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ABSTRACT
Radio frequency (RF) fingerprinting is a hardware feature used in
Internet of Things (IoT) applications to identify wireless devices.
In this paper, we propose few-shot learning (FSL) and prototypical
networks (PTNs) to create a new model that can adapt to a new
domain with very few labeled examples. The proposed model can
mitigate the domain shift caused by changing RF environments.
Experimental results show the proposed method can improve the
performance of RF fingerprinting over different domains.
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1 INTRODUCTION
The proliferation of low-power and cost-effective radio frequency
hardware has enabled an unbridled explosion in the number of RF
devices. However, this explosive growth also contributes to an ever-
expanding attack surface. The most common mitigation of attacks
comes from cryptographically secure authentication [1]. However,
this solution is not valid for all devices, e.g., low-power devices.
Wireless physical layer identification offers a new answer, which
seeks to use the physical attributes of radio frequency (RF) devices
to identify and authorize them for participation in an RF system[5].
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An RF Fingerprint (RFF) is caused by slight imperfections in the
analog circuitry of an RF emitter. Similar to the human fingerprint,
the RFF can be employed to identify and classify wireless devices
because these slight imperfections introduce non-linearities in the
emitter’s RF chain and cause a unique fingerprint on the transmitted
waveform.

The current works do not consider the domain shift inherent
in different RF environments (e.g., different distances, different
scenarios). For instance, a substantial drop is in accuracy when
training on one domain and testing on another with a traditional
convolutional neural network (CNN) in [4]. The approaches such
as traditional CNNs and autoencoders do not consider domain
information for classification problems. In this paper, we deploy
few-shot learning (FSL) and Prototypical Networks (PTNs) to build a
model that can adapt to a new domain with very few labeled examples.
Considering this feature, the model can mitigate the domain shift
caused by changing RF environments without having to handcraft
channel equalization algorithms.

2 SYSTEM DESIGN
The system assumes that all labels are known during training (su-
pervised learning) and that there are no unseen labels during pre-
diction. For this work, we define a domain to represent a distinct RF
environment, delineated by either position in space or time, with
time delineated domains differing in the order of hours to days and
space delineated domains varying in the order of several feet.

We leverage three distinct datasets for our work. The first dataset
is the ORACLE dataset [4], which consists of 16 USRP X310 devices
transmitting 802.11a frames in an auditorium. A USRP B210 receiver
was moved between 2 and 62 feet away from the transmitters, in
an interval of 6 feet. This was repeated a second time, separating
the dataset into ORACLE.run1 and ORACLE.run2. Moreover, the
dataset was then pre-processed further in order to isolate the pream-
bles of each frame in our method. These frames constitute separate
datasets: oracle.run1.framed and oracle.run2.framed.

The second dataset is the CORES dataset [2] with 163 consumer
WiFi cards arranged in a grid at the Orbit Testbed, where we use
the 58 devices in all 4 days of the dataset. The third dataset is the
WiSig dataset [3]. It was also collected in the Orbit Testbed with 41
unspecified USRP receivers capturing 174 COTS WiFi cards. In our
work, we utilize data from one receiver and consider 130 emitters
in all 4 days. Note that each day constitutes a separate domain.
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Figure 1: Proposed system steps

Fig. 1 shows the proposed system. The first step is episode cre-
ation. We divide the dataset into support set, query set, and base
truth, respectively. Then, all examples from the support set are
forward passed through the backbone network, yielding an embed-
ding vector for each example in the support set. The embedding
vectors for each label in the support set are averaged, resulting
in a prototype for each label. Then we compare the Euclidean dis-
tance between each query set embedding and prototype for the
prediction phase. We consider the distance between each query em-
bedding and each prototype as a likelihood of classification. Then,
the cross-entropy loss function is backpropagated to the network
by stochastic gradient descent.

3 EXPERIMENTAL EVALUATION
We first apply an identical network except with the last layer con-
figured for traditional classification. Specifically, the number of
output nodes is equal to the number of classes for the respective
dataset, and the negative log likelihood is applied to the outputs
for the backpropagate loss. Overall, we can see from Fig. 2 that a
traditional CNN does not generalize to the unseen target domains.
We also notice the relatively high target accuracy of the CORES
and WiSig datasets. This indicates their domains are not as diverse
as the domains in ORACLE.

We now apply our prototypical network approach to the same
datasets/domain splits. We also analyze the impact of the normal-
ization. Fig. 3 shows the prototypical network results. A marked
improvement in both source and target domain accuracy is visible
across all datasets. The efficacy of isolating packets in the ORACLE
dataset is also extremely clear. We also see a clear and nearly equal
degradation in accuracy when performing either power or magni-
tude normalization across all datasets except for CORES and WiSig.
We also see that run 1 and run 2 of the ORACLE dataset perform
nearly identically under all circumstances.

4 CONCLUSION
In this paper, we presented prototypical networks as a viable ap-
proach for RF fingerprinting. Our results showed the proposed

Figure 2: CNN baseline results

Figure 3: Prototypical network results

method is effective for few-shot learning over different RF envi-
ronment domains, which can obtain a better performance than the
traditional CNN-based method for RF fingerprinting.
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