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Abstract—The rapid development of communication systems
poses unprecedented challenges, e.g., handling exploding wire-
less signals in a real-time and fine-grained manner. Recent
advances in data-driven machine learning algorithms, especially
deep learning (DL), show great potential to address the chal-
lenges. However, waveforms in the physical layer may not be
suitable for the prevalent classical DL models, such as convolu-
tion neural network (CNN) and recurrent neural network (RNN),
which mainly accept formats of images, time series, and text data
in the application layer. Therefore, it is of considerable interest to
bridge the gap between signal waveforms to DL amenable data
formats. In this article, we develop a framework to transform
complex-valued signal waveforms into images with statistical sig-
nificance, termed contour stellar image (CSI), which can convey
deep level statistical information from the raw wireless signal
waveforms while being represented in an image data format. In
this article, we explore several potential application scenarios
and present effective CSI-based solutions to address the signal
recognition challenges. Our investigation validates that CSI is a
promising method to bridge the gap between signal recognition
and DL.

Index Terms—Contour Stella image (CSI), deep learning (DL),
signal recognition, physical layer.

I. INTRODUCTION

W ITH the growing diversity and complexity of wire-
less communication systems, the wireless big data era

has arrived [1], [2]. Big data in the signal transmission envi-
ronment should be extensively studied in order to retrieve
interesting and informative information. However, the nature
of big data presents great challenges to traditional data analyt-
ics algorithms. In particular, data from wireless communica-
tions are becoming increasingly complex and heterogeneous,
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as these are usually collected from various sources with dif-
ferent data formats and complex correlation structures [3], [4].
Moreover, wireless big data can be characterized by four major
challenges: massive data, high dimension, rapid change, and
quick response requirement [5]–[7]. In the practical world,
wireless communication environments are so complex that it
is hard to obtain prior knowledge about it. There are many
potential benefits of employing deep learning (DL) to address
the above challenges: a traditional algorithm feeds all the
data into the computer memory and thus has a high storage
requirement. Deep neural network (DNN) uses the stochas-
tic gradient descent method to split massive data into small
batches and iteratively train the model. Aided by massive
data, DL helps to extract complex high-dimension features
from wireless signal waveforms, which cannot be precisely
modeled via traditional feature engineering approaches [8].
Confronted with rapid changing characteristics of wireless
signals, transfer learning can help DNN to quickly adapt to
new data before it expires [9]. When it comes to the quick
response requirement, Graphics Processing Unit (GPU)-aided
parallel computing enables DNN models to make an infer-
ence in a short period of time and neural network compression
techniques can simplify the model by a large factor without
losing too much accuracy. By well analyzing wireless big data
via deep learning methods, wireless communication systems
can be more effective to provide and support various smart
services.

Incorporating the versatile DL into future signal transmis-
sion environment systems is drawing increasing interest [10].
For example, Li et al. [11] discussed opportunities and chal-
lenges of incorporating artificial intelligence (AI) into future
network architectures. Peng et al. [12] proposed constel-
lation diagrams (CD) to represent wireless signals, which
can be used to train a convolutional neural network (CNN)
for modulation classification. To achieve quick and precise
prediction in complex and heterogeneous wireless communi-
cation environments, Zhang et al. [9] introduced a deep trans-
fer learning method for intelligent cellular traffic prediction.
Tu et al. [13] applied semi-supervised generative adversarial
networks (SSGAN) to deal with the abundant unlabeled wire-
less data. In order to deploy DNN into the edge equipment,
Tu and Lin [14] introduced a network compression technique
for the DNN model.

Furthremore, Tian et al. [15] proposed a modulation-
constrained (MC) clustering classifier for recognizing the
modulation scheme with unknown channel matrix and noise
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variance for MIMO systems. The proposed MC classifier
together with centroid reconstruction and initialization meth-
ods not only reduce the number of parameters to be estimated,
but also help to initialize the clustering algorithm for faster
convergence. Jiang and Zhu [16] investigated the problem of
capacity management in a three-layer heterogeneous satellite
network and proposed a low-complexity method for calculat-
ing the capacity between satellites, and a long-term optimal
capacity allocation algorithm to optimize the long-term utility
of the system.

Yu et al. [18] proposed a multisampling convolutional neural
network (MSCNN) to extract RF fingerprint from the selected
region of interest (ROI) for classifying ZigBee devices. A
signal-to-noise ratio (SNR) adaptive ROI selection algorithm
was also developed to alleviate the effect of the semi-steady
behavior of ZigBee devices owing to sleep mode switch-
ing. Li et al. [17] proposed a system level design of key
generation, including quantization, information reconciliation,
and privacy amplification. Numerical results verified that the
key generation enhanced by PCA with the common eigen-
vector can high secret key generation rate, low key error
rate, and good randomness. Wu et al. [19] studied and con-
structed a robust cognitive user evaluation reference system
based on improving the performance of cooperative spectrum
sensing. At the same time, the algorithm for the attacker iden-
tification and elimination was improved, and the influence
of abnormal data on the perceived performance under the
combined effect was eliminated. Ding et al. [20] proposed
a vision, named Dragnet, tailoring the recently emerging
Cognitive Internet of Things (IoT) framework for amateur
drone surveillance and discussed the key enabling techniques
for Dragnet in detail, as well as the technical challenges and
open issues. Lin et al. [21] proposed an RF fingerprint identi-
fication method based on dimension reduction and machine
learning as a component of intrusion detection for resolv-
ing authentication security issues and obtain the recognition
system with the best performance. Lin et al. [22] proposed
a hybrid spectrum access algorithm based on a reinforcement
learning model for the power allocation problem for both the
transmission channel and the control channel. The simulation
results showed that this new algorithm provides a significant
improvement in terms of the trade-off between the control
channel reliability and the efficiency of the transmission chan-
nel. Liu et al. [23] presented a boosting algorithm as an
ensemble framework to achieve a higher accuracy than a single
classifier. The simulation results showed that gradient boosting
had better performance than AdaBoost, and Xgboost achieved
the optimal cost performance. Zhang et al. [24] proposed a
recognition algorithm of D2D devices based on the RF fin-
gerprint and used Hilbert transform and principal component
analysis (PCA) to generate the RF fingerprint of D2D devices.
Wang et al. [25] proposed a low-complexity near-optimal rein-
forcement learning algorithm for a co-design by considering
both complexity and feasibility. Zhang et al. [26] studied the
problem of interference source identification and obtained a
classification accuracy of around 89.5% using any of the four
different deep neural network architectures, including CNN,
ResNet, CLDNN, and LSTM, which confirmed the feasibility

of fast deep learning for wireless interference identification.
Dagres et al. [27] proposed a platform, which addressed the
aspects related to source detection, identification, and local-
ization, and techniques useful in wireless-network coexistence
and opportunistic spectrum access. However, relatively few
prior studies are concerned with the data conversion method,
which brings together the DL and signal recognition fields.

Nowadays, the mainstream data formats for DNN models
include image, sequence data, and text data, which are very
different from the wireless data that are usually in the time
series format. It is of fundamental significance to transform
wireless communication waveforms in the physical layer into
data formats that are amenable for DNN models to fully utilize
the recent advances in deep learning [14]. Under this circum-
stance, there is a compelling need for a smart way to transform
wireless signal waveforms into images while still attaining the
statistics information therein. In this article, we propose a con-
tour stellar image (CSI) method based on data density, which
can be deemed as a bridge between wireless signal waveforms
and DL methods. Combining and transferring DL’s classical
problems and theory, we explore CSI’s potential in connecting
the signal recognition field and the DL field. The result shows
that CSI is an effective technique to represent signal’s statisti-
cal information, while its image data format can be directly fed
into classical DL models, eliminating the need for customized
designs.

The remainder of this article is organized as follows. In
Section II, we discuss how to produce CSI from wireless signal
waveforms and its merit for signal recognition. In Section III,
we provide five potential application scenarios on CSI assisted
DL models for signal recognition. In Section IV, we present
future research directions. Section V concludes this article.

II. FROM CONSTELLATION DIAGRAM

TO CONTOUR STELLA IMAGE

Generally speaking, information is transmitted as an electro-
magnetic waveform and captured by the receiver as a series of
samples in a digital modulation system that has been well char-
acterized by the CD. Briefly, the rationale of CD is as follows:
the signal representing each symbol can be created by adding
together different amounts of a cosine wave representing the
“I” or in-phase carrier, and a sine wave, shifted by 90 degree
from the I carrier and called the “Q” or quadrature carrier.
Thus, each symbol can be represented by a complex number,
and the CD can be regarded as a set of points (or, dots) in a
complex plane, with the horizontal real axis representing the I
component and the vertical imaginary axis representing the Q
component. The angle of a point (with respect to the origin)
represents the phase shift of the carrier wave from a reference
phase and the distance of a point from the origin represents
the amplitude of the signal. Influenced by channel noise and
other types of impairments, the received sample point will be
offset from the nominal position and can be clustered into a
“cloud” of points surrounding each nominal symbol position
in communication scenarios with low SNR.

Based on CD, in this article, we propose a new concept
named CSI to fully utilize the dot density concept. The basic
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Fig. 1. An illustration of the conversion process from CD to CSI for QPSK, OQPSK, 8PSK when SNR is 4dB. We map CD low density, middle density,
and high middle density into three colors: blue, green and yellow.

idea is as follows: to consider the impact of multiple sample
points, we choose a window function to slide on the CD and
count how many dots are in different regions of the CD. Let
us consider a rectangular window function with size W ×H ,
where W is the width and H is the height of the window. We
define a metric dot density to indicate how many sample dots
are located in the window of the complex-valued plane. Let the
center coordinate of the rectangular window in the complex
plane be (i , j ). Then we can normalize the dot counts and
obtain the dot density as:

ρ(W ,H )(i , j ) =
dots(W ,H )(i , j )

N
, (1)

where dots(W ,H )(i , j ) is the number of dots in this rectan-
gular window, and N denotes the length of the signal I/Q
waveform. Next, we map the CD into different colors accord-
ing to the dot densities of different regions. The entire process
is depicted in Fig. 1:

The advantages of the CSI approach are as follows.
(i) Note that a CD is a binary image, which does

not distinguish between a pixel with a single sam-
ple point and a pixel with multiple sample points.
In contrast, the color and shape in CSI will tell
more details about the represented wireless signal. In
highly noisy communication environments, CSI can
provide fine granular features since it considers over-
lapping sample points. Furthermore, CSI is robust to
noise. The color distribution in CSI, such as color
and shape of a color zone, can retain the features of
the statistics information of signals although under
the perturbation of noises.

(ii) CSI retains the statistical information in the signal,
including (but not limited to) Gaussian noise, non-
coherent single frequency interference, phase noise,
amplifier compression, and distortion introduced by
the communication environment. In other words,
CSI can provide a relatively more comprehensive

representation of the wireless communication envi-
ronment.

(iii) From the perspective of DL, CSI is in a general
image format. Classical DL models designed for
computer vision (CV), such as AlexNet [29],
VGG [30], generative adversarial networks
(GANs) [29], and many other DL techniques [8]
(e.g., data augmentation [29]), can be directly
applied to deal with the CSI data. This will greatly
reduce the requirement for the expertise on design-
ing a specific DL model for wireless signals, as well
as guaranteeing stable results.

To sum up, CSI is a new class of deep learning-based radio
waveform detectors that leverages the powerful new techniques
developed in computer vision, especially convolutional feature
learning. It holds high potential to improve the signal detection
and classification performance of practical systems by gener-
alizing well and remaining sensitive to very low power signals.
A strong analogy of this task exists with computer vision with
object identification tasks. In doing so, it may finally be pos-
sible to develop classifiers that generalize well, are resilient to
impairments, and can achieve good classification performance
in a wide range of scenarios.

III. POTENTIAL APPLICATION SCENARIOS

In this section, we will present five potential application
scenarios of the CSI technique. The process on utilizing CSI
for DL is illustrated in Fig. 2. As shown in Fig. 2, the general
process of converting raw signal waveforms into CSI consists
of several steps. First, we collect wireless signal waveforms
from wireless emitters at a receiver. Then we split the wave-
forms into I/Q signal waveforms. After that, we sample the
I/Q signal waveforms and map the samples into CSI accord-
ing to dot density (defined in (1)), which can then be fed into
a DL model for training and inference in various application
scenarios.
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Fig. 2. Illustrate the process of converting wireless signal waveforms into CSI for various application scenarios.

A. Application Scenario I: Automatic Modulation
Classification

A signal modulation technique uses a carrier signal to
enhance the signal’s immunity against channel noise and
extend the transmission range. Moreover, modulation can serve
as an encryption method and control the bandwidth usage.
In order to demodulate the modulated signals to recover the
transmitted message, the receiver system needs to know the
signal modulation type [31]. Therefore, modulation classifi-
cation has been widely used in both military and civilian
applications. In military applications, modulation classification
is useful for recovering the transmitted message and generating
jamming signals with matching modulations. In civilian appli-
cations, the modulation classification mechanism will help to
choose the right demodulation scheme to guarantee recovering
the message. This process is initially completed manually by
experienced signal engineers and later automated with auto-
matic modulation classification (AMC) systems to improve the
overall classification performance [32].

For AMC, CSI inherits the CD features and carries the
communication environment statistics information such as
Gaussian noise, phase noise, etc. A high performance CNN,
like AlexNet, will apply its super non-linear approximation
power for achieving close-to-optimal classification accuracy.
To prove CSI is a more effective means to learn signal mod-
ulation features, we compare our CSI-based approach with
the CD color method proposed in [12]. The baseline scheme
proposed in [12] combined the impacts of all data samples on
each pixel in CD to produce a three-channel enhanced gray
image, by considering the distances between sample points
and the centroid of pixels,

In the experiment, we create the CSI dataset for semi-
supervised learning. The dataset includes 8 categories of mod-
ulated signal when the SNR is 4 dB, including BPSK, 4ASK,
QPSK, OQPSK, 8PSK, 16QAM, 32QAM, and 64QAM. Each
modulated signal category has 10000 labeled data for train-
ing and 1000 labeled data for testing, which means there will
be 80000 labeled training data and 8000 labeled test data in
total. AlexNet and GoogleNet are then applied to the three-
channel enhanced gray image dataset. To test the superiority
of CSI, we choose the same category of modulated signals
but only 1/10 of the training dataset that has been used by

the baseline scheme [12]. AlexNet and GoogleNet architec-
ture and modulation signal parameters are the same as in [12].
We also compare our results with a traditional expert feature
based scheme. The use of (second- or higher-order) cyclosta-
tionarity property of time series has already proved to be very
helpful in many applications. One can compute the second,
fourth, and sixth order cumulants for modulated symbols. If
s[n] represents the nth modulated symbol received amongst a
total of N symbols, then cumulants of s[n] can be computed
as follows.

(i) Second order cumulants:

C20 = M20

C21 = M21.

(ii) Fourth order cumulants:

C40 = M40 − 3M 2
20

C41 = M41 − 3M20M21

C41 = M41 − M 2
20 − M 2

21.

(iii) Sixth order cumulants:

C60 = M60 − 15M20M40 + 30M 3
20

C61 = M61 − 10M20M41 − 5M21M40 + 30M21M 3
20

C62 = M62 − 6M20M42 − 8M21M41 − M22M 40
+ 6M 2

20M22 + 24M 3
21M20

C63 = M63 − 9M21M42 + 12M 3
21 − 3M20M 42

− 3M22M41 + 18M20M21M22,

where Mxy = 1
N

∑
N S x−yconj (S )y defines the

(x + y)th-order moment of the modulated symbols
S, and conj(S) is the complex conjugate of S.

SVM-7 [12] uses three fourth-order cumulants, i.e., C40, C41,
and C42, and four sixth-order cumulants, i.e., C60, C61, C62,
and C63. The cumulant method [12] uses the fourth-order
cumulant C40 as the classification statistics.

As shown in Fig. 3, the experiment results show that
AlexNet trained with CSI achieves an improved performance
over AlexNet trained with dataset as in [12], with an improve-
ment around 10%. Compared to other types of DL-aided AMC
schemes, CSI has many advantages:

Authorized licensed use limited to: Auburn University. Downloaded on September 10,2022 at 03:08:26 UTC from IEEE Xplore.  Restrictions apply. 



38 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 1, MARCH 2021

Fig. 3. The average accuracy under different SNR levels for different
methods.

• CSI has a strong ability in anti-noise and this power
comes from its color distribution based on dot density;

• Due to the separability of CSI, we actually do not need
as much training data as in prior work [12], which will
reduce the cost of collecting and processing labeled data;

• The colored method based on dot density is a more effec-
tive means than the sample distance based method [12].

Compared to shallow classifiers based on expert features, CSI
with DL has the following advantages:

• CSI can represent deep-level features, such as amplitude
noise, phase error, and so on, in signal waveforms by
color distribution;

• CSI is a more effective means for the AMC task than the
method proposed in [12];

• Even SVM-7 employs more features, and SVM-5 per-
forms much better than SVM-7 in higher SNR region.
It implies that the selection of features for real world
modulated signals can be a challenging issue and affect
the classification performance. However, DL-based algo-
rithms’ self-feature extraction mechanism will require
less prior expert knowledge;

• Without expertise in designing new CNN architectures,
the existing classical recognition models developed for
CV can be directly applied to tackle the AMC task.

B. Application Scenario II: Data Augmentation

It is generally recognized that DL models require a large
amount of data in order to achieve good AMC performance.
We may have a dataset of images taken in a limited set of
conditions in the actual communication scenario. However,
insufficient data will lead DL to underestimated parameters
and set a wrong decision threshold, which will cause the
overfitting problem [33]. One of the possible ways to combat
insufficient data is data augmentation [29]. Data Augmentation
is routinely used in classification problems. Usually it is non-
trivial to encode known invariants in a model. It can be easier
to encode those invariants in the data instead of generating
additional data items through transformations from existing

Fig. 4. The GAN model that consists of a generator and a discriminator.

data items. If we know that a class label is invariant to a par-
ticular transformation, then we can apply that transformation
to generate additional data. If we do not know what transfor-
mations might be valid, but we have other data from related
problems, we can attempt to learn valid transformations from
those related problems and apply them in our setting.

Due to the image data format of CSI, image level data aug-
mentation techniques, including flip, rotation, crop, and so
on, can be easily applied. In our prior work [33], we con-
sidered image feature level data augmentation, which could
be done with GANs. GAN was introduced by Ian GoodFollw
in 2014 [29], which can be utilized to generate images via
adversarial training. As shown in Fig. 4, there are two basic
components, named generator and discriminator, in GAN. The
generator takes random noise z as input and produces an image
x. The discriminator takes an image x as input and the output
is a score that indicates its confidence that the input image
is real. The generator’s parameters are tuned to fool the dis-
criminator to achieve a high score for the fake images that it
generates. The discriminator’s parameters are tuned to achieve
a high score when its input is a real image, and a low score
when the input is a fake image generated by the generator.
This model is shown in Fig. 4, where we feed GAN with a
CSI image made from OQPSK signals when SNR is 4dB.

In Fig. 4, the generator generates a fake OQPSK image at
4dB SNR, which is very similar to the real OQPSK image at
the same SNR level. Both the real image and fake image will
be fed into the discriminator. The discriminator will adjust its
parameters to distinguish the real image from the CSI dataset
from the fake image from the generator. The generator will
then tune its parameters to make fake OQPSK images look
more like a real CSI. The discriminator and generator are
trained adversarially to improve their performance by com-
peting with each other. The traditional GAN loss function in
this adversarial game can be defined as:

min
G

max
D

V (D ,G) = Ex∼Pdata(x)[log D(x )]

+ Ez∼Pz (z )[log(1 − D(G(z )))], (2)

where V(G, D) is the combined loss of the GAN model, D(x)
is the result of the discriminator to identify the real image,
G(z) stands for the fake image from the generator, and D(G(z))
means the probability of the discriminator to accurately predict
a fake image. In the process of generator training, the best
result for the generator is D(G(z)) = 1, which implies that the
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Fig. 5. GAN based data augmentation with CSI processing.

discriminator has been fooled to predict all the fake images as
real.

The competition between the generator and the discrimi-
nator will stop when the discriminator does not know where
the image comes from and the generator cannot improve the
quality of generated fake images anymore. Then they reach the
stage of a “Nash Equilibrium.” A GAN can be utilized to map
out a data augmentation manifold. In [33], we choose auxiliary
classifier generative adversarial networks (ACGAN) [34] for
data augmentation [29]. The discriminator network is trained
to figure out whether the sample comes from a real data
distribution or a fake data distribution. The classifier in the
discriminator network will attempt to make sure the real image
comes from the same class. Adversarial training will help the
generator network to produce new images from the real images
within the same class, but will be represented differently from
the training dataset. The proposed scheme is shown in Fig. 5.

Considering the results in Section III-A as a baseline, we
use the dataset mentioned in Section III-A to train the ACGAN
and to augment the training set. After both the generator and
discriminator in the ACGAN converge, we generate 5000 more
CSI images to augment the AMC dataset. The results are
presented in Fig. 6. From Fig. 6, we can see that the classi-
fication accuracy is improved by 0.6%—1.64% over the case
without data augmentation. It indicates that: (i) Learning a
generative manifold by GAN for the classes in the source
domain can help to learn better classifiers for the low data
target domain; (ii) ACGAN is an effective means to conduct
CSI-aided AMC data augmentation; (iii) The data augmen-
tation technique with ACGAN will slightly improve DNN’s
classification performance. However, if we want to signif-
icantly boost signal classification performance, an effective
signal feature extraction method is expected. After 50000

Fig. 6. Comparison results of AlexNet-CSI, AlexNet-CSI with data
augmentation.

iterations, the losses of discriminator and generator converge,
and we obtain the generated images. Having been given the
specific label per row, the generator will generate the corre-
sponding images per row. In Fig. 7, we present the sample
images created by the generator network.

C. Application Scenario III: Specific Emitter Identification

The IoT is such a huge network that contains various
sources of emitters. No matter in civilian or military appli-
cations, IoT security and confidentiality are of great impor-
tance [35], [36]. The specific emitter identification (SEI)
technology is to detect the essential difference features from
received signal among different communication emitters. The
technique identifies different communication radiation sources
and is sometimes called “radio frequency fingerprinting.” The
traditional technique for SEI is to extract signal features using
expert knowledge, which may cause unnecessary workload
and cannot adapt to time-varying experiments. In this case,
we choose to extract specific emitter CSI to learn its deep and
imperceptibility features. For example, the CSI size usually
indicates the amplitude information of individual communica-
tion emitter. The CSI shape could tell the phase information of
individual communication emitter. The CSI color distribution
also shows distinguishing features. The next step of identi-
fication is to feed CSI into a CNN. The dataset could use
image data augmentation if there exists data skew or there is
insufficient data. The process is depicted in Fig. 8.

To verify the effectiveness of CSI in identifying real emit-
ters, we collect I/Q data from 8 real wireless devices, which
emit 16QAM modulated signals. Each emitter CSI consists
of 20000 samples of I/Q data. We collected 800 CSI from
each emitter for training and 200 for testing. We compare the
AlexNet-CSI performance with that of an SVM-aided scheme
with five expert features and an SVM-aided scheme with
three expert features. The SVM-aided scheme with five expert
features uses the following features: Minkowski Bouligand
dimension, Marginal spectrum, Covariance distribution, and
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Fig. 7. Generated CSI for (a) SNR = 4dB and (b) SNR = −4dB. The
rows represent 4ASK, BPSK, QPSK, OQPSK, 8PSK, 16QAM, 32QAM, and
64QAM from top to bottom.

Wavelet entropy feature. The SVM-aided scheme with three
expert feature uses Minkowski Bouligand dimension, Marginal
spectrum, and Wavelet entropy feature. We extract those expert
features and feed it to the classifier. We also consider k-nearest
neighbors (KNN) as the classifier and the power spectrum
of signals obtained with a fast Fourier transform (FFT) as
the expert features, which has 4096, 2048, and 1024 FFT
points. Due to balanced testset, we choose the average accu-
racy as performance measure. After cross-validation, we set
the best hyper parameter for SVM and obtain the following
result presented in Fig. 9.

As can be seen from Fig. 9, the AlexNet-aided CSI method
achieves 100.0% accuracy, the SVM with 5 expert feature

Fig. 8. Specific emitter identification data processing.

Fig. 9. A comparison study of several specific emitter identification schemes.

scheme achieves 91.2% accuracy, the SVM with 3 expert fea-
ture scheme achieves 90.3% accuracy, while the KNN schemes
with 4096, 2048, 1024 FFT points achieve 89.2%, 87.8%, and
83.2% accuracy, respectively. The AlexNet-aided CSI method
outperforms both the SVM-aided expert feature methods and
the KNN-aided expert feature methods. In the real world,
the complex and time-varying wireless communication envi-
ronment will pose great obstacles to precisely utilize expert
features. There are usually considerable impairments coming
from fading, shadowing, noise, interference, and other types of
losses. The AlexNet-aided CSI method is capable of adapting
to real signals and learning the emitter features in real-time.
This way, the CSI method has a great potential in individual
communication emitter recognition.

D. Application Scenario IV: Signal Recognition
Semi-Supervised Learning

Most deep learning based classifiers require a large amount
of labeled samples for training, but to obtain such labeled
data is an expensive and sometimes difficult process. To deal
with this limitation, semi-supervised learning provides a good
solution, which is a class of techniques that make use of
a small amount of labeled data along with a large amount
of unlabeled data [37]. Many machine learning researchers
have found that unlabeled data, when used in conjunction
with a small amount of labeled data, can produce considerable
improvements in learning. GANs have shown a lot of poten-
tial in semi-supervised learning where the classifier can obtain
a good performance with very few labeled data [38]. In our
prior work [13], SSGAN is employed to utilize labeled data
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to learn supervision information and unlabeled data to learn
data distribution simultaneously. The vanilla architecture of the
discriminator has only one output neuron for classifying real
and fake (R/F) samples. For the semi-supervised learning, in
addition to the R/F neuron, the discriminator will now have N
additional neurons for classification of CSIs. We can discard
the generator after training, whose only use is to generate unla-
beled data to improve the discriminator’s performance. Note
that the discriminator is turned into an (N +1)-class classifier
with 1 neuron (i.e., R/F neuron) representing the fake data
output and the other N neurons representing real data in N
classes. The output is as follows.

• To assert that the R/F neuron output label is “0,” when
the input is real unsupervised data from the dataset;

• To assert that the R/F neuron output label is “1,” when
the input is fake unsupervised data from the generator;

• To assert the R/F output label is “0” and the correspond-
ing label output is “1,” when the in put is real supervised
data.

In other words, the Discriminator has three different sources
of training data as:

• Real images with labels: these are image-label pairs like
in any regular supervised classification problem;

• Real images without labels: for these, the classifier only
learns that these images are real;

• Images from the generator: for these, the discriminator
learns to classify them as fake.

The combination of these different sources of data will make
the classifier learn from a broader perspective. The process is
illustrated in Fig. 10. Feature matching changes the cost func-
tion of the generator to minimizing the statistical difference
between the features of the real data and the generated data.
Often, we measure the L2-distance between the means of their
feature vectors, as

min
∥
∥
∥Ex∼pdataM (x ) − Ez∼pz (z )M (G(z ))

∥
∥
∥, (3)

where M(x) is the feature vector extracted in an immedi-
ate layer by the discriminator. Therefore, feature matching
expands the goal from beating the opponent to matching
features in real data.

For semi-supervised learning, we shrink the datasets
proposed in Section III-A to 500, 1000, 2000, and 5000 of
labeled data samples for each modulation category, meaning
we have 4000, 8000, 16000, and 40000 labeled data samples
for the overall dataset, respectively. For semi-supervised learn-
ing, we select SSGAN to be our classification model and set
SSGAN’s ImageNet hyper parameter as that used in [34]. We
just train the SSGAN discriminator D without updating the
generator G as in the CNN baseline scheme. The classifica-
tion accuracy results are presented in Table I. From Tab. I, we
can make the following observations.

• The amount of labeled data plays an important role
in semi-supervised learning: more labeled data help to
improve the classifier’s accuracy performance.

• SSGAN, which shares the same classifier architecture as
the baseline scheme but only uses a small labeled dataset,
outperforms CNN when the dataset is small, since it uti-
lizes three sources of data, i.e., real labeled data, real

Fig. 10. A sketch of the CSI information flow through the generator and
discriminator neural networks for semi-supervised learning.

TABLE I
CLASSIFICATION ACCURACY OF CNN AND SSGAN

unlabeled data, and fake unlabeled data, instead of only
one data source for training as in the case of CNN. With a
larger labeled dataset, the unavoidable noise in the GAN
generated data will prevent the SSGAN classifier to learn
the correct features.

• GANs can be considered as a potential solution for learn-
ing complex tasks with limited labeled data, and CSI can
bridge the gap between signal recognition and SSGAN.

E. Application Scenario V: DNN Deployment

As mentioned before, CSI has many potential application
scenarios in signal recognition. However, the computational
power and memory requirements pose potential obstacles to
deploy DNN at an edge device. Although we could offload
some computation tasks to the cloud, cloud computing require-
ments for bandwidth, latency, and availability still present
severe challenges to real-time tasks. In such cases, local
execution is still needed. As a remedy, the neural network
compression technique provides a promising way to pursuit
the balance between computation cost and accuracy [40].

In Sections III-A and III-C, CSI exhibits high promise as
a new form of data, where a high-performance CNN can first
be trained to achieve high accuracy in AMC or communica-
tion emitter recognition. We hope a CNN trained with CSI
data can be compressed by a large factor to make it pos-
sible to deploy the compressed CNN at edge devices with
only slightly sacrificed accuracy. When designing the CNN
architecture, CV experts often arrive at the design once they
think the network has enough representation power for the
ImageNet data distribution. However, when it comes to CSI
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Fig. 11. The network compression techniques applied to the AlexNet-CSI
method.

for signal recognition, such empirically designed networks are
usually heavily oversized. We could use the network com-
pression technique to remove much redundancy in the DNN
model before deploying it at an edge device. Neural network
compression techniques include parameter pruning and shar-
ing, low rank factorization, transferred/compact convolutional
filters, and knowledge distillation. We will choose one of
these neural network compression techniques to compress the
network.

In our prior work [14], we pretrain AlexNet with CSI and
choose the average percentage of zeros (APoZ) criterion [13]
to prune the network. APoZ is a heuristic criterion to evalu-
ate the importance of each filter. This criterion calculates the
sparsity of each channel in output activations as its importance
score, computed as:

si =
1

|α(i , :, :))|
∑∑

I (α(i , :, :)) == 0), (4)

where |α(i , :, :))| is the number of elements in the ith chan-
nel of tensor α after ReLU activation, and I (·) denotes the
indicator function.

The dataset we choose is the same as in Section III-A. We
evaluate the performance of the slimming process from classi-
fication accuracy, floating point operations (FLOPs), parameter
and actual edge device validation perspectives. Compared to
the original CNN, the experiment results show that the light
CNN convolution layer could have only 1.5% ∼ 5% of param-
eters and use 33% ∼ 35% of time, with no more than 1%
degradation of accuracy at every SNR level.

1) Accuracy Comparison: In this experiment, we compare
the recognition accuracy of (i) the pruned neural network
under the ensemble learning rules with the voting method,
(ii) the pruned neural network without ensemble learning, and
(iii) the original neural network under different SNR levels.
The results are shown in Fig. 13. The average accuracy is
computed as:

Accuracy =
Ncorrect

N
× 100%, (5)

where Ncorrect is the number of correctly classified test
samples and N is the total number of test samples.

Fig. 12. Illustrating the pruning process.

Fig. 13. Accuracy comparison among the original AlexNet and the pruned
AlexNet neural network.

The pruning algorithm compresses the neural network struc-
ture, which inevitably causes loss of the recognition accuracy.
The recognition accuracy of a neural network after pruning is
usually decreased by about 0.5% ∼ 1% [13]. The results in
Fig. 13 show that APoZ is a valid criterion to prevent pruned
neural network from significant accuracy loss.

2) FLOPs Comparison: FLOPs is an evaluation criterion
usually used to measure the complexity of a model, which
has a crucial influence on the reasoning speed of the model.
In CNNs, the convolution layer contributes to most of the
FLOPs. In this article, we take the ratio of the FLOPs of the
original model to the pruned model, denoted by FCR, as an
evaluation criterion. The FCR is defined as:

FCR =
FLOPs(orignial)
FLOPs(pruned)

. (6)

As can be observed in Fig. 14, the neural network pruning
method based on APoZ can achieve a certain compression
effect under each SNR level. Furthermore, the compression
effect at high SNRs (i.e., 0dB ∼ 6dB) is much more obvious
than that of low SNRs (i.e., −6dB ∼ −2dB). This is due to
the fact that the data distribution of the CSI is simpler under a
high SNR and there is more redundancy in the neural network
while ensuring a certain recognition accuracy.

3) Number of Parameters Comparison: The number of
parameters is an evaluation criterion used to measure the stor-
age requirement of the model. In this article, the compression
ratio of parameters (PCR) before and after pruning is also used
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Fig. 14. FCR results at different SNR levels.

Fig. 15. PCR results at different SNR levels.

as a metric to measure the pruning effect of neural networks,
which is defined as:

PCR =
Number of Parameters(orignial)
Number of Parameters(pruned)

. (7)

The results are shown in Fig. 15. First, the neural network
pruning method based on APoZ can achieve a good PCR com-
pression effect for each SNR level, which is similar to the
FLOPs comparison. The reason for this effect is that there is
a lot of redundancy in the fully connected layer of the neu-
ral network. In addition, the compression effect of high SNRs
(i.e., 0dB ∼ 6dB) is much more obvious than that of low SNRs
(i.e., −6dB ∼ −2dB). This is because the data distribution of
CSI is simpler in the high SNR region, and thus there is more
room for compression.

4) Device Validation: In order to verify the application
value of our proposed scheme on actual edge devices, we
deploy the original AlexNet and the pruned AlexNet into
real edge devices, i.e., a NVIDIA Jetson TX2 with its GPU
acceleration turned off (see Fig. 16), and compare their
performance.

To reduce the random factor, we have tested the reasoning
time of 1000 CSI of the two models in each experiment and
obtained the average results of 50 experiments. The results are

Fig. 16. NVIDIA Jetson TX2 Module.

Fig. 17. Prediction time comparison for 1000 samples.

shown in Fig. 17. It can be seen that the pruned AlexNet at all
SNR levels is about 3 times faster in predicting samples in the
NVIDIA Jetson TX2 Module, since we cut down the amount
of FLOPs in the convolution layer. We can also see that the
prediction times are almost equal at every SNR level. Even
at 6dB, the pruned AlexNet’ FLOPs are much smaller than
the other AlexNet’s FLOPs at other SNR levels. We believe
this is caused by the communication delay. From the above
experimental results, it can be seen that we significantly slim
the network for reduced time and storage requirements, but
without losing more than 1% accuracy at every SNR level.

IV. FUTURE RESEARCH OPPORTUNITIES

As mentioned above, CSI has strong capabilities to deal with
the challenging signal recognition problem, and it can effec-
tively improve the performance of many applications such as
AMC, data augmentation, individual communication emitter
recognition, and neural network compression. Moreover, CSI
opens a door for many more research opportunities. In this
section, we introduce two of them as examples: (i) CSI-aided
transfer learning and (ii) signal recognition dataset
annotation.
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Fig. 18. CSI-aided transfer learning process.

A. Transfer Learning

Transfer learning is a machine learning method where a
model developed for a task is reused as the starting point for
a model on a different task [41]. It is currently highly popular
in the field of DL because it enables us to train a DNN with
comparatively small amount of data. The real wireless com-
munication environment is complex and heterogeneous [8].
For some problems where we may not be able to obtain suffi-
cient data, transfer learning will enable us to fully exploit the
features extracted from the source data. Transfer learning will
also help us to make full use of the high-speed incoming sig-
nal data before it expires [9]. For the CSI dataset, we propose
a possible transfer learning scheme with DNN, which consists
of two stages including offline learning and online learning.

1) Offline Learning: As shown in Fig. 18, we select a
related predictive problem with abundant data where there is
some relationship in the input data, output data, and the fea-
tures learned during the mapping from input to output data. We
should make sure that the model be better than a naive model
to ensure that some feature learning has been performed. After
offline learning, the DNN will learn wireless communication
signal CSI with useful low-level and generalizable features,
which will be the starting point to the next stage.

2) Online Learning: The model fitted on the original task
can then be used as the starting point for a model on a dif-
ferent task [42]–[44]. Optionally, the model may need to be
adapted or refined on the input-output pair data available for
the next task. If we have a small CSI dataset for the second
task, we can freeze the weights in most of the layers to avoid

overfitting. As is shown in Fig. 18, if we get a large CSI dataset
for the second task, we should freeze the weights in fewer
layers to avoid underfitting. Compared to traditional machine
learning, transfer learning with CSI will help wireless commu-
nication environment analysis to be more adaptive. Further, we
can also utilize a lot of data from simulations and long-term
accumulation, which will free us from the problem of lack of
data. In extremely data-limited scenarios, transfer learning can
also conduct few-shot or one-shot learning [45] due to CSI’s
superior feature extraction power. Moreover, transfer learning
will accelerate the training process when the former training
checkpoint is used as the start point.

B. Signal Recognition Dataset Annotation

Most successful deep learning techniques require ground-
truth labels for a sufficient training dataset. Nevertheless,
in many tasks, it is difficult to attain strong supervision
information due to the high cost of data labelling process [46].
Wireless communication is not an exception. It is desired for
machine learning techniques to be able to annotate wireless
dataset with weak supervision information. This situation is
often called weakly supervised learning and can be divided
into three types: incomplete supervision, inexact supervision,
and inaccurate supervision. The incomplete supervision task
generally refers to semi-supervised learning [46], which has
been discussed in Section III. So we will focus on the discus-
sions of CSI applications in inexact supervision and inaccurate
supervision tasks in the following.

1) Inexact Supervision: Inexact supervision concerns about
the situation where some wireless communication data super-
vision information is given, but not as exact as desired. As
a remedy, we can use multi-instance learning with CSI to
address the inexact supervision issues. The original goal of
multi-instance learning is to predict labels for unseen signal
attributes. For example, we are not satisfied with just knowing
modulation type of the signal waveform, but we also want to
know which signal emitter generated the signal. Multi-instance
learning with CSI is an effective alternative to achieve this
dual-goal.

2) Inaccurate Supervision: Inaccurate supervision concerns
about the situation where the supervision information is
not always the ground-truth. In other words, some label
information may suffer from errors. When annotating abundant
unlabeled dataset, crowd sourcing is commonly used as a cost-
effective way to collect labels for training data. Specifically,
unlabeled instances are outsourced to a large group of workers
to label them. With the increase of work, annotation accuracy
will decrease if the worker is incapable of annotating some
samples. However, CSI has good separability and anti-noise
merit as discussed above. The annotate workers will be more
confident about CSI-based datasets and will produce a labeled
dataset with higher quality in turn.

In summary, the two different situations are illustrated in
Fig. 19. In the inexact supervision scenario, we also want
to know more wireless signal fine-grained attributes, such
as SNR, transmitter, and phase offset. CSI will reveal these
fine-grained features via its shape and color. In the inaccu-
rate supervision scenario, just as discussed in Sections III-A
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Fig. 19. The signal recognition dataset annotation process.

and III-C, CSI is a more effective method to learn wireless
signal’s hidden features and will help data annotation workers
to make more accurate decisions.

V. CONCLUSION

Nowadays, DL has attracted much attention in various fields
and has great potential to meet the requirements of emerg-
ing signal recognition scenarios. However, there still exists a
big gap between signal recognition and DL models, since the
structure of signal data is very different from that for which DL
has been proven successful. In this article, we proposed CSI,
a bridge from wireless signals to DL models. From the part
of signal processing, CSI could serve as a 3-dimensional eye
pattern. The received wireless signal features are well retained
in the CSI of the signal. Some types of distortion, such as
Gaussian noise, non-coherent single frequency interference,
phase noise, amplifier compression, etc., can be learned as
imperceptibility features. In other words, CSI has the potential
to represent the signal or individual communication emitter,
which can provide both in-phase and quadrature information.
From the perspective of DL, CSI could be treated as a gen-
eral image data format. Quite a few practical DL methods,
such as data argumentation, signal recognition dataset anno-
tation, transfer learning, and deep neural network compress
techniques can be applied to CSI-aided DL. We presented sev-
eral application scenarios where CSI has been successfully
applied with superior performance demonstrated, and con-
cluded this article with a discussion of several future research
opportunities.
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