching decisions are triggered every few min-
utes as context windows deplete or user demand shifts,
whereas the DQMSB auction is executed for each batch of
incoming service requests with its DQN weights retrained
offline and refreshed daily.
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D. Market Design

To motivate LLM agent providers to construct and update
LLM agents for users, we design an LLM agent market
where sellers (LLM agent providers) can earn profits from
provisioning LLM agent services, and bidders (network oper-
ators) are competing for provisioning LLM agent services to
their users. In every decision slot, each LLM agent provides
offers exactly one service opportunity to all network opera-
tors. The interaction proceeds in four explicit stages: (i) the
seller publishes the slot description (model catalogue, AoT
decay coefficient, slot duration) and a common random seed;
(ii) each operator privately evaluates a valuation v, = ¢, m,
(see Section IV-B) and submits a sealed bid x,; (iii) the
auctioneer applies the pricing rule to allocate the slot and
collect payment; (iv) the winning operator executes the LLM
agent, after which the provider reveals the realised AoT
increments and resource consumption to all bidders, closing
the feedback loop for the next slot. This message-exchange
timeline eliminates ambiguity regarding what information is
public, what remains private, and when updates occur. We
consider that the network operators are risk-neutral bidders in
the market whose surpluses are positively correlated with each
other based on the revelation principle [14].

In SAGINS, users can obtain the services of a running LLM
agent via a satellite or ground BS as their assistants to perform
their local tasks. Each network operator n € N has valuation
v, = c,my, for the opportunity to serve the LLM agent, which
is a production of the common value ¢, = E;e7[Lot! —
[2<¢(a’, b")] about physical resource consumption and the

t

match performance gain m,, = Eyc7[log(1/8; %"™)] obtained
in Eq. (20). Specifically, the common value cefptures attributes
of the resource consumption required to execute the LLMs,
which depends on the communication, computing, and storage
resources. Meanwhile, the match quality captures idiosyncratic
components of cached models in network operators that affect
the quality of LLM agents [14]. During the valuation of LLM
agents, the common value is considered to be independent of
match quality, i.e., the resource consumption of LLM agents
is not relevant to the quality of LLM agents. We use v, c(;),
and m(;) to denote the i-th highest valuation, common value,
and match value factor, respectively.

In the market, a mechanism M(v) = (z, p) is required to
map the privately held valuation v to allocation probabilities
z = (20,21, --,2n) and payment p = (po,p1,---,Pn). The
expected surplus, i.e., the realization of valuation, for satellite
is E[vgzo(v)]. Meanwhile, the surplus from the LLM agent
allocated to the ground BSs is given by E [ZnNzl vnzn(v)}.
To maximize the total surplus of network operators to pro-

vision LLM agents, the problem for the mechanism can be
formulated as

N
max E nz:;)vizi(v)] (30a)
St Z Z Z diRB,i,m < TS (30b)
teT i€ meM Euetto [ru,O + Tg] 0
N
Y wm <l (30¢)
n=0
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7z, € {0,1}, VneN.

Constraint (30b) indicates that the provisioning time of satel-
lites cannot exceed their coverage time. Constraints (30c) and
(30d) indicate that there is one and only one network operator
that can obtain the opportunity to run LLM agents.

(30d)

V. THE DEEP Q—NETWORK—BASED MODIFIED
SECOND-BID AUCTION

A. Modified Section-Price Auction

In the LLM agent market, all network operators submit
their bids x = (zg,z1,...,2n) to the auctioneers. Then,
the auctioneer leverages MSB auction [14] to determine the
winning bidder and payment, which can be formulated as
follows.

Mechanism 1 (Modified Second-bid Auction): The MSB
auction allocates the LLM agent to the highest BS if their bid
exceeds the second-highest bid by a price scaling factor of p
or more and prices the LLM agent with the second-highest
bid scaling with p. When no performance bidders win, the
opportunity is allocated to the relaying satellite, which offloads
LLM agent services to cloud data centers, with the contracted
price zo is chosen to maximize its expected profit as xy =
max, E[(vo — v(1)1(v(1)<a,))] [14]. Formally, the allocation
rule and the pricing rule can be represented as follows.

o Allocation rule: For ground BSs, namely, the performance

bidders, n = 1,..., N, the allocation probabilities z,, €
{0, 1} for the deterministic mechanism are determined by

zn(x) = 1(z,, > pmax{x_,}), @31)

for p > 1. Then, the allocation probability for the satellite
can be calculated based on the allocation probabilities of
ground BSs, as zp(x) <1 — 25:1 Zn(X).

e Pricing rule: If the winner is ground BS n =1,... N,
the winning ground BS is charged with the product of
the price scaling factor p the second highest bid, i.e., the
payment p,, can be calculated as

Pn(X) = zp(X) - pmax{x_,}. (32)

Furthermore, the payment of the satellite depends on their
contract price o, i.e., po(x) = zo(X)xg.

While MSB is straightforward, its reliance on a fixed price-
scaling factor p creates significant trade-offs. A lower p
excessively favors ground stations, neglecting the satellite’s
hidden costs, whereas a higher p overly restricts ground
station bids, undermining overall system efficiency. Exist-
ing solutions reliance on a fixed price-scaling factor p =
max(1, E[xo]/E[z()]) based on historical statistical informa-
tion [14]. Given the inherently dynamic and non-stationary
nature of LLM agent services in satellite—ground networks,
where user demand, satellite coverage, and computational
availability can shift rapidly, a single fixed price-scaling factor
p is unlikely to remain optimal across time, making it neces-
sary to determine p adaptively in real time.

B. DQN-Based Price Scaling Factor
To leverage DRL to determine the price scaling factor, we
formulate the process of MSB as a Markov decision process
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(MDP), consisting of states, actions, and rewards. At each time
step, the DRL-based auctioneer observes the current state and
selects an action, i.e., the price scaling factor from the feasible
action space. Then, the auctioneer determines the winning
bidder and the payment, and receives the total surplus as
the reward. Formally, the MDP of MBS can be formulated
as follows. During the auction process, multiple network
operators submit their bids to the auctioneer. Therefore, the
state space consists of the bidding information in MSB, i.e.,
S, = {x*} at decision slot k. To calculate the pricing rule and
allocation rule, the auctioneer needs to determine the level of
the price scaling factor, i.e., ar € A C N. Then, the price
scaling factor is calculated as p = 10%/IAl, where |A]| is
the size of action space. The reward is calculated as the total
surplus achieved in the market, i.e., r, = E [ZT]:/:O UiZi(U)H
calculated in Eq. (30a).

Based on the MDP of MBS, the objective of the DRL-based
auctioneer is to optimize a non-linear function approximation
with parameters ¢ as a Q-network to maximize the future
discounted return Ry, = S _, v¥ “*rp.. In this regard, the
auctioneer needs to learn the optimal action-value function as

Q*(S,a) = Es/ |7 +ymaxQ*(5',a")|S, a} , (33)
a

where the action o’ is selected to maximize the expected value
of r+vQ*(5’,a’). Therefore, the target for iteration k can be
calculated as y = 7% + ymaxgrr1 Qg (S*H, aF 1), where
¢’ is the parameters of target network Q4. To minimize the
performance gap between the current Q value and the target,
the loss function can be defined as

1 K
L= gg(yk—%(&,ak))? (34)

For computational efficiency and performance stability, DQN
leverages stochastic gradient descent to optimize the param-
eters ¢ on the loss calculated in Eq. (34) and update the
target network ¢’ in each period of iteration. Finally, the
DQMSB auction is provided in Algorithm 2. During live
auctions, the DQMSB mechanism evaluates each action using
a trained Q-network and performs an arg max operation over
|A| actions, followed by a linear scan of N bids to determine
auction outcomes. Consequently, the overall complexity is
O(|A| Chet + N), where Cy denotes the computation of a
single forward pass through the fully-connected network.

C. Property Analysis

For an auction, strategy-proofness means that participants
cannot achieve a higher utility by altering their honest
bids. Adverse-selection-free means that the presence of mar-
ket externalities and asymmetric information is unrelated to
bidders’ valuations. Therefore, it is important to note that
the DQMSB auctions are fully strategy-proof and adverse-
selection-free, as given in the following theorem.

Theorem 2: The DQMSB auction with the price scaling
policy with fixed parameters ¢ is anonymous, fully strategy-
proof, and adverse-selection-free.

Proof: To prove that the proposed DQMSB auction is
anonymous, fully strategy-proof, and adverse-selection-free,

2859
Algorithm 2 The DQMSB Auction

1 Input: Bids x;

2 Output: Allocation probabilities and payments;

3 Initialize Q-function parameters ¢, target Q-function

parameters ¢, and replay buffer 3;

4 for episode in 1,...,T do

5 for iteration k in 1,..., K do

6 Receive the bids x from bidders and observe the
state Si;

7 Determine the price scaling factor p = 109k/141,
following aj = argmax, Q¢ (Sk, a);

8 Calculate the winning probabilities z and payments

p obtained from the allocation rule in Eq. (31) and
the pricing rule in Eq. (32);

9 Observe the next states Sk41 and reward r;

10 Store transition (Sk, ak, 7k, Sk+1) to B;

11 Sample a mini-batch of experiences
(Sk, Ak, Tk, Sk+1) from B;

12 Calculate y, = 7 + ymax re+1 Q (Sk+1, kt1)
using target network Qg/;

13 Update ¢ by performing gradient descent on the loss
calculated in Eq. (34);

14 Update target network ¢'.

15 end

16 end

the auction should be characterized by a critical payment
function x conditioned on gi_) such, for any competing bids x_,,,
ground BS bidder n = 1,..., N wins if and only if its bid
exceeds the critical payment x (x_,,; ¢) = p®/ Al max{x* },
where aj, = argmax, Q(x*, U {E[x,]},a; ). Then, when
the ground BS bidder n is conditional on winning, it needs
to pay the critical payment x(x_,;®). As p®/IAl > 1, only
the ground BS with the highest bid bidder can win, which can
satisfy the condition that x(x_,;¢) > max{x_,}. In addi-
tion, the critical payment function of DQMSB x(x_,;¢) =
p/ A max{x¥ 1 satisfies

ak/IA|

x(max{x_,};¢) =p max{max{x_,}}

= p“"‘/‘A| max{X_,}

= X(X—n; @)

Therefore, considering there are two bidders in the market
with one value higher than y(x_,; gz_S) and the other one value
max{X_, }, which will cause y(max{x_,};®) # x(X_; ¢),
the DQMSB auction cannot satisfy false-name proof. Specif-
ically, when x(x_,;#) < x(max{x_,};¢), the first bidder
can submit a lower bid while maintaining the other bids in the
set of bids and thus the auction is not winner false-name proof.
Otherwise, the auction is not loser false-name proof when
X(X_n; ®) > x(max{x_p}; @), where the losing bidder in the
market can submit a higher bid compared with the winner’s
bid while maintaining the other bids in the set of bids x_,,.
Furthermore, the critical payment function x of the DQMSB
auction is homogeneous of degree one, which indicates that
the auction is adverse selection-free. Suppose that y is not
homogeneous of degree one, a bidder could manipulate the
system by adjusting their bid in response to their private
information C' € {1,c}, ie., x(m_,;¢) < x(cm_,;¢)/c,
where ¢ € Ry,n > 2, and x_,, € Rﬁfl and C = 1,
72 (Cm) = z,(m) = 14, < .53 = 1, 50 20(Cm) = 0.
When C # 1, it indicates that the bidder can change its bid

(35)
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Fig. 3. Performance of model caching algorithms under different system settings.

from C' = ¢ to influence the probability of winning the auction,
ie., z,(Cm) = z,(ecm) = 1(em, > x(em_n;¢)) = 0.
However, the ground BS bidder n with the highest bid cannot
win the auction, and thus the satellite bidder 0 wins the
auction, i.e., zo(Cm) = 1.

Based on the above analysis, the proposed DQMSB can
guarantee the anonymous, fully strategy-proof, and adverse-
selection-free with the deterministic @ 3. [

Theorem 2 describes MSB auctions as robust auctions that
are anonymous, deterministic, not prone to adverse selection,
and fully strategy-proof. It is important to note that the authors
based on other DRL algorithms may possess any three of
these characteristics. By allowing non-anonymity, the value of
p determined by DRL algorithms can vary depending on the
bids of the current bidders. Furthermore, as the DQMSB mech-
anism modifies only the selection of the price-scaling factor
p, while fully preserving the standard second-price allocation
and payment rules, the existing proof of strategy-proofness
continues to hold. Consequently, because the DQN-based
approach solely adjusts p without altering the underlying MSB
structure, the mechanism’s inherent robustness against adverse
selection is likewise maintained.

VI. EXPERIMENTAL RESULTS

In this section, we validate the joint model caching and
inference framework while evaluating the performance of the
proposed least AoT cached model replacement algorithm and
the DQMSB auction.

A. Parameter Settings

We consider the SAGINs with one satellite and multiple
ground BSs to provision LLM agent services to users. We
evaluate the proposed algorithm within 100 time steps. For
each GPU in the edge servers of ground BSs, the memory
is 80 GB, energy efficiency is 810 GFLOPS/W, and energy
capacity is 300 W. The default number of services is set to
10, the default number of GPUs at ground BSs is set to 24,
and the default number of users is set to 10. We leverage
ImageBind [37] as the multimodal perception module of LLM
agents, whose performance is 77.7% for images, 50.0% for
videos, 63.4% for infrared, 54.0% for depth, 66.9% for audio,
and 25.0% for IMU. We consider two types of LLMs for
performing CoT reasoning, including the LLAMA-65B and
GPT3-174B, whose context windows are 2k and 8k tokens,

respectively. The total number of reasoning LLMs is set to
10. The runtime service data-traces is generated by assigning
each active service (e.g., service = 10) to a fixed model
using a random mapping, and at each time step, we simulate
request counts using independent Poisson processes with a
mean of number of users / 10 (default users = 10, so A =
1). The default context vanishing factor A! is set to 0.6.
For each CoT reasoning example, the maximum size is set
to 200 tokens. The transmit power of users is set to 0.2 W,
and the allocated bandwidth is set to 20 MHz. The size of
the input data of LLM agent services is uniformly selected
from [100, 200] MB. The quantity of LLM service requests
is generated from the Poisson point process, depending on
the number of users. Due to the ratio of existing ground
BSs and communication satellites, the edge access cost for
satellites is set to 0.005 and 0.0001 for ground BSs. The
cloud access cost is set to 0.04 for ground BSs and 0.025
for satellites. For the LLM agent service market, the number
of BSs is set to 5 by default. The satellite-related settings
follow [2] and the DRL-related parameter settings follow
[38]. The evaluation adopts three layers of metrics. The first
layer disaggregates total cost into switching, accuracy, edge
inference, and cloud inference, enabling pinpoint diagnosis of
which operations drive expenditure under diverse workload
and hardware conditions. The second layer studies accuracy,
cost, and normalised performance gain versus the context
factor, revealing a trade-off between demonstration freshness
and computational load. The third layer quantifies total surplus
and its division between satellites and ground base stations
under different auction baselines, thereby translating technical
performance into economic welfare. Together, these metrics
expose how the proposed AoT-guided caching and DQMSB
auction jointly improve resource usage, user experience, and
operator revenue.

B. Performance Evaluation of the Least AoT Algorithm

During the performance evaluation of the proposed model
caching algorithm, we leverage several traditional caching
baselines for comparison, including first-in-first-out (FIFO)
and least frequently used (LFU) algorithms. As we can observe
from Fig. 3, across the entire grid, the satellite-enabled archi-
tecture cuts total provisioning cost by an average of 41%
and by no less than 20% in every individual configuration,
chiefly because it shifts long-haul traffic away from con-
gested ground gateways and, unlike local caching strategies,
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introduces neither switching nor accuracy penalties. For
instance, Fig 3(a) presents the average cost of different caching
and offloading strategies (A-E) over a series of time slots.
The costs are divided into four categories: switching cost,
accuracy cost, edge inference cost, and cloud inference cost.
For all strategies, there is a clear trend of decreasing average
cost as the number of time slots increases. This indicates that
over time, the systems may become more efficient, possibly
due to improved caching optimization or better distribution of
LLM agent tasks between the edge and the cloud. In addition,
Fig. 3(b) demonstrates the increase of the average total cost
for different caching and offloading schemes as the number
of services increases. This suggests that as the system has
to handle a larger variety of services, the associated costs
rise, possibly due to increased complexity and demand for
resources. The least AoT algorithm demonstrates a consistent
performance advantage, maintaining the lowest average total
cost across different numbers of services.

Furthermore, Fig. 3(c) illustrates how the average total cost
changes for various caching and offloading schemes with the
number of GPUs utilized. As we can observe, more available
GPUs tend to lower the cost, likely due to the improved
computational efficiency and reduced processing time at the
edge. The relatively stable switching and accuracy costs across
different GPU counts suggest these costs are more dependent
on the efficiency of the algorithm itself rather than on hardware
resources. Meanwhile, edge inference cost reductions point to
the benefits of local processing power, highlighting the impor-
tance of edge capabilities in managing LLM caching. Overall,
the average total cost decreases for most schemes as GPU
resources increase. Finally, Fig. 3(d) demonstrates an upward
trend in average total cost for all schemes as the number of
users increases. This suggests that the system’s costs escalate
with the growing user base, likely due to increased demand for
LLM services, which intensifies the load on caching and com-
putation resources. The increase in average total cost across
all schemes with more users suggests that user demand has
a direct impact on the system’s resource utilization and cost
efficiency. The least AoT algorithm demonstrates scalability by
maintaining the lowest increase in cost, indicating its potential
for cost-effective expansion as user numbers grow. The relative
stability of the switching cost across varying user counts may
imply that the action of switching between cached LLMs does
not contribute significantly to cost variations.

As shown in Fig. 4(a), as the context factor increases, the
cost of accuracy also increases for all three algorithms (FIFO,
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LFU, and least AoT). This indicates that when the context
becomes more influential, which can be seen as the importance
of cache relevance, it becomes more challenging and expensive
for all methods to maintain high accuracy in caching decisions.
Meanwhile, in Fig. 3(b), there is a decrease in performance
gain for all algorithms as the context factor increases. This
suggests that as the importance of the context in caching
decisions increases, the performance gain of these algorithms
decreases. The overall decrease in performance gain with a
higher context factor suggests that as the relevance of the
context increases, the potential for any algorithm to outperform
basic caching strategies diminishes. This might be because
the decision-making process becomes more complex and the
benefits of sophisticated strategies are less pronounced.

C. Convergence Analysis

Initially, we demonstrate the convergence performance of
the DQMSB auction in Fig. 5. At the beginning of training,
the total surplus achieved by the DQMSB auction starts
with a sharp increase and then levels off, indicating that the
mechanism quickly learns an effective strategy for maximizing
surplus and then converges to a stable solution. At around 200
epochs, the total surplus stabilizes at a high level. Although
there are minor fluctuations following this rise, the surplus
remains relatively consistent, indicating that the system has
reached a convergence in its learning phase. Interestingly, the
performance of DQMBS in ground BS surplus can achieve
similar performance to the SPA, at around 3,000. This indi-
cates that the SPA can realize the surplus of satellites, which
can reach around 4,500 for the optimal solution. Furthermore,
the total surplus achieved by the DQMSB auction can out-
perform the MSB auction by around 20%. The convergence
performance of the DQMSB auction can be considered con-
stantly robust, as it achieves and maintains a higher total
surplus compared to the benchmarks.

D. Performance Evaluation for the DQMSB Auction

To evaluate the performance of the DQMSB auction, we
leverage several auction baselines, including the second-
price auction, myopic MSB, and optimal MSB. Particu-
larly, the price scaling factor of myopic MSB is set as
p = max(l,z0/x(2)) with current round information and
the price scaling factor of optimal MSB can be set as
p = max(1,E[xg]/E[x)]) with historical statistic infor-
mation [14]. Under different numbers of bidders, Fig. 6(a)
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Fig. 6. Performance of the proposed DQMSB auction under different system settings.

demonstrates the total surplus achieved by various auction
mechanisms based on the number of ground BSs. Across
all auction mechanisms, the total surplus increases as the
number of ground BSs grows from 3 to 7. This suggests that a
larger number of ground BSs enables better service provision
and coverage, resulting in a higher overall value generated
by the auctions. The DQMSB auction consistently yields the
highest total surplus, regardless of the number of ground BSs.
This indicates that the DQMSB auction is more efficient in
resource allocation and surplus generation compared to other
auction types. The Myopic MSB and Optimal MSB auctions
outperform SPA but fall short of the performance achieved
by the DQMSB auction. As we can observe from Fig. 6(b),
the total surplus does not monotonically increase or decrease
with the number of services. For instance, there is a drop
in total surplus for all mechanisms when varying from 10 to
12 services, followed by an increase at 14 services, another
decrease at 16, and an increase again at 18. In most cases, the
surplus from ground BS services is greater than the surplus
from satellite services. This non-linear relationship implies that
simply increasing the number of services cannot guarantee a
higher surplus.

In Fig. 6(c), there appears to be a general increase in the
total surplus for all the auctions as the number of GPUs
increases. The surplus for the other mechanisms also tends
to increase, although not as consistently or significantly as
the DQMSB auction. The ground BS surplus dominates the
total surplus for all auction mechanisms and quantities of
GPUs. However, as the number of GPUs increases, the satel-
lite surplus also increases, suggesting a positive relationship
between computing resources and the ability to generate
surplus in satellite-based services. The increasing trend of
total surplus with more GPUs implies that having more com-
puting resources allows the auction mechanisms, particularly
DQMSSB, to perform better. Finally, Fig. 6(d) demonstrates an
upward trend in the total surplus with an increasing number
of users for all auction mechanisms, which suggests that
more users contribute to a higher valuation and competition,
thus increasing the total surplus. When the number of users
increases, the DQMSB auction can yield a larger surplus from
ground BSs, thereby limiting computing and communication
resources that can be allocated effectively to maximize the
total surplus.

VII. CONCLUSION

In this paper, we proposed a joint caching and infer-
ence framework for provisioning ubiquitous edge intelligence

services in SAGINs. In SAGINSs, satellites and ground BSs
were utilized to provision global LLM agent services with
edge servers at ground BSs or remote cloud data centers.
Specifically, considering the unique few-shot learning capa-
bilities of LLMs and new constraints on the size of context
windows, we introduced a new concept, i.e., the cached
model as a resource, beyond conventional communication,
computing, and storage resources. For allocating cached model
resources, we designed a new metric, namely, age of thought,
to evaluate the relevance and consistency of thoughts/CoT
examples in context windows during inferences and proposed
the least AoT algorithm. Finally, we proposed the DQMSB for
incentivizing network operators to provision LLM agents with
high market efficiency through the DQN-based price scaling
factor. Theoretically, we proved that the proposed DQMSB
auction is anonymous, fully strategy-proof, and adverse-
selection-free. Future work will involve building a prototype
platform and implementing representative LLM-agent appli-
cations, enabling the continuous collection of communication
and computing traces to support empirical validation in real-
world scenarios. In addition, we will extend the metric set
to include energy consumption, carbon emission, per-service
fairness, and end-to-end latency distribution, leveraging a
hardware-in-the-loop prototype for empirical validation at a
larger scale.
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