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Abstract—Massive MIMO has been regarded as a promising
technique for 5G wireless communication networks. It equips
the base station (BS) with a large number of antennas to serve
a set of user equipment (UEs) simultaneously. Due to channel
hardening, the uncorrelated noise and the small-scale fading
can be eliminated. As a result, the transmitted signal can be
focused into very focused areas, which brings orders of magnitude
improvements in both spectral efficiency and energy efficiency
with simple (linear) processing. In this chapter, we present
a comprehensive overview of the state-of-the-art research on
massive MIMO. We begin with an information theoretic analysis
to illustrate the advantages of massive MIMO. Then we introduce
both the physical layer and networking issues of massive MIMO.
The integration of other 5G technologies with massive MIMO is
also reviewed. Finally we conclude this chapter with a discussion
of challenges and future research topics.

Index Terms—Massive MIMO, networking, physical layer.

I. INTRODUCTION

With the explosive data traffic growth in wireless communi-
cation networks, the Multiple-Input Multiple-Output (MIMO)
technology has received tremendous interest due to its great
potential in improving data throughput and link range under
the same bandwidth and power usage constraints. Compared
with conventional single antenna technologies, MIMO im-
proves the spectral efficiency by leveraging the diversity and
multiplexing gain [1]. Nowadays, it has been used as one of
the key technologies in the Fourth Generation (4G) wireless
communication systems. To further scale-up these gains, the
concept of massive MIMO, where the base station is equipped
with hundreds of antennas to serve dozens of user equipments
(UEs) has been proposed [2]. It breaks the scalability barrier
by not attempting to achieve the Shannon capacity limit, but
rather, by increasing the size of the system. Both theoretical
and experiment results demonstrate that massive MIMO is ca-
pable of improving the spectrum efficiency significantly while
reducing the transmit power. Therefore, it is an important can-
didate for the next-generation (5G) wireless communication
systems.

Massive MIMO can provide significant spectrum efficiency
gains due to the multiplexing gain. Meanwhile, it can also
improve the energy efficiency (EE) of the system. This is
because the use of a large number of antennas helps to form
an extremely narrow beam toward the UE’s location. As a
result, the transmit power of each single antenna user in a
massive MIMO system can be scaled down to the number
of BS antennas when perfect channel state information (CSI)
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is available, or to the square root of the BS antennas with
imperfect CSI [3].. Moreover, when the number of antennas at
the BS is increased to infinity, the effect of uncorrelated noise
and small-scale fading can be eliminated. As a result, even
simple linear signal processing techniques, such as matched-
filter (MF) and zero-forcing (ZF) precoding/detection, can
achieve a promising result.

In this chapter, we provide a comprehensive survey of mas-
sive MIMO. We first demonstrate the potential of deploying a
large number of antennas at the BS from the point of informa-
tion theory in Section II. In Section III, we focus on massive
MIMO related physical layer issues, including channel esti-
mation, signal detection, precoding, and pilot contamination.
Some non-ideal factors that limit the performance of massive
MIMO, such as imperfect CSI and non-ideal hardware, are
also examined. In Section IV, massive MIMO networking
issues such as interference coordination, user association and
scheduling, and backhaul connections are introduced. Section
V presents an overview of the integration of massive MIMO
with other 5G technologies, e.g., mmWave, non-orthogonal
multiple access (NOMA), and RF-energy harvesting. Section
VI identifies the future research trends and challenges. Finally,
Section VII concludes this chapter.

II. FROM REGULAR MIMO TO MASSIVE MIMO

In this section, we review the advantages of massive MIMO
from the perspective of information theory. We show that both
point-to-point massive MIMO and multiuser (MU) massive
MIMO have the potential to achieve its maximum channel
capacity [4]. In addition, simple linear signal processing
algorithms become optimal [5].

A. Point-to-point MIMO

Fig. 1 shows a point-to-point MIMO system where the
transmitter and receiver are equipped with Nt and Nr an-
tennas, respectively. The received signal, y ∈ CNr×1, can be
expressed as

y =
√
ρHx+ n, (1)

where ρ is the transmit power, x ∈ CNt×1 is the transmitted
signal with normalized power, i.e., E{||x||2} = 1, n ∈ CNr×1

is the noise and interference, and H ∈ CNr×Nt is a narrow-
band time-invariant channel matrix. For a frequency-selective
wide-band channel, the orthogonal-frequency division multi-
plexing (OFDM) technology helps to convert it into multi-
ple parallel narrow-band subchannels. When the transmitted
signals are Gaussian distributed, the achievable rate can be
expressed as

C = log2 det
(
I+

ρ

Nt
HHH

)
. (2)
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Fig. 1: point to point MIMO system
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Fig. 2: MU-MIMO system

From (2), it can be seen that the achievable rate depends on
the distributions of the singular values of HHH . Assume the
channel matrix is normalized, i.e., tr(HHH) = NrNt, with
the random matrix theory and Jensen’s inequality, [4] shows
that the achievable rate is bounded by the following bounds

log2(1+ρNr) ≤ C ≤ min(Nr, Nt) log2

(
1 +

ρmax(Nr, Nt)

Nt

)
.

(3)
When the singular values of HHH are all equal, the highest
achievable rate can be attained. When the singular values of
HHH only contains one non-zero value, the lowest achievable
rate is attained. The best performance can be approached
by a rich scattering environment, e.g., Rayleigh fading while
the worse performance corresponds to a line-of-sight (LOS)
transmission.

Without loss of generality, now suppose the number of trans-
mit antennas greatly exceeds the number of receive antennas,
i.e., Nt � Nr and Nt →∞. In this case, the row vectors of
the channel matrix H become asymptotically orthogonal, i.e.,
HHN ≈ NtINr . The achievable rate becomes

C ≈ Nr log2(1 + ρ), (4)

which is exactly the upper bound in (3). Similar analysis
can be done when the number of receive antennas greatly
exceeds that of the transmit antennas. Hence massive point-to-
point MIMO has the potential to achieve the best theoretical
performance.

B. Multiuser MIMO

Multiuser MIMO (MU-MIMO) refers to a system where
multiple users are served by a BS with massive antennas si-

multaneously using the same time-frequency resources. Fig. 2
shows an MU-MIMO system, where a BS with N antennas
serves K single antenna users. The channel coefficient be-
tween the kth user to the nth antenna of the BS is denoted by
hk,n. Suppose each channel coefficient is composed of two
parts, the small-scale fading part and the large-scale fading
part. The large-scale fading caused by path loss are the same
for different antennas at the same BS, while the small-scale
fading part is different for different antennas as well as UEs.
Then hk,n can be expressed as

hk,n = gk,n
√
dk, (5)

where gk,n and dk represent the small-scale and large-scale
fading, respectively. Then the channel matrix from all K users
to the BS can be expressed as

H =

h1,1 · · · hK,1

...
. . .

...
h1,N · · · hK,N

 = GD
1
2 (6)

where

G =

 g1,1 · · · gK,1

...
. . .

...
g1,N · · · gK,N

 ,D =

d1 . . .
dK

 . (7)

Assume the small-scale fading coefficient for different users
are identically distributed and independent, then GHG ≈
NIK . As a result, the column channel vectors of the channel
matrix H will become asymptotically orthogonal when the
number of BS antennas is increased. That is

HHH = D
1
2GHGD

1
2 ≈ ND

1
2 IKD

1
2 = ND. (8)

In massive MIMO where the number of BS antennas greatly
exceeds the number of single antenna UEs, the channel vector
between the BS and UEs become nearly orthogonal as shown
in (8). This is called the favorable propagation, which is one of
the key properties of massive MIMO. In this case, the system
channel capacity can be expressed as

C = log2 det
(
I+ ρHHH

)
(9)

≈ log2 det (I+ ρND) (10)

=

K∑
k=1

log2(1 +Nρdk), (11)

where the noise power is assumed to be 1.
Now consider the uplink transmission, the received signal

at the BS can be expressed as

y =
√
ρHx+ n, (12)

where x ∈ CK×1 is the signal vector from all users with
E[x2k] = 1 and n ∈ CN×1 is the Gaussian noise vector with
zero mean and identity covariance matrix. Suppose at the BS,
we adopt a matched-filter (MF) receiver as

HHy = HH(
√
ρHx+ n)

=
√
ρNDx+HHn. (13)

From (13), it can be seen that the MF receiver can mitigate
interference between different users, since D is a diagonal
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matrix. Hence the MIMO channel can be viewed as several
parallel SISO channels. Consequently, the channel capacity
in (11) can be achieved. For downlink transmission, similar
analysis can also be done to show that simple signal processing
techniques are optimal and can achieve channel capacity in
massive MU-MIMO systems.

III. PHYSICAL LAYER TECHNOLOGY

A. Single-cell Performance

1) Channel Estimation: Massive MIMO can work in two
modes: the time-division duplexing (TDD) mode and the
frequency-division duplexing (FDD) mode. The success of
multi-user precoding and signal detection relies on the avail-
ability of precise CSI.

For TDD massive MIMO, in the uplink channel estimation
stage, the BS can obtain an estimate of the uplink channel
based on the pilots that it received from the users. The
required time or frequency resource is proportional to the
number of transmit antennas and is irrelevant to the number
of BS antennas. In the downlink stage, channel reciprocity
can be applied to obtain an estimate of the downlink CSI.
Hence, it is relatively easy to do channel estimation in TDD
massive MIMO. For FDD massive MIMO, in the uplink
channel estimation stage, similar to TTD massive MIMO
channel estimation, the required time or frequency resource
is irrelevant to the number of BS antennas. However, in
the downlink CSI estimation, since the uplink and downlink
channel uses different frequencies, the CSIs corresponding to
the uplink and downlink are different. As a result, channel
reciprocity cannot be leveraged. The BS has to send pilots to
all users and then all users send their estimated CSI back to the
BS. The required time or frequency resource is proportional
to the number of BS antennas, which becomes infeasible as
the number of BS antennas goes to infinity.

Common channel estimation methods include some sim-
ple linear estimation techniques, such as zero-forcing (ZF)
and minimum mean square error (MMSE) estimators. They
achieve a promising result with low complexity. Furthermore,
some works leverage the theory of compressed sensing [6]–[8],
subspace methods [9]–[11], Bayesian estimation theory [12],
[13] and so on. These methods differ in their complexity,
performance metric, applied channel fading types, and the
number of users.

2) Signal Detection: MIMO signal detection refers to the
process to detect/decode the transmitted symbols from the
received signals. It was proven to be an NP-hard problem [14],
hence all algorithms that are conceived for achieving the opti-
mal solution have an exponentially increasing complexity. As
a result, the optimal maximum-likelihood (ML) criterion based
MIMO detection or maximum a posterior (MAP) criterion
based MIMO detection becomes excessive as the number of
BS antennas goes to infinity. To solve this problem, a lot of
low-complexity, yet sub-optimal MIMO detection algorithms
have been proposed.

Reference [15] presents a comprehensive literature review of
MIMO detection methods proposed in the past 15 years. The
algorithms surveyed can be classified into two types, linear

methods and non-linear methods. Linear methods include
conventional ZF, MMSE, MF methods. Nonlinear methods
include interference cancellation methods [16], tree-search
methods [17], lattice-reduction aided methods [18], proba-
bilistic data association (PDA) methods [19], semidefinite
programming relaxation methods [20], and so on.

Recently, more advance MIMO detection methods, such
as bayesian based message passing methods [21], [22] as
well as convex optimization based methods [23], have been
proposed. All these algorithms aim to strike a balance between
performance and complexity.

3) Precoding: Just as multiuser detection ensures reliable
uplink transmission, precoding at the BS guarantees reliable
downlink transmission. The linear and non-linear methods that
is used in uplink detection can similarly be adapted to the
downlink precoding. Reference [24] presents an overview of
linear massive MIMO precoding methods as well as their
performance. Apart from linear precoding, many works design
different types of precoding for different scenarios and present
their performance analysis, e.g., hybrid precoding [25], [26],
constant-evelop precoding [27], optimization based precod-
ing [28], quantized precoding [29], and two-stage precod-
ing [30].

B. Multi-cell Performance

1) Pilot Contamination: Consider an MU-MIMO system
with L cells, where each cell has one BS with N antennas
and K single antenna users as shown in Fig. 3. Without loss
of generality, we consider the uplink transmission in a TDD-
based massive MIMO system, where the BS receives pilot
sequences from different users for uplink channel estimation.
Ideally, the pilot sequences used by different users should be
orthogonal so that the estimated channel vectors of different
users are not correlated. However, the number of orthogonal
pilot sequences is limited by the channel coherent time, which
in turn limits the number of served users. As a result, pilot
reuse has to be employed in different cells and the pilot
sequences used by different users become correlated. The
performance of the system will be limited by the interference
imposed by pilot reuse. This phenomenon is know as pilot
contamination and it is widely recognized as one of the
most important factors that limit the performance of multi-
cell massive MIMO systems.

Suppose each cell uses the same set of orthogonal pilot
sequences and identical pilot sequences are assigned to users
in neighboring cells. During uplink transmission, the BS will
receive interference from undesired users. For example, in
Fig. 3, the BS in cell 2 will not only receive the desired pilot
sequences from UE k in cell 2, but also receive interference
from users in neighboring cells. As a result, the BS in cell
2 will receive strong directional interference. The estimated
channel vector in each cell will be a linear combination
of channel vectors of users that adopt the same pilot se-
quences [5].

The performance under pilot contamination in massive
MIMO is analyzed in many works, e.g., see [2], [31], [32].
Reference [2] shows that with increase of the number of BS,
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Fig. 3: An illustration of uplink pilot contamination

the fast-fading effect and intra-cell interference will disappear
while the inter-cell interference caused by pilot contamina-
tion will remain. Reference [31] shows that the signal-to-
interference-plus-noise (SINR) will saturate due to the in-
accurate channel estimation caused by pilot contamination.
Without pilot contamination, the SINR will increase linearly
with the number of of antennas at the BS. Reference [32]
again uses random matrix theory to show that the uplink
channel estimates are prone to pilot contamination and the
system performance is limited by pilot contamination. A
comprehensive survey on massive MIMO pilot contamination
can be found in [33].

2) Mitigating Pilot Contamination: Approaches that can
mitigate pilot contamination can be classified into two
categories, namely, pilot-based scheme and subspace-based
scheme. In pilot-based approaches, the BS does not receive
pilots in a non-overlapping fashion. Reference [34] proposes
a time-shifted pilot transmission scheme to reduce the pilot
contamination in multi-cell massive MIMO. The idea is to
shift the location of the pilot sequences so that the pilot
sequences for different cells do not overlap in time. Along with
proper power control, this scheme can achieve a promising
performance in eliminating pilot contamination. However, due
to the multi-layer nature of emergence heterogeneous network,
it is not easy to synchronize pilots across different cells.
Pilots may always overlap in the network. Reference [35]
combines both uplink and downlink training and designs a
sophisticated contamination elimination scheme for multi-cell
TDD and OFDM based massive MIMO systems. The BS can
eliminate the pilot contamination completely by exploiting the
estimated frequency-domain channel transfer function in the
downlink training stage. A drawback is the training overhead
will increase with the number of interfering cells.

In subspace-based approaches, second order statistics from
the desired users and the interfering users are exploited.
Reference [36] first observes that the covariance matrices of
the desired users and the interference users span distinct sub-
spaces. The exploitation of the second order statistics can lead
to a complete removal of pilot contamination when the number
of BS antennas goes to infinity. Based on this observation, a

coordinated pilot sequence assignment strategy is proposed to
offer a powerful way to discriminating across interfering users.
Reference [37] performs singular value decomposition on the
received signal matrix to separate the interference subspace
from the desired signal space. Then a power-controlled hand-
off strategy is used to mitigate pilot contamination.

In addition to the second order statistics, to further enhance
the performance of pilot contamination, many works begin to
use more information to enhance the performance of pilot con-
tamination elimination, for example, the information of large-
scale fading channels [38], [39] and location information [40].
Recently, Reference [41] points out that pilot contamination
is no longer a limiting factor for massive MIMO system if
proper precoding and combing methods are used. However,
the resulting channel estimation error from pilot contamination
will still degrade the system performance.

C. Non-ideal Factors

In practice, there may be many issues that cause massive
MIMO performance degradation, e.g., hardware impairments
and imperfect CSI [42].

1) Non-ideal Hardware: Reference [43] analyzes the ca-
pacity and estimation accuracy of massive MIMO with non-
ideal hardware. The hardware impairments, including amplifier
nonlinearity, I/Q imbalance, and phase noise, are modeled as
additive distortion noise. Analysis shows that the hardware
impairments limit the performance of massive MIMO in both
single-cell and multi-cell scenarios. Despite that, massive
MIMO still shows robustness to hardware impairments due
to its huge degrees of freedom (DoF). For example, refer-
ence [44] shows that massive MIMO systems still achieve
a high spectral efficiency under Rician fading channel with
transceiver hardware impairments.

2) Imperfect CSI: Imperfect CSI can be caused by both
channel estimation error and channel aging. In TDD channel
estimation, due to pilot reuse in multi-cell scenarios, the
estimated CSI is contaminated by interference [45]. As a
result, various pilot contamination mitigation techniques have
been proposed to help obtain a more accurate CSI. Besides
CSI estimation errors, due to time variation of the propa-
gation channel and delay, the CSI changes between when
it is estimated at the BS and when it is used for detection
and precoding, which is referred as channel aging [46]. For
example, in high speed vehicles such as bullet trains, the
channel various fastly. As a result, the achievable sum-rate
would degrade significantly. In order to mitigate the effects
of channel aging, reference [46] proposes an optimal causal
linear finite impulse response (FIR) wiener predictor. The idea
is to use the current and past observations to predict future CSI
so that the impact of channel aging can be reduced.

IV. NETWORKING TECHNOLOGY

Although physical layer massive MIMO technology pro-
vides foundations for efficient and reliable communications
in practical systems, the upper layer technology also plays a
vital role in harvesting an attainable performance of massive
MIMO systems.
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A. Interference Coordination
Interference coordination is a fundamental problem from

the beginning of mobile communication. Since the 2G wireless
systems, frequency reuse has been adopted to achieve a higher
spectral efficiency. In future generation wireless communica-
tion systems, a more sophisticate scheme to coordinate the
interference to further improve the spectral efficiency is always
needed.

1) Homogeneous Networks: Homogeneous massive MIMO
network is a single tier system where all the BS are working
with the same access methods and type of transmissions. Fig. 3
is a typical homogeneous massive MIMO network. The BS
either cooperates or non-cooperates with each other to serve
a number of homogeneous UEs.

A single-cell massive MU-MIMO is the simplest homoge-
neous network. The main interference comes from intra-cell
interference caused by neighboring UEs that work in the same
time-frequency slot in the same cell. Physical layer technolo-
gies such as MU-MIMO precoding can be used to mitigate
such interference. In the upper layers, appropriate user selec-
tion and scheduling schemes that decide which user should
be selected for transmission at a particular time/frequency slot
also contributes to alleviation of interference. For multi-cell
massive MU-MIMO, the interference coordination problem
becomes even more complex due to the inter-cell interference
brought about by adjacent cells. In general, novel interfer-
ence coordination algorithms should jointly consider user
selection/scheduling, precoding/beam-forming, and resource
(power/channel/frequency) allocation.

Reference [47] first addresses the importance of resource
allocation and user scheduling in a multi-cell massive MIMO
system. The main idea is to partition the UEs into equivalent
classes and intelligently allocate the time-frequency resources.
Based on this observation, reference [48] further considers the
number of UEs that should be scheduled per cell to maximize
the system spectral efficiency. The derived results shed insights
on efficient system-level analysis with power control, pilot
reuse, and user locations. Reference [30] proposes a two-stage
precoder design to coordinate interference as well as reduce
the downlink training and feedback overhead in FDD massive
MIMO systems. The first stage works by grouping users
with the same second order downlink statistics into groups
and inter-group interference is suppressed. The second stage
uses instantaneous effective channel realizations to mitigate
the intra-group inferences. This way, the dimension of the
effective channel is significantly reduced without sacrificing
the sum capacity of the system. Following [30], several works
that use different user grouping methods, such as k-means
clustering [49], hierarchical clustering, and k-medoids clus-
tering [50], have been proposed. In [51], the BS deployment
density, pilot reuse factor, and the number of UEs to be served
are jointly optimized to maximize the system energy efficiency
(EE).

2) Heterogeneous Networks: With the demand for higher
data rates, a promising solution is to reduce the size of the cell.
By reducing the covering area of the cell (i.e., to form small
cells [52]), the transmit power can be reduced and spectral
efficiency can be increased due to a higher frequency reuse. At
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Fig. 4: An illustration of massive MIMO HetNet.

the same time, the original macro cell provides services to the
UEs that are not covered by the small cell and to receivers that
are of high mobility, e.g., in trains. A heterogeneous network
(HetNet) is a combination of macro cell, pico cell, and femto
cell [53]. It provides an increased spectral efficiency and a
flexible covering area.

Fig. 4 shows an example of massive MIMO HetNet, where
the macro BS (MBS) equipped with large antenna arrays
work with small cell BSs (SBS) collectively to serve UEs.
Different from homogeneous massive MIMO, heterogenous
massive MIMO is a multi-tier system. The UEs can belong
to any BS in any tier. This brings about a user association
problem [52], [53]. Moreover, if the SBS are operated at the
same time-frequency slots as the MBS, there would be severe
inter-tier interference. This together with the existing intra-cell
and inter-cell interference makes interference coordination in
massive MIMO HetNet even more challenging.

The user association problem was often formulated as an op-
timization problem with different goals, such as maximize the
system capacity [54] , minimize the power consumption [55],
maximize the network utility [56], and maximize energy
efficiency [57]. Either centralized or distributed algorithms can
be used to provide low-complexity solutions. To address the
interference cancellation problem, in addition to the techniques
used in homogenous massive MIMO networks, new techniques
that leverage the transmission property of massive MIMO
have been proposed. For example, reference [58] exploits
the directional property of massive MIMO channel to limit
the MBS’s transmission energy only in certain directions and
create space for SBS lying in other directions. The interference
between MBS and SBS can be significantly mitigated and the
system achieved a significant gain. Reference [59] observes
that the CSI acquirement of interfering links is difficult with
dense small cell deployment and proposed a nested array
approach to filter the desired and interference signals in the
analog domain. The corresponding user association and inter-
ference cancellation problem is jointly formulated as an integer
programming problem, which can be solved by distributed
algorithms. Generally, user association, resource allocation,
and interference management should be jointly considered.
Based on the different targets to be optimized, optimization
algorithms can be designed to achieve a tradeoff between
complexity and system performance.
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B. Backhaul Design

Most works assume wired backhaul connections between
SBS and MBS to support a high and reliable data transmission.
However, in practice, wired connection may not be cost-
effective and sometimes may be infeasible. It is also inconve-
nient to upgrade when the topology of the network changes. As
a result, wireless backhaul transmission becomes a promising
candidate [60], [61]. However, the use of wireless backhaul
also gives rise to additional source of interference, which
will impact the cell associations and interference coordination
methods.

In fact, massive MIMO-enabled wireless backhaul can be
quite reliable and flexible. As shown in Fig. 4, the MBS is
equipped with a large-scale antenna array and a wired high-
capacity backhaul connection. The single antenna SBS, on the
other hand, communicates with the MBS via in-band wireless
backhaul. The MBS sees the wireless backhaul transmission
as a special UE. Due to the spatial DoFs in massive MIMO,
both intra-cell interference and inter-cell interference can be
mitigated [4] with existing interference cancellation methods.
MBS can provide high data rates to multiple wireless back-
hauls with simple linear processing methods.

Reference [62] formulates the joint cell association and
wireless backhaul bandwidth allocation problem as mixed-
integer nonlinear programming problem. A proposed two-
level hierarchical decomposition-based method is shown to
be efficient to address the problem to maximum the sum
rates. Reference [63] investigates the problem of frame design,
resource allocation, and user association in a massive MIMO
HetNet with wireless backhaul transmission. This problem is
formulated as an integer programming, which is solved by
both centralized and distributed algorithms. Reference [64]
uses stochastic geometry to model the massive MIMO-enabled
wireless backhaul HetNet and a closed-form expression for
coverage probability is derived. Reference [65] surveys the
evolution of small cells and its impact on the baseband pro-
cessing of the radio access network. The impact of the back-
hauling mechanism on the radio resource management have
been discussed in the context of cell association, bandwidth
allocation, and inter-cell coordination in a massive MIMO
HetNet.

To support a higher rate, wireless backhaul is often associ-
ated with millimeter-wave (mm-wave) transmission because
mmWave can be leveraged to provide potential Gigahertz
transmission bandwidth and strong signal directivity and reli-
ability [66], [67].

V. INTEGRATION WITH OTHER 5G TECHNOLOGIES

A. mmWave-Massive MIMO

Different from most existing wireless systems that operate
at carrier frequencies below 6GHz, the mmWave makes use of
spectrum from 24GHz to 300 GHz and provides huge available
bandwidth [68]. Mm-wave wireless communications provide
extremely high data rates for applications such as vehicular
networks, wireless backhaul transmissions, and short-range
communications. Meanwhile, massive MIMO provides huge
gains from the massive antenna arrays used. When mmWave

massive MIMO is deployed in HetNet, the benefits of the three
key 5G core technologies can be harvested to a very large
extend, realizing the anticipated 1000-fold capacity increase
promised by 5G networks [69], [70].

In the physical layer, mmWave massive MIMO channel is
specular and have low rank. They are generally incapable
of exploiting all the DoFs promised by the large antenna
array. Hence the achievable gain is limited. These features
have to be incorporated into the process of channel modeling
and measurement, channel estimation, precoding schemes, and
detection algorithms [71].

1) Channel Modeling: Reference [72] addresses the impor-
tance of spatial and temporal fading correlation in MIMO com-
munications. Since analytical models such as Rayleigh fading
scattering is too rich for mmWave channels, reference [73]
presents measured results and observes that the received signal
power and the parameters such as angle-of-arrival of accurately
model the spatial and temporal correlations of mmWave chan-
nels. Reference [74] presents a 3D statistic channel modeling
method for mmWave MIMO channels, while [75] carries
out mmWave massive MIMO channel measurements and the
measurements are verified by the theoretical channel models.

2) Channel Estimation: MmWave massive MIMO chan-
nels exhibit sparsity and low-rank properties, hence channel
estimation methods can be classified according to whether
compressed sensing (CS) is used or not. The CS theory shows
that if a signal preserves some sparsity in a certain domain,
then it can be recovered with very few sample measurements.
Different CS methods are leveraged to obtain the CSI in
mmWave massive MIMO channel, e.g., orthogonal match-
ing pursuit (OMP) [76], message passing [77], and sparse
Bayesian learning [12]. The key idea is to efficiently use the
sparsity of mmWave channel in the angle-domain. Non-CS
based methods exploits the the structural characteristics of
mmWave beam-space channel. For example, reference [78]
proposes a support-detection scheme, where the total beam-
space channel estimation problem is decomposed into a series
of sub-problems. Each sub-problem can be solved by classical
algorithms, such as least square (LS). As a result, the com-
plexity of this algorithm is pretty low. Reference [79] pro-
poses a channel estimation method based on the direction of
arrival (DoA) estimation. The proposed method achieves better
performance than conventional linear minimum mean squared
error (LMMSE) estimation in terms of ergodic throughput.

3) Hybrid-precoding: The design of precoding is extremely
important to cancel the interference from different UEs. For
MIMO in conventional cellular frequency bands, precoding is
realized in the digital domain. When the conventional digital
precoding is applied to the mmWave massive MIMO, the
associated energy consumption and hardware cost would be
considerably high due to the large number of RF chains and the
wide band at the mmWave frequency. To solve this problem,
reference [80] proposes a hybrid analog and digital precoding
scheme. As shown in Fig. 5, the conventional digital precoder
is divided into a small-sized digital precoder with very few RF
chains and a large-size analog precoder with a lot of cheaper
analog phase shifters. This hybrid structure can enjoy a much
higher energy efficiency without a significant performance
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Fig. 5: The mmWave massive MIMO system with a hybrid
precoding structure.

degradation [26].
In the context of mmWave massive MIMO hybrid precod-

ing, a quantity of researchers have devoted to develop low-
complexity precoding algorithms with enhanced performance.
Reference [81] exploits the mmWave channel’s sparsity to
formulate the hybrid precoding problem as a sparse recon-
struction problem. The proposed basis pursuit algorithm can
accurately approximate optimal unconstrained precoder. Dif-
ferent from [81] that assumes the availability of full CSI,
reference [82] assumes the availability of only a limited
feedback channel between the BS and UEs.

The developed codebook design based hybrid precoding
enjoys a low complexity and outperform the analog-only
solutions. However, it suffers from a performance loss and
it is not clear how large the performance gap from optimal
is. In view of this, reference [83] proposes a successive in-
terference cancelation (SIC)-based hybrid precoding structure.
The total achievable rate optimization problem was decom-
posed into a series simple sub-rate optimization problems,
each of which can be solved efficiently. Simulations show
that the SIC-based algorithm is near-optimal and a higher
energy efficiency than the spatially sparse precoding. Also,
the joint optimization of analog and digital precoding can
be formulated as a constrained matrix factorization problem.
Some works propose efficient algorithms to solve this problem,
e.g., the alternating minimization (AltMin) algorithm [84] and
the Broyden-Fletcher-Goldfarb-Shanno-based algorithm [85].
More recently, a deep learning based mmWave massive MIMO
hybrid coding approach is proposed to achieve an enhanced
spectrum efficiency with reduced complexity [86].

4) Low Resolution ADC: MmWave massive MIMO is a key
candidate for 5G cellular. In practice, more antennas means
more extra radio-frontends (RF) chains. High energy consump-
tion and hardware cost caused by numerous RF chains can be
overwhelming. A possible solution is to use low-resolution
analog-to-digital converters (ADCs). As shown in Fig. 6, each
receive antenna is connected with two low-resolution ADCs,
one for the in-phase element and the other for the quadrature-
phase element. The low noise amplifier (LNA), automatic gain
control (AGC), and variable gain amplifier (VGA) are used so
that the signal is within a certain range before the baseband
signal processing unit. Those low-resolution ADCs decrease
both the power consumption and hardware cost and also
relax the baseband hardware requirements. However, this also
imposes great challenge on signal processing techniques due
to the non-linear distortion caused by coarse quantization [87].

LNA VGA
Re(.)

Im(.)

ADC
ADC

AGC

LNA VGA
Re(.)

Im(.)

ADC
ADC

AGC

Baseband
Processing··

·
<latexit sha1_base64="DiZ9+YxcjXZulCjqKXH/fodnCtE=">AAACMHicbVC7SgNBFJ31GeMrUTtBFoOQKuzGQjsDNpYJmAckS5idnU3GzO4sM3eVsGxpb6sfYWGVT9FKbPUnnDwKk3hg4HDOvdwzx404U2BZH8bK6tr6xmZmK7u9s7u3n8sfNJSIJaF1IriQLRcryllI68CA01YkKQ5cTpvu4HrsN++pVEyEtzCMqBPgXsh8RjBoqdEhngDVzRWskjWBuUzsGSlcvY5qP48no2o3bxx1PEHigIZAOFaqbVsROAmWwAinabYTKxphMsA92tY0xAFVTjKJm5pnWvFMX0j9QjAn6t+NBAdKDQNXTwYY+mrRG4v/ee0Y/EsnYWEUAw3J9JAfcxOEOf676TFJCfChJphIprOapI8lJqAbmrsSxByYFA/psqrjzqtRz4+4bjHN6h7txdaWSaNcss9L5ZpVqBTRFBl0jE5REdnoAlXQDaqiOiLoDj2hZ/RivBnvxqfxNR1dMWY7h2gOxvcv1SGupA==</latexit>

RF chain

RF chain

Fig. 6: MmWave massive MIMO receiver architecture with
low-resolution ADCs.

To this end, reference [88] shows that the knowledge of
CSI is essential to realize the performance gain of mmWave
massive MIMO with low resolution ADCs. However, there
would be a severe degradation due to the non-linearity of low
resolution ADCs. As a result, various works develop efficient
algorithms to improve the channel estimation quality. For ex-
ample, reference [89] exploits the sparsity nature of mmWave
MIMO channels in the angular domain and develops an
efficient algorithm based on generalized approximate message
passing (GAMP). A superior performance can be achieved.
Reference [90] converts the channel estimation problem into a
convex optimization problem, which can be solved by off-the-
shelf methods. This work provides a complete low power so-
lution for uplink massive MIMO channel estimation. Another
research line is signal detection algorithms. Reference [91]
shows that the classical maximum ratio combining (MRC) and
ZF detector suffer from substantial performance degradations
in high SNR regimes. As a result, message passing detectors
and convex optimization based detectors are developed in [22]
and [90], respectively.

B. Massive MIMO with Non-orthogonal Multiple Access

Different from conventional orthogonal multiple access,
non-orthogonal multiple access (NOMA) can accommodate
much more users via non-orthogonal resource allocation via
either power-domain multiplexing or code-domain multiplex-
ing [92], [93]. When NOMA is combined with MIMO, the
capacity can be further improved [94]. For single-cluster
MIMO-NOMA, the users use SIC to suppress intra cluster
interference. For multi-cluster MIMO-NOMA, as shown in
Fig. 7 the users need to be first partitioned into different
clusters. The full potential of MIMO-NOMA is realized by a
joint design of user clustering, beam-forming, SIC, and power
control [95].

The application of NOMA in (mmWave) massive MIMO
is highly anticipated. However, due to the features of massive
antennas, sparse correlated channels, and possible hybrid (ana-
log/digital) precoding structures, the existing MIMO-NOMA
structure needs to be adjusted. Recently, NOMA has been,
for the first time, integrated with mmWave massive MIMO
in [96], where a dynamic power control scheme is used
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Fig. 7: A multi-user MIMO-NOMA system with 2 clusters
and 4 users.

to maximize the system energy efficiency. Besides beam-
forming design and power control, when NOMA technology
is deployed in HetNets, joint user scheduling and resource
allocation should be considered [97]. This is a challenging
and important research direction for future work.

C. RF Energy Harvesting with Massive MIMO

Wireless energy transfer has been viewed as a promis-
ing technique to address energy and lifetime bottlenecks for
power-limited UEs. By forming the radiative electromagnetic
(EM) wave emitted from the transmitter into a narrow beam
and delivering the energy to the wireless UEs, the UEs can
receive both energy and information simultaneously [98]. Si-
multaneous wireless information and power transfer (SWIPT)
offers great flexibility to UEs with concurrent data and energy
supplies and cuts the last mile limiting the true wireless
communications [98], [99].

In wireless powered communication network (WPCN), the
access point (AP) equipped with multiple antennas first deliver
energy to multiple single-antenna UEs via downlink trans-
missions, then the UEs use the harvested energy to perform
uplink transmissions, as shown in Fig. 8. However, due to the
channel propagation loss, the efficiency of energy harvesting
is not high. Massive MIMO, on the other hand, provides
sharp energy beams towards UEs and hence improves the
energy efficiency. Reference [100] considers a massive MIMO
system powered by wireless energy harvesting and studies
the throughput maximization problem. In [101], the overall
power transfer efficiency and energy efficiency of the massive
MIMO system with wireless energy transfer is studied. The
overall system performance is analyzed and it is demonstrated
that the energy efficiency benefits from operating the system
in the large antenna regime. Reference [102] considers two
working modes for the receiver to harvest energy from the
received signal, i.e., the power splitting mode and the time
switching mode. Results show that the power splitting mode
outperforms the time splitting mode in terms of system EE
and the minimum transmission rate.

VI. RESEARCH TRENDS

A. Integration with Machine Learning

Machine learning has achieved great success in many fields,
such as computer version, natural language processing, and
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Fig. 8: A wireless power communication network (WPCN).

robot control. Intelligent mobile networking which integrates
machine learning with wireless networks is becoming more
and more popular [103]–[105]. Reference [106] introduces the
potential of applying machine learning to the next-generation
wireless networks including massive MIMO systems. The
work reveals that machine learning in 5G is an exciting
research area. Reference [107] shows that there are great
opportunities and challenges when artificial intelligence (AI) is
incorporated into the 5G network. Generally, machine learn-
ing can be categorized as supervised learning, unsupervised
learning, and reinforcement learning, as shown in Fig. 9. In
this section, we will introduce how these methods are applied
to the field of massive MIMO communication systems.

1) Supervised Learning: Supervised learning infers the
mapping function from labeled training data. In massive
MIMO where the associated antenna number can be sev-
eral hundreds, physical layer issues such as detection and
channel estimation generally lead to a high-dimensional and
high complexity search problem. Machine learning, especially
supervised learning, can address these problems with effective
learning models, such as support vector machine (SVM) and
deep neural networks (DNN). For example, reference [86]
proposes a deep-learning based mmWave massive MIMO
hybrid precoding scheme, where a DNN is used to learn the
optimal mapping through training. The obtained precoder is
capable to achieve enhanced spectrum efficiency with much
lower complexity. Reference [108] presents a DNN as a
general framework for MIMO detection. The developed DNN
based detector can learn a mapping from the received symbols
and channel matrix to the input symbols. Compared with other
detectors, DNN based detector is computationally inexpensive
and has near-optimal accuracy without the knowledge of
signal-to-noise (SNR) level. Reference [109] uses a DNN
to learn the wireless channel statistics. The proposed deep
learning based scheme is able to achieve a better performance
in terms of DOA estimation and channel estimation.

Besides physical layer signal processing, some recent works
also use supervised learning in upper layers. For example, ref-
erence [110] leverages a convolutional neural network (CNN)
to learn the sparse structure of massive MIMO channel for
positioning purposes. A high positioning accuracy can be
achieved as long as the training dataset size is large. Ref-
erence [111] leverages the universal approximation property



9

Machine learning in massive MIMO

Supervised learning Unsupervised learning Reinforcement learning

Regression model
SVM/DNN/CNN

(Physical layer)
channel estimation

MIMO detection
Hybrid precoding
DOA estimation

(Network layer)
User positioning
User association

Clustering
K-means

User association
HetNet clustering

Dimension reduction
Autoencoder/PCA/ICA

Joint encoding/decoding
CSI data reduction

Signal dimension reduction

Decision making
MDP/Q-learning

Channel control
Spectrum sensing

Power control

Fig. 9: The integration of machine learning with massive MIMO.

to learn the optimal user association strategy with a DNN. It
guarantees the same performance of traditional optimization
methods with a huge complexity reduction.

2) Unsupervised Learning: Unsupervised learning aims to
find the hidden pattern and structure from unlabeled data. It
can be utilized for cell clustering in massive MIMO Het-
Nets, user grouping, load balancing. and signal dimension
reduction. For example, reference [112] applies deep unsu-
pervised learning with a loss function to jointly optimize
the encoding, decoding, and signal processing modules. This
work helps to illustrate the power of autoencoder in learning
the encoding/decoding process for complex channels. Refer-
ence [113] uses an autoencoder to learn a representation for
the dimension reduction of FDD massive MIMO CSI data.
The proposed methods performed well at low compression
ratios with reduced complexity. Reference [50] uses various
clustering algorithms in unsupervised learning to group users
that have similar covariance matrices. This way, the CSI
overhead in FDD massive MIMO can be greatly reduced.
Reference [114] uses the principal component analysis (PCA)
to reduce the dimension of the received signal and uses the
independent component analysis (ICA) to estimate channels.

3) Reinforcement Learning: Reinforcement learning solves
the decision-making process in a dynamic iterative manner. It
can be used to infer the UE’s decision making under unknown
wireless networks, for example, channel access control and
power control problems in massive MIMO HetNets. Refer-
ence [115] considers a MIMO-NOMA system and formulates
the anti-jamming transmission as a game. A Q-learning based
transmission power control strategy that adaptively adjusts the
UE’s transmission power according to the observed state of the
radio environment and the jamming power is then proposed.

Reference [116] proposes a dynamic transmission power con-
trol scheme to improve the mmWave massive MIMO non-
line-of-sight (NLOS) transmission performance. Particularly,
this work applies a CNN to estimate the Q-function offline
and uses a deep Q-learning to get the optimal power control
online. As a result, the NLOS transmission performance can
be enhanced.

B. Extremely Large Aperture Arrays

As the spectral efficiency of massive MIMO grows mono-
tonically with the number of BS antennas, we can expect
deploy hundreds or thousands of antennas to serve a few
users. Instead of gathering these antennas together, we can
distribute the antennas over a large area, e.g., the surface of
each window in a tall building. This is called extremely large
aperture arrays (ELAA). Different from conventional massive
MIMO that uses channel hardening to average small-scale
fading, ELAA relies on the great spatial resolution to make
different users have nearly orthogonal channels. In ELAA, the
spatial resolution of the antenna array is not determined by the
number of BS antennas, but instead by the array’s aperture.
The ELAA terminology describes a family of recent research
topics, e.g., cell-free massive MIMO [117]–[119], network
MIMO [120], distributed massive MIMO [121], and large
intelligent surface [122].

ELAA aims to provide orders-of-magnitude higher through-
put than massive MIMO with compact antenna arrays. For
example, a special ELAA system, a cell-free massive MIMO
system is illustrated in Fig. 10. In cell-free massive MIMO, a
large number of distributed access points (APs) serve a much
smaller number of UEs simultaneously. There are no cell or
cell boundaries. All the APs exchange information through a
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Fig. 10: The concept of cell-free massive MIMO.

central processing unit (CPU). Since cell-free massive MIMO
combines the concepts of distributed MIMO and massive
MIMO, it can reap the benefits of both technologies. Ref-
erence [117] shows that cell-free massive MIMO system can
significantly outperform small-cell massive MIMO in terms of
throughput.

C. FDD Massive MIMO

In TDD massive MIMO, the UE sends pilot symbols to
the BS with large antenna arrays, allowing the BS to estimate
the uplink channels. With channel reciprocity, the downlink
channel can be predicted and the costly CSI feedback can
be avoided. However, in frequency-division duplex (FDD)
massive MIMO, DL and UL channel uses different frequencies
and channel reciprocity no longer applies. In FDD massive
MIMO, the downlink CSI can only be estimated by the
UE and fed back to the BS. The downlink training and
feedback overhead scales linearly with the number of BS
antennas, resulting a huge signaling overhead. Considering that
many wireless network providers nowadays have FDD licenses
and FDD massive MIMO promises compatibility to current
frequency assignment strategies for mobile communication, it
is important to develop efficient pilot reduction algorithms for
FDD massive MIMO systems.

Existing works aim to solve this problem with compressed
sensing (CS) techniques and vector quantization approaches.
For example, reference [123] uses quantization codebooks to
reduce the CSI feedback. However, it also complicates the
codebook design (which lead to heavier feedback overhead)
especially when the number of antennas is large. Refer-
ence [124] exploits the signal sparsity in spatial and frequency
domain resulted from spatially-correlated antenna arrays to
compress the CSI feedback. Reference [7] designs a distributed
compressive CSI estimation scheme, in which the compressed
measurement is observed at the UEs locally and the CSI
recovery is performed at the BS jointly. The problem of
the CS-based algorithm is that it is still unclear whether
the general assumption on channel sparsity holds in practice.
Recently, more and more works apply deep-learning to FDD
massive MIMO systems. For example, reference [125] uses
a neural network at the BS to infer the DL CSI centered at
a specific frequency by only observing the UL CSI on an
adjacent frequency band around. This way, the feedback CSI

overhead can be completely removed. We still have to mention
that the machine learning based methods need to be tested in
practice to validate their practical gains.

VII. CONCLUSIONS

This paper provided a survey on massive MIMO systems,
including physical layer techniques, networking techniques,
integration with other 5G technologies, and future research
directions. By equipping the BS with hundreds of antennas,
the system can improve its spectral and energy efficiency
dramatically. However, to fully harvest the high potential of
massive MIMO, significant research are needed on a number
of issues, such as intelligent massive MIMO, ELAA system,
and FDD massive MIMO.
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