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Abstract—With the growing demand for location-based ser-
vices, fingerprint has become a hot topic in the area of Internet of
Things (IoT). However, the performance of fingerprinting-based
indoor localization systems is usually affected by the quality and
granularity of fingerprints. In this paper, we present MapLoc,
a Long Short-term Memory (LSTM)-based indoor localization
system that takes advantage of the continuous indoor uncertainty
maps created using both earth magnetic field readings and WiFi
received signal strengths (RSS). A Deep Gaussian Process (DGP)
model is trained to create indoor radio maps with confidence
intervals, which are referred as uncertainty maps. Utilizing the
uncertainty maps, an LSTM based location prediction model
is pre-trained with artificial trajectory data sampled from the
uncertainty maps, and then fine-tuned with the signal measure-
ments collected in the field. In the training process, auxiliary
outputs are implemented to overcome overfitting and improve the
robustness of the system. Our extensive experiments demonstrate
the outstanding performance of the proposed MapLoc system.

Index Terms—Fingerprinting, Deep Gaussian Process (DGP),
Indoor Localization, Long Short-term Memory (LSTM), Radio
Map Construction.

I. INTRODUCTION

With the rapid development of the Internet of Things (IoT),
location based service (LBS) has drawn increasing attention
from various fields, such as robotics, retailing, manufacturing,
and smart buildings. Instead of using specifically designed
sensors for location estimation, radio frequency (RF) signals,
e.g., WiFi, have been a popular choice for indoor localiza-
tion systems due to its wide deployment in indoor spaces.
Fingerprinting is a popular indoor localization method, which
generally consists of two stages: offline fingerprint collection
and online location estimation. In the offline stage, fingerprints
in the form of, e.g., WiFi received signal strength (RSS),
are collected in the service area and labeled with the corre-
sponding coordinates. Then, in the online stage, the unknown
location of a mobile device will be estimated by matching the
newly collected measurements with stored fingerprints. The
performance of fingerprinting is thus largely affected by both
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the fingerprints and the matching method. Many prior works
adopted various techniques in wireless communications, signal
processing, and machine learning through these two aspects.

Various observations of RF signals have been utilized as
fingerprints. For example, RSS was first used in [1]. This work
demonstrated that the signal strength information provides a
means of inferring user location. K-Nearest Neighbors (KNN)
was leveraged in this paper to assist lcoaltion prediction.
Intuitively, RSS is negatively related to the distance between
the transmitter and receiver. By using an empirical signal
propagation model, the unknown location could be inferred
roughly by triangulation. Even though RSS is resilient to
slight environmental changes, it could not achieve fine-grained
localization, especially when the number of APs is limited. For
environments with rich AP resources, AP selection emerged
to filter out the less useful RSS readings for boosted lo-
calization accuracy. The authors in [2] proposed a heuristic
AP selection algorithm based on Cramer-Rao lower bound
(CRLB) to assist in localization. MAPS [3] relied on K-
means and decision trees for selecting available APs. Shi et
al. [4] leveraged statistical features from RSS measurements
to filter out valid APs. However, AP selection is still an open
problem. In this paper, the proposed location prediction model
is capable of selecting appropriate APs intelligently with deep
networks for improved localization. In addition, channel state
information (CSI), as a fine-grained observation of the orthog-
onal frequency-division multiplexing (OFDM) physical layer
(PHY), has been adopted as fingerprints in the past decade.
It depicts how a signal propagates from the transmitter to the
receiver through each subcarrier. Due to the nature of CSI, it
is more sensitive than RSS to distance variations, and is also
susceptible to the multipath effect and dynamic environments.
Thus, various signal processing techniques have been proposed
for eliminating the offsets introduced by the environment and
hardware to enhance the quality of CSI fingerprints [5]. The
extra cost of signal processing may impede the prevalence
of CSI-based localization systems in mobile devices with
limited hardware resources. Meanwhile, with the popularity
of smart devices, increasing types of signals, such as light
and earth magnetic field intensity, have been introduced as
fingerprints [6]. It has been shown that such multi-modal
fingerprints are complementary to each other and can help
to make the system more robust.

In addition to the quality, the density of fingerprints is
also a key factor that affects the accuracy of fingerprinting.
To achieve high location accuracy, a site survey is needed
to collection fingerprints at densely marked locations, which
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is usually time-consuming and laborious. Furthermore, such
dense fingerprints are costly to update when the service
environment is changed (i.e., change of furniture placement).
As a result, there is a trade-off between the location estimation
accuracy and system deployment cost, which needs to be
carefully balanced when designing a fingerprinting system. In
this research, we use DGP to generate a precise uncertainty
map in order to improve localization with a limited number of
signal observations. The generated data on the map indicates
the dependability of signals from distinct APs, which aids in
training the location prediction model. Another crucial factor
to the success of fingerprinting is an effective and efficient
location estimation (i.e., matching) method. In recent indoor
localization systems, machine learning has been widely used
as classifiers to estimate unknown locations in the online stage,
such as K-Nearest Neighbors (KNN), support vector machines
(SVM), and random forest [1], [7], [8]. Recently, deep learning
models, have been adopted for effective multiclass classifica-
tion. DeepFi [9] extracted features from CSI by usign deep
auto-encoders. CiFi [10] and ConFi [11] generated CSI images
for image classification with the deep convolutional neural
network. ResLoc [12] advanced the localization accuracy by
modifying the architecture of the deep network. However,
such methods are still focused on solving the traditional
fingerprint matching problem, which partitions the continuous
service area into a discrete grid and is treated as a multiclass
classification problem. This approach introduces a built-in
error, even though the error can be mitigated by probabilistic
methods [9], [13].

In this paper, we propose MapLoc, an indoor fingerprinting
system that utilizes Deep Gaussian Process (DGP) to regress
uncertainty maps and incorporates a Long Short-term Memory
(LSTM) based method for location estimation. This work is
focused on three aspects of improving location estimation:
fingerprint quality, fingerprint quantity, and the built-in error
of existing fingerprinting methods. From the perspective of
fingerprint quality, both WiFi RSS and earth magnetic field
intensity are utilized as fingerprints in MapLoc. Since the
magnetic sensors are available in many smart devices, the
magnetic field intensity measurements are readily available.
Moreover, the uncertainty maps are leveraged to generate
synthesized data that are indicative of the signal reliability.
To enhance location estimation with limited number of fin-
gerprints, MapLoc utilizes the uncertainty maps to synthesize
sequences of trajectories and RSSI samples, which are used in
auxiliary learning to pre-train the location prediction model.

In recent years, LSTM has been applied to a wide range of
tasks, such as natural language processing, speech recognition,
and time series forecasting, because it is able to effectively
handle sequential data that has long-term dependencies. Also,
it achieves great performance in handling variable-length se-
quences. Because of these features, LSTM is well-suited for
tasks such as location prediction. By implementing a stacked
LSTM network as a backend, we design a location prediction
model for regressing the signal maps. And the estimated
location will be inferred directly by leveraging the historical
signal and location information, which avoids the built-in
error when the localization problem is treated as a multi-class

classification problem in existing fingerprint methods.
More specifically, a DGP is first implemented for uncer-

tainty estimation in the service area. Then the artificial signal
measurements are generated by sampling the distribution de-
scribed with uncertainties. In addition, geometry constraints
and user movement patterns are considered in trajectory
generation. The generated signal measurements are used to
compose signal sequences that supervise the pre-training of the
location prediction model. To better regress the signal strength,
an auxiliary loss is adopted in the training. Both location
prediction and fingerprint estimation are used to calculate the
loss for weight updating. Finally, the pre-trained model is fine-
tuned with real signal sequence collected in the field. Fine-
tuning forces the location prediction model to converge to the
real signal surface, thus eliminating the cumulative error of
the DGP model. In the online stage, the location of the target
mobile device is readily predicted by the location prediction
model using its newly measured signals and past trajectory in
a small sliding window.

The main contributions of this paper are summarized below.
• An innovative localization framework is proposed by

leveraging the uncertainty estimation capability of DGP.
Continuous uncertainty maps are created by DGP using
fingerprints measured at gridpoint locations. The finger-
prints are then augmented by sampling the distribution
described by the uncertainty maps. The generated signal
measurements reflect their own stability, allowing deep
learning models to learn the reliability of signals and
select the effective measurements for location estimation.

• By introducing geometric constraints of the service area
and user movement trajectories, the continuous nature
of human mobility and the historical locations of the
target device within a small window are taken into
account. Furthermore, fingerprinting is no longer treated
as a classification problem here. Rather, the location
prediction model readily produces the estimated location
in the manner of regression, thus mitigating the built-in
error of the traditional approach.

• We leverage auxiliary learning in training the location
prediction model. By introducing the signal measurement
loss as one of the components of the auxiliary loss in
supervise training, the LSTM-based location prediction
model will be forced to learn the inherent relationship in
the sequences of measurements. Compared with the tra-
ditional training approach that only uses isolated location
as labels, signal sequences include much more features
to guide and accelerate the training process.

• Multimodal maps, created using WiFi RSS and earth
magnetic field strengths, are utilized in the MapLoc
system. Such measurements are widely available and do
not increase the cost and affect the compatibility of the
system. It is easy to extend the proposed framework
to include more types of measurements, such as light
intensity, for future improved performance.

• We verified the performance of the proposed MapLoc sys-
tem with extensive experiments in two representative in-
door environments. The results demonstrate that MapLoc
advances the the accuracy of location estimation by taking
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advantage of the uncertainty estimation provided by DGP
and the bi-modal fingerprints.

In the remainder of this paper, we present an overview of
related work in Section II. The preliminaries and motivations
are provided in Section III. Section IV presents the system
design. In Section V, we evaluate our prototype system, and
in Section VI, we wrap up this paper.

II. RELATED WORK

With the rise of the Internet of Things, indoor location-based
services have drawn a lot of attention from both academia and
industry, due to their high social and economic value. Unlike
outdoor localization systems, such as the Global Positioning
System (GPS), which rely on the line-of-sight (LOS) reception
of satellite signals, the performance of indoor localization is
hampered by scattered and reflected signals due to the clutter
environment. Indoor localization is still an open problem
without a universal solution, despite a variety of techniques
have been proposed in the literature.

A. Fingerprinting Approaches

Because of their adaptability and adequate accuracy, finger-
printing methods are commonly used in localization systems.
The features derived from the observations are adopted for
pattern matching in fingerprinting. RADAR [1] was one of
the first attempts to use RF signals, where RSS was used as
fingerprints. Aside from RSS, various types of observations
were leveraged in prior works as well. CSI is a fine-grained
observation from the PHY layer, which includes the amplitude
and phase of each subcarrier of the OFDM PHY. FILA [14]
demonstrated that CSI helps to improve localization accuracy
and reduce latency. The quality of fingerprints, which can be
viewed as a discrete radio map, plays a critical role in such
systems. A basic and effective way to improve the quality
of the radio map is to increase the number of fingerprints.
However, collecting fingerprints is usually time-consuming
and laborious, and in some cases, impossible. To minimize
such effort, prior works [15]–[17] utilized Unmanned Aerial
Vehicles (UAV) to replace manual labor. DeepMap [13] con-
structed a radio map with DGP using only a limited number
of fingerprints. WiGAN [18] generated fingerprints for an
unknown area with Gaussian Process Regression conditioned
least-squares Generative Adversarial Networks (GPR-GANs).
The authors in [19], [20] investigated the radio map adaptation
and update problem to avoid the cumbersome recollection
of fingerprints in dynamic environments. On the other hand,
the quality of fingerprints keeps improving with the advance
of technology, hence the evolution of radio maps. Gu et
al. [21] eliminated multipath interference in WiFi signals with
the Sparsity Rank Singular Value Decomposition (SRSVD)
method. Luo et al. [22] extracted nonlinear features from
RSS signals by implementing Kernel Principal Component
Analysis (KPCA). Furthermore, deep learning techniques have
achieved an exceptional performance in feature extraction as
well. To extract nonlinear features from observations, deep au-
toencoders were incorporated in [5], [9], [23], [24], while [6],
[25], [26] leveraged LSTM and its variants to evaluate the

correlation between received RF signals for optimizing the
fingerprints. In [10]–[12], [27], CNN was used to extract
fingerprints from multidimensional signal arrays for improved
localization accuracy.

B. Geometry-based Approaches

In addition to fingerprinting methods, geometric methods,
such as multilateration and triangulation, are widely used in
indoor localization systems by exploiting the measurements
for fine-grained information. Among various measurements,
Angle of Arrival (AoA) is commonly employed in radar and
acoustics systems. ArrayTrack [28] proposed a multipath sup-
pression algorithm for eliminating the reflection paths between
transmitter and receiver. SparseTag [29] proposed to use a spa-
tial smoothing based method, which processed a sparse RFID
tag array and decreased the angle estimation error to 1.831◦.
Time of Arrival (ToA) based systems estimate the transmitter-
receiver distance by measuring the traveling time of the signal.
However, such systems require tightly synchronized clocks at
the transmitter and receiver. Kang et al. [30] mitigated the time
synchronization error and the NLOS error by introducing an
iterative Time-of-arrival (iToA) algorithm incorporating a mul-
tivariate linear model. Also, Yuan et al. [31] proposed a unified
factor graph-based framework for ToA based localization in
wireless sensor networks. The framework provided a unified
treatment of the inaccurate positions of transmitters and the
asynchronous network. Even though the localization accuracy
keeps increasing with these approaches, their performance is
still insufficient for practical indoor services because of the
required LOS signals and multipath-free environments.

C. Other Approaches

In addition to RF signal-based techniques, vision-based
techniques are also popular with the emerging of robotics,
autonomous vehicles, and Augmented Reality (AR) [32]. The
localization algorithms rely on the inputs from sensors, such
as RGB-D cameras and infrared cameras, to extract location
information. The vision based techniques usually achieve
centimeter level accuracy in real-time, outperforming most of
RF signal based techniques. For example, MonoSLAM [33]
is the first study to apply the simultaneous localization and
mapping (SLAM) approach with a single uncontrolled camera,
with centimeter level accuracy at 30Hz real-time performance.
AprilTag [34] created a visual fiducial system that enables
full six degrees-of-freedom (6DOF) localization with a single
image by using a 2D barcode tag as landmark. However,
the computational cost of vision-based approaches constraints
their deployment on IoT devices with limited computation
power and short battery life [35]. Moreover, the visibility,
occlusion, and privacy related issues further constrain the
usage of vision-based approaches.

Indoor localization also takes advantage of the development
of visible light communications (VLC). By analyzing the
modulated light signal transmitted in the form of visible LED
lights, many VLC signal-based localization techniques have
been proposed. Because the diffused components emerging
from multipath scattering are substantially weaker than the
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LOS component, the VLC-based localization system has a
superior accuracy over RF signal based system, which usually
suffer from strong multipath interference [36]–[38].

Acoustic signals have also been employed in localization
systems. It provides precise localization at a low cost due
to readily accessible equipment such as speakers and micro-
phones, as well as excellent time-domain resolutions. For in-
stance, EchoTrack [39] tracked hand trajectory with a built-in
speaker array and microphone on smart phones by leveraging
two-channel chirps to remove the multipath noise. Location
estimation is enhanced by using the Doppler shift compensa-
tion and roughness penalty smoothing method. Vernier [40]
achieved accurate motion tracking accuracy of less than 4
mm, by proposing a differentiated window based phase change
calculation (DW-PC) to minimize the computation overhead
for real-time tracking.

III. PRELIMINARIES AND MOTIVATIONS

Gaussian process has been successfully applied for solving
regression and probabilistic classification problems. A Gaus-
sian process is described with its covariance matrix and mean
function. Since the prediction is also Gaussian, confidence
intervals can be estimated to depict the uncertainty of data
distributed over a continuous space. Thus, a normalized signal
strength map for a service area can be conveniently recon-
structed with measured signal strengths and the corresponding
coordinates by a Gaussian process regression model, which is
give by

r(c) = f(c) + ε, (1)

where r(c) and f(c) represent the received signal strength
and ideal signal strength for location c, respectively, and ε
is the observation noise, which follows an i.i.d. (independent
identically distributed) Gaussian distribution with zero mean
and variance θ2n.

It is intuitive to assume that the received signal strengths
ri and rj at coordinates ci and cj , respectively, also follow a
joint Gaussian distribution with covariance k(ci, cj), which is
usually described using a kernel function as

k(ci, cj) = φ2 exp

(
− 1

2l2
|ci − cj |2

)
, (2)

where φ and l are the hyper-parameters for depicting the
signal variance and the smoothness of the kernel function, both
of which can be estimated by using a maximum likelihood
approximation method. Then the joint distribution of the
estimated signal strength f∗ of location c∗ and the measured
signal strengths r can be depicted as follows.(

r

f∗

)
∼ N

(
0,

(
K K∗
KT
∗ K∗∗

))
. (3)

The signal strength f∗ can be inferred from the measured
signal strength r by

Pr(f∗|c∗, c, r) = N (f∗|µ∗,Σ∗) (4)

u∗ = KT
∗ (K + θ2nI)

−1r (5)

Σ∗ = K∗∗ −KT
∗ (K + θ2nI)

−1K∗, (6)

Fig. 1. The DGP model for signal map construction.

where c ∈ RN×2, r ∈ RN , K∗∗ = [k(c∗, c∗)], N is the
number of positions where the measurements were taken, K
is the covariance matrix of c with dimension N ×N , and K∗
is an N × 1 matrix of covariances between c and c∗.

Inspired by the Gaussian process based works, the DGP
is leveraged in this paper to enhance the precision of the
constructed map by recovering the non-stationary components
of signal measurements. In our prior work [13], a two-layer
DGP model was leveraged to extract nonlinear characteristics
from RSS samples and construct radio maps. Compared with
Gaussian process, DGP is able to regress complex input data
by taking advantage of the fusion of kernels. Fig. 1 is a
graphical representation of a DGP, which consists of three
layers of nodes, i.e., the parent nodes C, the leaf nodes R,
and the latent nodes H , which include two sublayers H1 and
H2 [41]. For a 2D map generation problem, C is the set of
training coordinates with dimension N×2, R denotes a signal
measurement matrix of N × S, and H ∈ RN×Lsub . Here, N ,
S and Lsub represent the number of measured coordinates,
the number of sensors, and the number of the intermediate
latent dimensions in the sublayers, respectively. Therefore, the
generative process is given by

h1nl = fHl (cn) + εHnl, l = 1, 2, ..., L1, cn ∈ R2 (7)

h2nl = fH
∗

l (h1nl) + εH
∗

nl , l = 1, 2, ..., L2, h
1
nl ∈ RL1 (8)

rns = fRs (h2nl) + εRns, s = 1, 2, ..., S, h2nl ∈ RL2 , (9)

where fH ∼ GP(0, kH(C,C)), fH
∗ ∼ GP(0, kH

∗
(H1, H1)),

and fR ∼GP(0, kR(H2, H2)) are Gaussian processes, which
connect the latent nodes H1, H2, parent nodes C, and leaf
nodes R, respectively. The automatic relevance determination
(ARD) covariance functions for the Gaussian Processes is
defined as

kARD(ci, cj) = φ2ARD exp

(
−1

2

L∑
l=1

wl(ci,l − cj,l)2
)
, (10)

where wl is the weight for each latent dimension and φARD
is a hyper-parameter. For different inputs, the Gaussian pro-
cesses, fH , fH

∗
and fR, only depend on the covariance func-

tion kARD. To find the optimal hyper-parameters, Bayesian
training is leveraged to maximize the marginal distribution of
the observed signal measurement R, which is given by

max log p(R) = log

∫
C,H

p(R|H)p(H|C)p(C). (11)

The outstanding performance of DGP for generating a
detail-rich signal map has been demonstrated in [13]. With
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the deep and heterogeneous nonlinear structure, the DGP
handles the non-stationary components in complex signal
measurements and extracts the detailed information about
the distribution of real WiFi RSS measurements in indoor
environments.

Despite the fact that the detailed maps created by DGP
improves localization accuracy, the uncertainty information,
which could also be retrieved using DGP, was largely ignored
in our prior work [13]. Indeed, the uncertainty information just
happens to be a convenient tool for evaluating the reliability
of sampled signals. Fig. 2 illustrates a uncertainty radio map
constructed by DGP using the measured RSS data from a
specific AP in a public dataset [42]. The map includes three
signal layers: a green layer representing the upper confidence
bound of the map, a blue layer of mean values, and a peach
layer denoting the lower confidence bound of the map. A
translucent layer is overlaid in the map to illustrate the layout
of the floorplan. The confidence bound layers depict the 95%
confidence interval of the signal distribution. Although the AP
location is unavailable and not needed in this work, based on
the signal-to-distance relationship [43], the AP can be located
near the top-left corner of Fig. 2 where the signals are the
strongest and most stable. When the distance is increased,
the signal strength decreases and fluctuates more considerably.
For the locations that are beyond the coverage of the AP,
the signal strength drops to −100dBm and settles there. The
RSS data from this AP, obviously, would be more constructive
in locating target devices in the top-left region, while this
AP would have a negative impact on locating targets in the
map’s central area because the RSS samples in the area would
be highly random with large fluctuations. Such a pattern of
uncertainty indicates that the signal stability varies depending
on the location. And different patterns of uncertainty map
would also be obtained for different APs. Thus, in MapLoc,
we can sample the Gaussian distribution that is defined by
the mean and confidence intervals in the uncertainty map to
generate artificial measurements that depict the stability of the
signal. The following LSTM-based location prediction model
will exploit such fluctuations to distinguish the optimal signal
measurements for location estimation. Moreover, Fig. 3 plots
the uncertainty map generated by DGP using earth magnetic
field observations. It follows a similar trend as in Fig. 2, in
which the signal stability changes at different locations, and
is complementary to the RSS uncertainty map. Both RSS and
magnetic field data will be used in this effort to improve the
accuracy of localization.

On the other hand, the proposed MapLoc system also takes
into account the trajectory of the target device in a sliding
time window. The trajectories can be reasonably synthesized
by leveraging the movement pattern of target devices and
geometry constraints (e.g., the shape of the room or corridor).
Using the uncertainty maps, artificial signal sequences can
be generated along such movement trajectories. The artificial
signal sequences are used to pre-train the LSTM-based lo-
cation prediction model, which is then fine-tuned with real
collected signals in the field. The pre-training process guides
the location prediction model by learning the signal reliability,
while fine-tuning mitigates the cumulative error introduced by

office 1oooffffffffffffiiiicccce 1

corridor 1ccoooorrrrrriddddoor 1ccccoooorrrrrrrrrrrriddddooor 1

hhhhaaaallllllllllll

corrrrrrriiiiddddor 2

corridor 3corridor 3office 2office 2

Fig. 2. An RSS uncertainty map constructed by DGP.

office 2 corridor 3

cccorridor 2

hhhhhhhall

corridor 1coooorrrrrrrrrrrridor

office 1offic

Fig. 3. An earth magnetic field intensity uncertainty map constructed by DGP.

imprecise uncertainty maps.

IV. SYSTEM OVERVIEW

Fig. 4 presents the system architecture of the MapLoc
system, where the green and blue blocks represent the compo-
nents in the offline stage. More specifically, the green blocks
are related to collecting signal measurements and their corre-
sponding coordinates, whereas the blue blocks are associated
to the synthesized signal measurements and their coordinates.
The location prediction model is unique in that it is pre-trained
with the synthesized RF data and then fine-tuned with the
collected RF data, which is why it is colored in gradients
(from blue to green). The yellow blocks in Fig. 4 represent
the components in the online stage.

Similar to traditional fingerprinting systems, MapLoc also
consists of two stages: an offline stage for data collection and
model training, and an online stage for location estimation. In
the offline stage, WiFi RSS measurements as well as magnetic
field readings are collected with the built-in sensors in the
mobile device. The measurements comprising the collected
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Testing Dataset Location Estimation

Training Data Preperation

RSSI Collection

Synchronization and Labeling

Geomagnetic Data Collection

DGP Model

Synthetic Labeled Sequence

Trajectory Generation

Fig. 4. The MapLoc system architecture.

bi-modal sequences, which are tagged with the corresponding
coordinates where the data was measured. For each location,
we collect RSS measurements from as many APs as possible.
Since the set of visible APs usually varies from location
to location, we force the RSS measurements from those
inaccessible (i.e., out of coverage) APs to be -100 dBm to
ensure consistency in measured data.

Localization with MapLoc includes two parts as well. The
collected bi-modal signal measurements are first leveraged for
training the DGP model to generate their uncertainty maps.
The uncertainty map includes the mean value and the upper
and lower bounds of the 95% confidence interval, as illustrated
in Fig. 2. The uncertainty map will then be leveraged to
synthesize artificial bi-model signal sequences for enhancing
the training of the location prediction model, which is intro-
duced to consider the trajectory (or, historical) information of
the target device in location estimation. The model is first
pre-trained with the artificial signal sequences synthesized
by sampling the uncertainty maps, and then fine-tuned with
the collected bi-modal sequences to avoid the cumulative
errors introduced by the DGP model. In the online stage, the
DGP model will not participate in location estimation. The
estimated location will be obtained by combining the previous
trajectory information with a time window W with the signal
measurements from the current unknown location.

A. Offline Training

Offline training of the MapLoc system includes pre-training
and fine-tuning. The DGP model is first trained using the
bi-modal signals that have been collected. The location pre-
diction model will first be trained using the artificial bi-
modal sequences generated by the DGP model, and then fine-
tuned using the signal sequences composed of collected signal
measurements from the field to ensure that it converges to the
real-world situation.

1) Pre-training: First, the collected signal measurements
are used to train the DGP model. Because the DGP model
focuses primarily on the signal distribution, the temporal infor-
mation in the signal sequence is neglected during the training.
To improve the structure of the DGP model and optimize the

related hyper-parameters, a simple approach is employed to
assess the quality of the uncertainty map generated by the DGP
model. As shown in Algorithm 1, the constructed uncertainty
map M is a G × S × 3 matrix, which includes an upper
confidence layer, a mean layer, and a lower confidence layer.
Here, G denotes the number of gridpoints in the map. It has
to be 100, 000 to reach a resolution of 0.01 m for an area
of 10 m2. S represents the number of available signals. For
example, we have S = 10 if the WiFi RSS measurements are
collected from 7 APs, since each magnetic field reading is a
vector with three elements (magx,magy,magz), describing
the magnetic field intensity for the north, east, and vertical
directions, respectively. The mean layer m is constructed
to evaluate the overall quality of the uncertainty map. K
verification samples are collected from each gridpoint in the
service area and labelled with the corresponding coordinates.
We calculate the likelihood function p(rkj |ci) of the jth signal,
which indicates the similarity between the kth verification
sample rkj and the signal measurement at ci in the uncertainty
map mj with a Gaussian kernel, as presented in Step 9. In
MapLoc, the σ2 and λ are set to 0.35 and 2, respectively. Thus,
the posterior probability p(ci|rkj ) is obtained conveniently by
assuming the distribution over the G gridpoints is uniform
(see Step 12). The coordinate estimation of the kth sample
is given by choosing the gridpoint with the highest posterior
probability. Eventually, the quality of the uncertainty map, Q,
is evaluated based on the errors of the coordinate estimation
in Step 18.

Based on the well-trained DGP model, a movement model
is introduced to produce trajectories for generating artificial
signal sequences. As shown in Algorithm 2, the stride length
d is considered in the movement model and is restricted to
0.6 m. The azimuth γ is determined by the previous azimuth
with a random offset between −40◦ and 40◦. In Step 13,
the coordinates in trajectory C are generated sequentially
based on the previous azimuth. And the layout of the indoor
environment is considered to eliminate the coordinates outside
the service area (see Steps 15-17).

As shown in Fig. 5, the well-trained DGP model is utilized
to generate the artificial signal rN for coordinate cN in
trajectory C. According to trajectory C, the artificial sig-
nal sequences are assembled using the signal measurements
generated by sampling the distribution N (µN , σ

2
N ) that is

described by the mean µN and variance σN in the uncertainty
map. It is noteworthy that the distribution is sampled M
times to ensure that the generated signal measurements are
able to represent the stability of signals. Furthermore, we
employ a sliding window with a length of W for adjusting the
size of the artificial sequences for training the LSTM based
location prediction model. An artificial trajectory of length
N will produce N − W + 1 training sequences. For each
training sequence, the last signal measurement rmi+W−1 and
the corresponding coordinate ci+W−1 will be extracted as label
for supervise training.

The forward propagation of the location prediction model
is depicted in Fig. 6. The backbone of the location prediction
model is a stacked LSTM model, which is followed by a DNN
for signal estimation (termed DNNS) and a DNN for location
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Algorithm 1 Pseudocode for measuring the quality of the
uncertainty map
Input: the measured verification sample rkj and the corre-

sponding coordinate ck∗ , the mean layer of the uncertainty
map mj for the jth signal, the number of gridpoints G in
mj , the number of available signals S, and the number of
verification samples K ;

Output: the map quality Q ;
1: //i represents the index of gridpoints in map mj

2: //j denotes the index of signals
3: //k denotes the index of verification samples
4: //l denotes the coordinate of the gridpoints in map mj

5: for k = 1 : K do
6: for j = 1 : S do
7: for i = 1 : G do
8: //compute the likelihood function p(rkj |ci)
9: p(rkj |ci) = exp

(
− 1
λσ2

∥∥rkj −mci
j

∥∥) ;
10: end for
11: //compute the posterior probability p(li|rkj )

12: p(ci|rkj ) =
p(rkj |ci)∑G

d=1 p(r
k
j |cd)

;
13: end for
14: //use MAP estimation to infer location for the verifica-

tion samples
15: ĉk = argmax{c1,c2,...,cG}

(∏S
j=1 p(ci|rkj )

)
;

16: end for
17: //compute map quality Q
18: Q = 1

exp( 1
2K

∑K
k=1(||ck∗−ĉk||))

;

19: return Q ;

Movement Model/Physical Constraints

Deep Gaussian Process

Random Sampling

Fig. 5. How to synthesize labeled signal sequences for pre-training the LSTM-
based location prediction model.

estimation (termed DNNL). To push the model to learn the
signal map made by the DGP model and estimate location
using the map, auxiliary loss is used in training. The signal
values rmi+W−1 in the label data is processed and concatenate
with the output of the LSTM network in the DNNL model
for predicting the unknown coordinate ĉ. Then the MSE loss

Algorithm 2 Pseudocode for artificial trajectory generation
Input: the length of the artificial trajectory N ; the layout of

the indoor environment O; the stride length d ;
Output: the artificial trajectory C ;

1: //generate the coordinates c0 randomly in the environment
O and initialize the trajectory C

2: C = {randomPosition(O)} ;
3: while C.length < N do
4: if C.length == 1 then
5: //γ is a random initial azimuth
6: //generate the coordinate c∗ with the distance d and

the azimuth γ
7: //c0x and c0y are the x-axis and y-axis coordinates of

c0, respectively
8: c∗ = [c0x + d ∗ cos(γ), c0y + d ∗ sin(γ)], γ ∼

U(−180◦, 180◦) ;
9: else

10: //update γ based on the previous azimuth
11: γ = γ + γt, γt ∼ U(−40◦, 40◦) ;
12: //c−1 is the last coordinate in trajectory C
13: c∗ = [c−1x + d ∗ cos(γ), c−1y + d ∗ sin(γ)] ;
14: end if
15: if c∗ in the environment O then
16: C.append(c∗) ;
17: end if
18: end while
19: return C ;

is calculated by comparing the label coordinate ci+W−1 and
the location prediction ĉ by the DNNL. In parallel, a signal
estimation r̂ is given by the DNNS using the output of the
previous LSTM model as well. As a result, the loss function
of the location prediction model is given by

L = (1− β)MSE(rmi+W−1, r̂) + βMSE(ci+W−1, ĉ) (12)

where β is a hyper parameter to adjust the influence of the
two types of losses, while r̂ and ĉ are the predicted signal by
DNNS and the predicted coordinate by DNNL, respectively.

2) Fine-tuning: After pre-training, the location prediction
model will be fine-tuned with collected bi-modal sequences
from the service area. The collected bi-modal sequences,
like the artificial sequences, are reorganized to form shorter
training sequences using a sliding window of size W . The last
bi-modal measurement of each training sequence is also used
as the sequence’s label to complete the supervised training of
the model.

B. Online Testing

In the online stage, only the stacked LSTM network and
DNNL will participate in location estimation. The location
prediction model operates in a similar manner to autoregres-
sion models. The historical trajectory, including the received
signal measurements and the corresponding coordinates, is fed
into the stacked LSTM network. By combining the output
of the LSTM network with the freshly collected signals
from the current unknown location, the estimated location is
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Fig. 6. The LSTM-based location prediction model in MapLoc.

deduced readily with the well-trained DNNL model. Because
the localization problem is addressed as a regression problem
in MapLoc, the built-in error associated with the discrete
fingerprints can be avoided. Furthermore, since the estimated
location is computed directly by the location prediction model,
the cumbersome localization strategies used in prior work [13]
are not needed anymore in MapLoc, which further reduces the
computational cost, especially for mobile devices with limited
computation resources and power supplies.

V. EXPERIMENTAL STUDY

A. Experiment Configuration

To demonstrate the performance of the MapLoc system,
we evaluate it in two typical environments. First, we conduct
experiments on the fourth floor of Broun Hall in the Auburn
University Campus. In this scenario, we implement a prototype
system using a Samsung Galaxy S7 Edge smartphone, which is
equipped with a dedicated application for collecting magnetic
field intensity data and WiFi RSS data simultaneously. As
depicted in Fig. 7, the experiment covers an area of ap-
proximately 270 m2. The black dots in Fig. 7 represent 255
sample locations (i.e., gridpoints) for training the DGP and the
location prediction model. Except for some corner gridpoints,
the distance between two adjacent training locations is 90
cm. 80 testing locations are randomly selected in the service
area, which are not shown in Fig. 7. None of the testing
locations overlap with a training location in this scenario.
Moreover, RSS readings are collected from 224 APs, including
all the available 2.4-GHz APs and 5-GHz APs from various
manufacturers. To make the data size consistent, the RSS
values of out-of-range APs are set to -100 dBm. The magnetic
field strength is obtained from the on-device sensor directly,
which is a vector including the magnetic field intensity for the
north, east, and vertical directions.

The performance of the MapLoc system is also evaluated
using a public dataset [42]. Fig. 8 plots the detailed floor plan

Fig. 7. The floorplan for the Broun Hall dataset.

office 1

corridor 1 hall corridor 2

corridor 3

office 2

Fig. 8. The floorplan where the public dataset was collected.

where the public dataset was collected. The dataset covers
a floor of 185.12 m2, which includes three corridors , two
offices and a hall. The fingerprints are captured from 325
gridpoint locations, shown as black dots in Fig. 8. The distance
between two adjacent gridpoints is 60 cm. The data acquisition
campaign was performed using a smartphone, SONY Xperia
X2, and a smartwatch, LG W110G Watch R. We only utilize
the data collected by the smartphone in this experimental
study. The RSS data are captured from 132 unique APs, and
the readings from an out-of-range AP are all set to −100 dBm.
We only leverage 75 APs in the following experiments because
some AP signals are very weak across the entire service
area. Similar to the magnetic field intensity in the Broun
Hall scenario, the magnetic field readings of this scenario are
also vectors with three elements. Since the data acquisition
campaign is conducted in this environment with the identical
setting twice, we train and then test the MapLoc system using
the datasets from different campaigns for a fair and realistic
evaluation.
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Identical settings of the location prediction model are de-
ployed in both environments. Nine LSTMs are stacked one
above another to form a stacked LSTM as backbone of the
location prediction model. The number of features in the
hidden state of LSTM is set to about 1.5 times of that of the
input features, e.g., the number of features in the hidden state
will be 150 if the number of available AP is 95. Each magnetic
field reading is a vector of size 3 × 1 and the corresponding
coordinates are in a 2D space. The hidden state of the last
layer of the stacked LSTM is passed into the two DNNs for
location estimation and signal estimation, respectively. DNNL
is composed of 4 linear layers. The size of the input data
rmi+W−1 is first adjusted to 16 by a layer in DNNL, while
the size of the hidden state from the LSTM is squeezed to
32 by another DNNL layer. By concatenating the outputs
from the two layers, the estimated location is obtained by
the remaining 2 layers in DNNL, where the output feature
numbers of the layers are 16 and 2, respectively. The structure
of DNNS is relatively simple. The hidden state from the LSTM
is compressed by 3 linear layers in DNNS sequentially, where
the output feature numbers of the layers are 256, 128, and the
same as that of the input data rmi+W−1, respectively.

In both scenarios, the magnetic field intensity and WiFi RSS
readings are min-max normalized. Considering that pedestri-
ans usually do not make abrupt changes in their movements
indoors, the stride length d is set to 0.6 m, and the azimuth
offset γt is limited in the range between −40◦ and 40◦. To
accelerate the training process, a server with an Nvidia RTX
3090 GPU is leveraged for real-time trajectory generation and
model training.

The following baselines are used in our comparison study:
• DeepMap: this is the scheme proposed in our prior

work [13]. To regress the indoor radio map, a DGP model
with the exact same configuration as in MapLoc is used.
A Bayesian method is utilized to compare the newly
collected signal measurement with the generated maps.
The location is estimated without using the uncertainty
maps.

• LSTM: the same stacked LSTM network as in MapLoc is
used in this scheme. After the LSTM backbone, DNNL
processes the extracted features and directly predicts
location. The LSTM backbone and DNNL are configured
similarly as in MapLoc. This model is trained with
trajectory/RSS sequences sampled from the fingerprints
collected in the field

• LSTM+DeepMap: the design of this scheme is identical
to that of the proposed MapLoc. The only difference is
that the model is trained using sampled trajectory/RSS
from the map created as in DeepMap [13], i.e., the blue
layer in Fig. 2, rather than the uncertainty maps.

B. Experimental Results and Analysis
1) Accuracy of Location Estimation: First, we evaluate the

localization performance on the Broun Hall dataset. Fig. 9
illustrates the cumulative distribution functions (CDF) of
localization errors for the proposed MapLoc system and
the three baseline schemes. According to Fig. 9, it is ob-
vious that MapLoc outperforms the other methods on the
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Fig. 9. CDF of localization errors on the Broun Hall dataset.

Broun Hall dataset. Despite the fact that both MapLoc and
LSTM+DeepMap obtained a performance where 50% of the
errors are less than 1 m, MapLoc has a distinct advantage
that approximately 75% of location estimation have errors less
than 1.35m, whereas only 59% of location estimation obtained
by LSTM+DeepMap accomplish the similar accuracy. This
demonstrates the improvement brought about by the samples
from uncertainty maps. In addition, Fig. 9 reveals the obvious
deficiencies of LSTM and DeepMap in localization accuracy.
The maximum localization error, 6.41 m, is from LSTM.
The comparison demonstrates that the combination of LSTM
and DeepMap contributes to higher precision localization. In
MapLoc, the augmented training data produced by the DGP
model benefits the location prediction model that uses LSTM
as its backbone. By incorporating historical information into
location estimation via the LSTM model, the localization
accuracy of the DeepMap model is improved significantly as
well. Based on the collaboration of DeepMap and LSTM,
our proposed MapLoc successfully improves the location
estimation accuracy by taking into account the uncertainties
of different signals as well as historical information.

We also conduct an experiment using the public dataset
to investigate the performance of the proposed MapLoc sys-
tem. The CDF of localization errors on the public dataset
is displayed in Fig. 10. The results on the public dataset
are similar to those with the Broun Hall dataset. MapLoc
and LSTM+DeepMap keep the leading position in the com-
parison. Even though 50% of location estimation errors are
lower than 1.1 m with both MapLoc and LSTM+DeepMap,
the overall performance of MapLoc is superior to that of
LSTM+DeepMap slightly. Because the artificial signal mea-
surements are sampled from the uncertainty maps, the distri-
bution of the generated measurements describes the measure-
ment’s quality. As a result, the location prediction model can
learn the reliability of different types of signal measurement,
the sets of measurements from different APs, and thus im-
prove the accuracy of location estimation. Moreover, LSTM
outperforms DeepMap in the public dataset scenario, although
the maximum localization error, 14.26 m, is obtained with the
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Fig. 10. CDF of localization errors on the public dataset.
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Fig. 11. Mean and median localization errors on the Broun Hall dataset and
the public dataset. The bars indicate mean error and the line within each bar
indicates the corresponding median error.

LSTM method.
The main results in Fig. 9 and Fig. 10 are summarized

in Fig. 11. The height of the bars represents mean error,
whereas the black line in each bar represents median error.
The location prediction model of MapLoc, denoted as LSTM
in Fig. 11, and DeepMap, each only contribute to limited
accuracy in location estimation. By combining these methods,
the localization accuracy is increased significantly. The mean
and median error on the public dataset reach 1.342 m and
1.145 m, respectively, while the mean and median error on
the Broun Hall dataset are 1.374 m and 0.94 m, respectively.
In MapLoc, the mean and median error are further reduced
by augmenting the training dataset with the artificial data
generated by sampling the uncertainty maps. In the public
dataset scenario, the mean and median errors decrease to 1.234
m and 1.031 m, respectively. The mean error on the Broun Hall
dataset reduces from 1.374 m to 1.211 m, whereas the median
error reaches 0.9722 m.

To better examine the performance of different localization

TABLE I
LOCALIZATION TIME

DeepMap LSTM LSTM+DeepMap MapLoc

Public Dataset 6.901s 0.001s 0.00119s 0.00124s

Broun Hall
Dataset 19.953s 0.00135s 0.001695s 0.001690s

methods, the localization times in the two scenarios are
also presented in Table I. Because LSTM, LSTM+DeepMap,
and MapLoc rely on the location predication model to es-
timate the location of newly received signals, their location
estimation times are much smaller than that of DeepMap.
LSTM+DeepMap and Maploc share the same location predic-
tion model in terms of system architecture. As a result, their
location estimation times are quite close. The only distinction
between these two approaches is their data generation method.
Uncertainty information is not considered in LSTM+DeepMap
method, but used in MapLoc for training the position pre-
diction model. Considering that such data generation is only
implemented in the offline training stage, the location error
decreases without the cost of increasing localization delay in
the online stage. This is a critical reason why we introduce un-
certainty information to the location prediction model. Further-
more, because the LSTM location prediction model excludes
the DNNS component, the localization delay is slightly less
than that of MapLoc and LSTM+DeepMap. DeepMap requires
that the freshly received signal measurement be compared to
each signal in the generated radio map. Thus, the size of
the indoor environment and the resolution of the radio map
determine the location estimation time of DeepMap. It takes
the longest delay to localize the mobile device in both cases.

2) Impact of Signal Selection: Previous results show that
the Maploc system outperforms the systems that use LSTM
and DGP separately. By leveraging the samples sampled from
the uncertainty maps to measure the reliability of different
signal sources (e.g., APs), the MapLoc system also beats
the combination of LSTM and DGP. To investigate how the
reliability of signal measurements affects MapLoc’s location
prediction and how the location prediction model contributes
to higher accuracy, we conduct experiments with both the
Broun Hall dataset and the public dataset.

First, a random trajectory is selected for each test dataset.
The corresponding signal distribution at the label coordinates
is obtained with the DGP model in the MapLoc system.
The mean and variance of signal measurements from all the
available sources, including magnetic field readings and WiFi
RSSI, are represented by red circles and bars in Fig. 12
and Fig. 13. It is intuitive to suppose that a lower variance
represents a more trustworthy signal measurement, and signal
measurements with higher mean values are more likely to in-
fluence the location prediction. To endow the MapLoc system
with the ability to intelligently choose signals, we sample the
uncertainty maps to generate artificial signal measurements.
We hope our location prediction model is able to learn how
to recognize effective measurements from invalid and fluctu-
ating signals. In the experiments, each time we double the
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measurement from one source in the testing data, to examine
the impact of each signal source (and quality).

As previously stated, the signal measurements in the Broun
Hall dataset contain 3 magnetic field components as well
as RSSI readings from 224 WiFi APs. The experiment is
repeated 227 times with the same selected trajectory. In each
repetition, we doubled a signal measurement while keeping
all the other measurements the same. The blue line in Fig. 12
depicts the variations in location errors caused by the doubled
signal measurements. By comparing with the signal quality
denoted by the red circles and bars, it is clear that the location
prediction model selects the optimal signal measurements, and
the location estimation is resilient to most of the noisy signal
sources. As shown in Fig. 12, the first increment of error
happens at signal-2, which is the magnetic field reading’s y-
component. The magnetic measurement is much higher and
more stable than the nearby signals. The next large fluctuation
of error occurs between signal-13 and signal-18. Beyond this
range, the mean value of the signals becomes small, and
the location estimation of the MapLoc system is not much
influenced by these weak signals. The fluctuation in distance
errors increase as the signals rise between signal-55 and signal-
60, while the increase in error disappears between signal-61
and signal-117. Even though the mean values of the signals
between index-61 and index-117 are much higher than others,
the location prediction model detects the large variances of the
signals, so the location estimation is not significantly affected
by these signals. Another wild rise in location estimation
is associated with signals near index-125, where the signals
remain high. Furthermore, two more error fluctuations occur at
signal-161 and signal-227. It is clear that these signals remain
stable, and they are stronger than the nearby signals.

Fig. 13 displays the results on the public dataset, which in-
clude 3 magnetic field components and RSSI readings from 75
WiFi APs. Because the number of signal sources in the public
dataset is much smaller than that in the Broun Hall dataset,
the location prediction model in the public dataset scenario is
more sensitive to the introduced noise (i.e., the doubled signal
measurements). Fig. 13 shows the relationship between the er-
ror increase and the signal quality. The largest peak in Fig. 13
corresponds to the y-component of the magnetic field reading
as well, because the signal component remains stable in a
high level status. We also find error fluctuations at signal-6,
signal-17, and signal-62. Although these strong signals cause
the location error to increase abruptly, comparable changes are
also introduced by stable signals but with lower strengths at
index-10 and index-71. The location prediction model ignores
changes in signal measurements between signal-20 and signal-
60. Some signals in this range are stable, but these weak
strength would not cause the degradation of location accuracy.
Some signals are strong, but the location prediction model
discards them due to their poor reliability.

Based on Fig. 12 and Fig. 13, we conclude that the
proposed location prediction model in the MapLoc system
successfully extracts effective signal measurements from the
weak and fluctuating signals by learning the artificial signal
measurements that describe their own reliability. The signals
are selected not only by the average signal strength but also
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Fig. 14. Mean localization errors for different values of β.

by the signal stability.
3) Impact of System Parameters: In MapLoc, the auxiliary

loss (12) is used to force the location prediction model to
acquire knowledge from the signal measurement generated
by the DGP model and estimate the unknown location with
the knowledge. A parameter β is introduced to balance the
signal loss from DNNS and the location loss from DNNL.
We investigate the effect of β on the MapLoc performance.
Fig. 14 plots the location errors related to different values
of β. In both scenarios, the accuracy of location estimation
progresses when β is set as 0.8. Even though the mean error
from the Broun Hall dataset is slightly decreased as β increases
to 1.0, the overall performance does not enhance significantly
with the increment of β. Intuitively, β is affected by the
indoor environment. The RSSI is reasonable in an open and
static environment and closely follows the signal-to-distance
relationship. As a result, a lower β would be more beneficial
to localization. In an extremely cluttered and complex indoor
environment, on the other hand, a larger β could alleviate the
localization problem as a fingerprinting-like issue. Considering
that signal estimation in the location prediction model is
a supportive method for accurate location estimation, we
adopted a dynamic approach to adjust β based on the number
of epochs. In the MapLoc system, the initial value of β is
set as 0.6. When more than 200 epochs are completed, β is
updated every 100 epochs by a 0.1 decrease. Eventually, the
auxiliary loss would degenerate into a loss function determined
by the location estimation error exclusively. Fig. 14 exhibits
the performance gains contributed by the dynamic β update
approach.

Given that the location prediction model in the MapLoc
system relies on the stacked LSTM network as its backbone,
the window size W plays a crucial role in the accuracy of
location prediction. Intuitively, a longer data sequence would
contain more information for location estimation; nevertheless,
a longer sequence would incur additional system costs, such
as an extra time cost in data collection. To study the effect
of the sequence length (i.e., window size W ), we conduct
experiments with different window sizes on both the public
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Fig. 12. Explaining the importance of different signal measurements to the location prediction made by MapLoc system with the Broun hall dataset.
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Fig. 13. Explaining the importance of different signal measurements to the location prediction made by MapLoc system with the public dataset.

and the Broun Hall dataset. Fig. 15 illustrates the errors
resulted by different window sizes. Even though the error
in the Broun Hall scenario is more sensitive to the change
of the window size, the location errors drop with incrased
W in both environments. When the window sizes are larger
than 5, the errors remain stable. The public dataset has the
lowest location error of 1.233 m when the window size is
W = 5, and the error is 1.234 m when the window size
is W = 6. Because the Broun Hall Dataset has the lowest
distance error, 1.21 m, when the window size is 6, we set
the window size to 6 in the MapLoc system to ease system
setup. According to Fig. 15, the location error rises slightly
when the window size is 7 in both environments. Compared
with traditional approach of forecasting with time series that
benefits from long-term dependencies, location prediction is a
special case, where the prediction is highly related to the most
recent historical location, and obsolete location information
may introduce more noise. Thus, a suitable sequence length
would contribute to an improved location estimation.

The MapLoc system uses multi-modal data as mentioned in
previous sections. With the least amount of data processing,
different types of signal measurements could be introduced
into the system. In this prototype, magnetic field readings are
used as a part of the MapLoc system’s input data. Magnetic
field components from different directions are treated as novel
features of input after the max-min normalization. Fig. 16
illustrates the advancement brought by the bimodal data,
which is composed of both magnetic field and WiFi RSSI
measurements. The localization errors of the public dataset is
reduced notably. The mean error drops from 1.577 m to 1.234
m, when the magnetic filed data is taken into account, whereas
the decline of median error reaches 0.327 m. A similar
phenomenon happened to the Broun Hall dataset as well;
both mean error and median error are reduced remarkably. A
huge reduction of the mean error appears when magnetic field
readings are used, where the mean distance error decreases
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Fig. 15. Localization errors effected by the size of the sliding window.

from 1.719 m to 1.211 m. According to Fig. 16, multi-source
data improves location accuracy by adding more features to
represent the signal space [44]. In dealing with location-based
problems, different forms of signals would play complemen-
tary roles. Based on the enriched features, our proposed system
compiles and filters information from many sources to enhance
localization accuracy.

In MapLoc, the location prediction model is trained using
the data generated by the DGP model initially, and then fine-
tuned with field-collected data. The data collected from the
field is initially treated as discrete in order to train the DGP
model, and then it is recovered as sequences to fine-tune
the location prediction model. During the offline training, the
resulting DGP model may not be perfect, and thus the data
sampled by the model is usually defective. To compensate this,
the location prediction model is then fine-tuned at the end of
the training process using field-collected data. The reduction in
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Fig. 16. Reductions in localization error achieved by utilizing the earth
magnetic field strength map.

Broun Hall Dataset Public Dataset
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
o
ca

ti
o
n
 E

rr
o
r 

(m
)

Without Fine-tuning

With Fine-tuning

Fig. 17. Reductions in localization error achieved with fine-tuning

localization error achieved by fine-tuning is shown in Fig. 17.
The location errors decrease dramatically in both cases. The
location error decreases from 1.843 m to 1.211 m for the
Broun Hall dataset and from 1.666 m to 1.234 m for the
Public dataset. Given that fine-tuning is only employed in the
offline training, the gain in location accuracy brought by fine-
tuning would not cause any additional computational cost in
the online location prediction.

Because the location prediction model is pre-trained with
artificial data sampled from the uncertainty maps, the DGP
model is a critical component. To assess the impact of the
DGP model parameters on the quality of the uncertainty map,
Q, we investigate various combinations of latent dimension
and number of inducing points, aiming to find the best
configuration of DGP.

The latent nodes in MapLoc include two sublayers, H1 and
H2. Fig. 18 and Fig. 19 show how the maps’ quality Q (defined
in Algorithm 1) is affected by the latent dimensions of the
two sublayers, denoted by L1 and L2, respectively. The latent
dimensions are tuned by gridpoint search in both scenarios.

Fig. 18. Map quality Q values versus the numbers of latent dimensions on
the public dataset.

We first examine the effect of latent dimensions using the
public dataset. Even though the quality of the uncertainty map
increases with larger dimensions of the first layer when the
second layer has 6 or 8 latent dimensions, the relationship
between the latent dimensions and map qualities is ambiguous.
As shown in Fig. 18, the uncertainty map reaches the highest
value when L1 = 7 and L2 = 7. Also, two similar Qs are
achieved when the latent dimension of the first layer is L1 = 8.
Because all the three Qs are close, there is no clear advantage
to use different latent dimension settings. We try all the three
settings in training the location prediction model of MapLoc.
Since the lowest validation error is reached when L1 = 8 and
L2 = 6, we choose this setting for the public dataset. The
previous MapLoc results are all obtained under this setting.

On the other hand, Fig. 19 reveals that the quality of
uncertainty maps, Q, improves with increased latent dimen-
sions of the second sublayer L2 on the Broun Hall dataset.
However, increasing the latent dimension of the first sublayer
L1 does not necessarily improve map quality. We find that
increasing L2 significantly improves the map quality Q when
L1 = 11; whereas increasing L1 does not contribute to further
improvement of Q. According to Fig. 19, a gridpoint search
yields the best map quality, i.e., Q = 0.42, for the Broun Hall
dataset when L1 = 11 and L2 = 6.

Another key factor effecting the quality of the maps is the
number of inducing points. For the DGP model, we choose
identical numbers of inducing points for different layers to
simplify the setting. Similarly, we evaluate the effect of the
number of inducing points on the quality of the uncertainty
maps with both datasets. Table II presents the map quality
Q obtained by different numbers of inducing points with the
public dataset. According to the table, the worst map quality
is acquired when each layer of the DGP model only includes 5
inducing points. Along with the increasing number of inducing
points, the map quality keeps enhancing. Even though the
growth rate for the map quality is slow when the number of
inducing points is between 6 and 9, a notable gain is observed
when 10 inducing points of each layer are involved in the
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Fig. 19. Map quality Q values versus the numbers of latent dimensions on
the Broun Hall dataset.

TABLE III
MAP QUALITY Q AND DGP TRAINING TIME VERSUS THE NUMBER OF

LAYERS ON THE PUBLIC DATASET

Structure DGP Training Time Q

2-layer 8–6 886.56s 0.317
3-layer 8–8–6 1532.89s 0.258
4-layer 8–8–6–6 1630.685s 0.200

TABLE IV
MAP QUALITY Q AND DGP TRAINING TIME VERSUS THE NUMBER OF

LAYERS ON THE BROUN HALL DATASET

Structure DGP Training Time Q

2-layer 11–6 2620.03s 0.424
3-layer 11–11–6 2790.51s 0.311
4-layer 11–11–6–6 5256.36s 0.105

training of the DGP model. Thus, the number of inducing
points is set to 10 for the public dataset. The map quality
stops improving as the number of inducing number reaches
11, where the map quality is close to that of the model with
5 inducing points in each layer.

For the Broun Hall dataset, Table II reveals a similar trend
regarding the number of inducing points. When the number
of inducing points is fewer than 16, the upward trend in the
map quality Q is conspicuous. The map quality progresses
consistently with the increasing number of inducing points.
As shown in Table II, the best map quality is achieved when
the number of inducing points rise to 15. However, if the
number of inducing points exceeds 16, the map quality drops
considerably. Therefore, the number of inducing points is set
as 15 for the Broun Hall dataset.

To evaluate the impact of the number of latent layers on
map quality Q, we used three distinct layer configurations with
two datasets in this experiment. In Table III and Table IV, the
number of latent dimensions follows previous setup to simplify
the model structure. We first add a new layer with the same
latent dimension of H1 and then appended a layer with the
same latent dimension of H2. The number of inducing points

is set to 10 for the public dataset and 15 for the Broun Hall
dataset, respectively. It is evident that increasing the number
of latent layers from 2 to 4 doubles the DGP training time.
However, the map quality Q does not benefit much from the
increased number of latent layers in both scenarios. Intuitively,
adding more layers will help the models extract more features
from training data, but increasing the training and inference
cost. Nevertheless, when dealing with a dataset of a limited
size, adding more layers may not always result in enhanced
performance. DGP is used as a data creation tool in this
work. The exact precision is crucial, but it is not the only
metric that we care about. The model assists us in representing
the uncertainty information of APs at various locations for
the following location prediction model. The effect of the
imperfect DGP model would be adjusted since the location
prediction model would be fine-tuned with field-collected data.
Thus, we chose a simplified two-layer model in this work to
reduce the cost of DGP training.

VI. CONCLUSIONS

In this paper, we proposed MapLoc, a indoor localization
system using multi-modal data. In MapLoc, DGP was used
to regress uncertainty maps describing the signal distribution
in the service area. The artificial signal measurements that
represent their own reliability were generated by sampling the
signal distribution described by the uncertainty maps. In the
artificial data generation, geometry constraints and user motion
patterns were also taken into account. We then presented a
location prediction model to distinguish the effective signal
measurements from the weak and fluctuating signals by learn-
ing the artificial signal measurements. The location prediction
model leveraged a stacked LSTM network as its backend. The
auxiliary output was utilized to push the model to learn the
signal map in supervised training. The experimental results
demonstrated that the location prediction model was able to
intelligently choose the optimal signals among WiFi RSSI
readings and geomagnetic measurements. Benefiting from the
novel data generation method and location prediction model,
the median error of location estimation in both the datasets
reached centimeter-level accuracy.
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