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Abstract—In recent years, reinforcement learning
(RL) has shown high potential for robotic applications.
However, RL heavily relies on the reward function, and
the agent merely follows the policy to maximize rewards
but lacks reasoning ability. As a result, RL may not be
suitable for long-horizon robotic tasks. In this paper,
we propose a novel learning framework, called multiple
state spaces reasoning reinforcement learning (SRRL), to
endow the agent with the primary reasoning capability.
First, we abstract the implicit and latent links between
multiple state spaces. Then, we embed historical ob-
servations through a long short-term memory (LSTM)
network to preserve long-term memories and dependen-
cies. The proposed SRRL’s ability of abstraction and
long-term memory enables agents to execute long-horizon
robotic searching and planning tasks more quickly and
reasonably by exploiting the correlation between radio
frequency identification (RFID) sensing properties and
the environment occupation map. We experimentally
validate the efficacy of SRRL in a visual game-based
simulation environment. Our methodology outperforms
three state-of-the-art baseline schemes by significant
margins.
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I. INTRODUCTION

Robotic task planning over long-time horizons, including
navigation, path planning, tasks allocation, etc., has been

a challenging, relevant, and hot topic in robotics since the last
century. As the number of acting steps and subtasks increases,
so does the complexity. Many of these applications require
robotic agents to complete a huge number of steps in unknown
surroundings, such as an autonomous robot patrolling, search-
ing, and recovering things in a massive uncharted structure.
Robots are being used increasingly in various environments to
perform activities, such as inventory counting in retail stores
and warehouses[1,2]. In Ref. [3], the authors reduced the long-
horizon policy learning problem to finding a hierarchical and
goal-conditioned policy, in which the low-level policy takes
only a fixed, small number of steps to complete. They used
a kitchen as a simulation environment consisting of short se-
quences of discrete actions for completing tasks.

Meanwhile, simultaneously localization and mapping
(SLAM), first proposed by Durrant-Whyte in Ref. [4], is a
method commonly used in numerous map-based path plan-
ning algorithms[5,6]. SLAM allows the robot to start from an
unknown position in an unknown environment, determine its
position and posture by repeatedly observing the character-
istics of the environment during movement, and then draw
an incremental surrounding environment map based on the
position of the surrounding environment. The authors intro-
duced a path-planning algorithm paired with active SLAM in
Ref. [6] that may continually increase the localization accu-
racy without disrupting the main task. The goal is to deal with
the dynamic changes in the environment, such as shifting ob-
stacles and locations that may arise while the robot is moving.
However, once the environment has been altered significantly,
map-based algorithms usually require rebuilding the map in
the testing stage, which is unquestionably a time-consuming
and difficult process.

Reinforcement learning (RL), a method that has been pro-
posed for more than two decades, is now equipped with deep
learning models and has re-attracted the attention of academia
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and industry[7]. It has been frequently utilized to direct in-
telligent agents to interact with an environment so as to opti-
mize their accumulated benefits. In recent years, academics
have shown an increasing interest in adopting deep reinforce-
ment learning (DRL) to enable robotic systems to function in
complicated situations. In contrast to the map-based methods,
the optimal policy trained by RL methods does not need a
pre-built obstacle map or intensive environment features. For
instance, an automated meta-parameter acquisition for alter-
ing robot movement via reinforcement learning was proposed
in Ref. [8]. Kim et al. in Ref. [9] described a framework
for socially adaptable path planning in dynamic environments
that include a feature extraction module, inverse reinforce-
ment learning, and a path-planning module.

In terms of the application of DRL in long-horizon robotic
tasks, when confronted with scarce extrinsic learning inputs,
Pitis et al.[10] proposed a method in which the agent aims to
maximize the entropy of the historically attained goal distri-
bution rather than inaccessible objectives. Likewise, the au-
thors of Ref. [11] included examples in the RL approach that
is based on deep deterministic policy gradients (DDPG) in or-
der to overcome the sparse extrinsic reward problem of long-
horizon tasks. The focus was placed on instructing agents
to stack blocks with a robot arm using continuous multi-step
control and generalization of goal states. Nevertheless, in
comparison to our target scenario, this introduced multi-step
behavior requires considerably fewer steps to achieve the goal.
Many RL-based algorithms rely solely on the received exter-
nal rewards to arrive at an approximated optimal policy, mak-
ing them particularly reliant on the effectiveness of the reward
function. Meanwhile, hand-crafted reward functions that ful-
fill the desired agent behaviors are exceedingly complex and
typically infeasible, especially in dynamic, real-world con-
texts with sparse rewards. Furthermore, even an expert can-
not precisely measure the payoff for each and every agent’s
behavior. For some tasks, the robots are required to handle
observations from multiple types of sensors and fuse the dif-
ferent observations to find optimized actions. The relations
among the multiple observed spaces are usually intangible
and implicit. It imposes additional challenges to DRL-based
methods because the complexity to explore multiple spaces
will be increased exponentially.

To address these issues, this paper proposes an approach
of multiple state spaces fusion and reasoning reinforcement
learning (SRRL), a novel method that allows the agent to ab-
stract features and infers policy from multiple state spaces.
Basically, we consider the robotic applications where a robot
is used to scan the radio frequency identification (RFID) tags
in an unknown area (e.g., an apparel store or inventory area).
Two state spaces are considered in SRRL: one for environ-
ment occupancy observations and the other for RFID sensing.
An RFID reader, carried by the robot, transmits radio signals

to interrogate RFID tags, and the surrounding radio intensity
map determines the probability of tags being scanned. Gen-
erally speaking, the chance of tags being scanned diminishes
steadily as the distance to the reader is increased. We record
the approximated radio map while the agent moves and con-
vert it into an image. Additionally, through the observations
from a spinning light detection and ranging (Lidar) sensor, we
also built a gray-scale 2-D environment occupation map of the
physical world. These two maps serve as the foundation of our
multiple state spaces. We aim to let the agent learn abstract
reasoning by continuously fed with multiple states during the
process of solving long-horizon tasks in a dynamic and previ-
ously unknown environment. The main contributions of our
work could be summarized in the following:

1. To the best of our knowledge, this is the first study to
integrate a reasoning scheme abstracted from various state
spaces in a DRL network, allowing the agent to comprehend
the latent correlation across state spaces with different dimen-
sions and bases.

2. Incorporating the reasoning scheme and recurrent net-
works, the proposed framework enables the agent to achieve
long-term goals despite exponentially increasing complexity
and unpredictability (e.g., exploring a wide area of an un-
known environment in a continuous action space).

3. By experimentally validating SRRL’s viability in a vi-
sual game-based simulation environment, we prove that the
proposed model enables the robot to execute long-horizon in-
ventory management tasks in a dynamic environment.

The remainder of this paper is organized as follows. In
section II, we introduce the related works. We then present the
preliminaries and motivation in section III. The SRRL system
design is described in section IV. Our experimental study is
presented in section V. Section VI concludes this paper.

II. RELATED WORK

Artificial general intelligence (AGI) refers to the capacity
of models or agents to behave like humans with cognitive abil-
ities to comprehend and learn any intellectual job. With the
rapid advances in deep learning, AGI has attracted increas-
ing interest in the community. Briefly speaking, it is to solve
tasks as human thinking, called the reasoning ability. This is
a fairly broad idea, but it is essential to people’s daily life.
For example, image recognition is a form of reasoning, al-
though being one that is quite straightforward and more like
prediction. Deep learning has basically solved this type of
prediction problems, and thus the next step is to handle more
complex and more challenging reasoning problems. Here is
a simple analogy to illustrate why reasoning is more compli-
cated than prediction. Given all the necessary ingredients, in-
cluding flour, sugar, eggs, yeast, utensils, cookware, and a set
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of instructions, then, baking a cake is just a matter of deter-
mining the correct proportions of each component by trial and
error. This is identical to what conventional deep learning ac-
complishes, after several rounds of forwarding pass and back-
ward weight updates, to identify the optimal parameter set to
ensure high prediction accuracy. But imagine the case that one
is merely provided with the raw materials and cooking uten-
sils. In such a circumstance, one cannot bake bread by just
placing flour in the oven, but also need to follow a series of
correct procedures and use exact amounts of material, which
is of an entirely different level of complexity.

A. Reasoning in Deep Learning
Deep learning has been highly effective in extracting useful

representations from vast amounts of data. It creates possibil-
ities to query and consciously reason about the extracted rep-
resentations to develop understanding. Through a sequence of
mathematical manipulations of the available information, rea-
soning machines may arrive at a conclusion about a new set of
factors in response to a query. In recent years, an increasing
body of research has focused on incorporating new types of
inductive biases into deep neural networks in order to facili-
tate deliberative reasoning[12-15], hence pushing deep learning
systems towards the thinking mode. In Ref. [16], the authors
illustrated a learning-to-reason framework, where reasoning is
framed as a classification job in which it is necessary to assess
if the knowledge base contains a conclusion. It leverages neu-
ral networks to execute a number of essential functions, such
as abstraction, concept binding, attention[17], causal interplay
estimation, and composition.

Moreover, some researchers have shown that the reasoning
process is intricately tied to efforts on neural memories[18,19],
which is an intellectual capacity for memorizing, recovering,
altering information, and simulating unobserved situations.
Grave et al.[20], for instance, developed a model consisting of
a neural network that can read and write to an external mem-
ory matrix, akin to the random-access memory of a conven-
tional computer. The model can utilize its memory to rep-
resent and manipulate complicated data structures like a con-
ventional computer, while memory is a collection of slots con-
nected to a neural network for storing intermediate outcomes
or data. The authors in Ref. [19] utilized a unique mem-
ory to store controller weights, similar to the stored-program
memory in contemporary computer architectures, where sub-
programs are collected and stored, and to be leveraged to gen-
erate new programs on-the-fly based on a query. Despite the
recent enormous advances in reasoning in deep learning, there
are still many challenges, such as weak generalization. In ad-
dition, discovering and understanding the association between
the data pattern and query is crucial to its success. Therefore,
reasoning tends to be particular to data patterns, resulting in
inadequate systematic generalization ability.

B. Reasoning in Robotics

In addition to the above-mentioned transition from deep
learning to deep reasoning, the demands and applications of
reasoning in the area of robotics are also becoming research
hot spots, which is called cognitive robotics. This is the study
of knowledge representation and reasoning posed by an au-
tonomous robot (or, agent) in a dynamic and partially ob-
servable environment. For instance, combining robotic tasks
with visual reasoning is quite prevalent. In Ref. [21], the au-
thors showed that the convolutional neural networks (CNNs)
are unable to identify complicated attribute patterns within or
across rows/columns of raven’s progressive matrices (RPM),
since they rely solely on relation extraction at the matrix level.
Therefore, inspired by human induction strategies, the intro-
duced method extracts several coarse rules embedding at dif-
ferent levels, including cell-wise, individual-wise, and ecolog-
ical embedding, from the two rows/columns provided. It de-
ploys different levels of reasoning on different network com-
ponents. The authors in Ref. [22] proposed a graph frame-
work called continuous scene representations (CSR), consist-
ing of sets of nodes and edges, for capturing feature relation-
ships among items. Nodes and edges in the form of contin-
uous vectors of a graph are all represented by a learned fea-
ture. It firstly uses a faster region-based convolutional neural
networks (R-CNN) model to detect and segment nodes. A
match function will provide a score for all features between
the global and local scene graphs for updating purposes, in-
cluding object nodes and related features. Edges are averaged
into the representation if a new relationship is observed; oth-
erwise, they are added to the representation.

With the rise in the popularity of DRL in recent years, the
combination of reasoning and DRL has also produced several
innovative works[23-25]. An end-to-end DRL framework that
combines the feature abstraction ability and Q-learning was
presented in Ref. [24] to identify features in natural scenes
that represent a particular event or interaction and then dis-
cover the relationship among the features in the form of gen-
eralized rules. This was motivated by the fact that humans can
closely approximate rules, which are set by social norms or
the goal of interaction, simply by observing several instances
of the interaction. The proposed method, termed staged social
behavior learning (SBBL) in Ref. [25], is focused on using
DRL in social human-robot interaction. This study employs a
technique for learning a mapping between input pictures and
reduced low-dimensional state representations. In this study,
the authors focused on the first two steps required for a robot
to acquire behaviors for approaching small groups. Addition-
ally, several recent studies concentrate on merging knowledge
graph reasoning with DRL in order to infer the required entity
from the entities and relations currently present in the knowl-
edge graph. The authors in Ref. [26] built a relational mod-
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(a) (b) (c) (d)

Fig. 1 The environment occupation map after different steps: (a) Step 0; (b) Step 500; (c) Step 2 000; (d) Step 4 000

ule that may be considered as a universal plug-in for a rea-
soning framework, with a self-attention mechanism that re-
peatedly infers the relations between things to steer a model-
free strategy. The proposed model was shown to increase the
efficiency and comprehensibility of conventional approaches
through structure perception and relational reasoning. How-
ever, these prior studies rely solely on observations as the state
space. In contrast, our proposed method decodes characteris-
tic features from reasoning across a large number of indepen-
dent state spaces.

III. PRELIMINARIES

In this paper, we focus on large-scale, long-horizontal robot
tasking in unknown and dynamic environments. We enable
the robot with the reasoning ability by learning the correlation
across multiple state spaces. In this paper, we consider the
application scenario where an agent carries an RFID reader to
swiftly and safely scan the RFID tags on all the racks in a retail
store or warehouse. There are two particular goals for this
agent. The first is to identify the racks as target points from the
environment occupation map created by Lidar sensors quickly
and efficiently. The second is to employ RFID radio signals
to cover the target points as rapidly as possible. The key point
for solving such long-horizontal robotic tasks is the agent’s
ability to fuse and reason with multiple state spaces.

A. Multi-State-Spaces Feature Extraction and Reason-
ing

1) Environment Occupation State Space SL: In our
project, we use occupation maps to represent the objects in
a physical environment. An occupation map can be incremen-
tally created from the observations of a robot. As depicted
in Fig. 1, a Lidar sensor is deployed to continuously scan the
surrounding space, aligned with the agent’s motion, in order
to construct a map including information on the environmen-
tal layout. Each subplot in Fig. 1 describes the environment
that the agent partially observed the moment, when the white
area represents the observed free zone and the black area rep-
resents the occupied or unknown portion of the space. We

build this occupation map at each step and use a set of maps
to represent the environment occupation state space, denoted
as SL.

2) RFID Sensing State Space SR: The proposed system
also requires tackling a secondary state space that is created
by the wireless signals from the robot’s built-in RFID reader.
To more precisely define the state space, we resort to the
RFID model of fixed radio frequency (RF) transmit power,
P(ot |x,dt), proposed in Ref. [2]. The model calculates the
probability that an RFID reader’s antenna is located at dt ,
and measures an observation ot of a tag that is located at x.
Fig. 2 illustrates the expansion of the RFID radio map while
the agent explores the unknown space. As shown in Fig. 2(a),
RFID sensing has a limited range. The smaller the range, the
greater the possibility of reading an RFID tag close by (as in-
dicated by the brighter point in the figure). Obviously, if the
agent has remained stationary for an extended period of time,
the coverage of RF sensing will not vary, and the likelihood
of reading tags within the range will be close to one hundred
percent. Consequently, our objective is to enable the agent to
gradually learn the environment, so that the areas around the
target can be more efficiently covered by RF sensing. This is
obviously a long-horizon robotic task. Similar to the environ-
ment occupancy state space SL, the RFID sensing state space
SR is defined by a series of RFID radio maps of the same size.

3) Feature Decoding by Deep Convolutional Neural Net-
works (DCNN) : The DCNN model consists of multiple con-
volutional and sub-sampling layers and one or more fully
linked layers. It makes use of local correlations by sharing the
same weights among neurons in adjacent layers, hence saving
training time. DCNN is also capable of extracting local de-
pendency and scale-invariant characteristics from input data.
Importantly, it can derive richer abstract representations of the
input image data from the lower layers to the upper layers of
the hierarchical design.

Following is a description of DCNN’s primary compo-
nents. Using linear convolutional filters followed by nonlinear
activation functions, the convolutional layer can extract local
feature maps from the previous layer’s feature maps. Let µ i

n
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(a) (b) (c) (d)

Fig. 2 The RFID sensing radio map after different steps: (a) Step 0; (b) Step 500; (c) Step 2 000; (d) Step 4 000

be the nth feature decoding in layer i, defined as

µ
i
n = σ

(
∑m∈Li−1

wi
nm ∗µ

i−1
m +bi

n

)
, (1)

where σ(t) = 1
1+exp(−t) represents the sigmoid function; Si−1

is the set of feature maps in layer (i − 1) connected to the
current feature map; wi

nm denotes the convolutional kernel to
generate the nth feature decoding in layer i; µ i−1

m represents
the feature decoding of the last layer; and bi

n is the bias of the
nth feature decoding in layer i.

Since the input contains two maps per step, following the
convolutional layer is typically a pooling layer, which de-
creases the size of the activation map and reduces the compu-
tational cost. From a small region termed a pooling window,
the pooling layer picks the maximum of a representative fea-
ture. Furthermore, as previously stated, all state spaces have a
fixed-length observation, leading to the adoption of two long
short-term memory (LSTM) layers after the DCNN output.
The goal is to improve the agent’s ability to utilize historical
data derived from extracted features. In summary, the reason-
ing ability derived from multiple state spaces could be written
as Rt(µsL ,µsR ;φ), where φ represents the parameter set of
the network of multiple state spaces feature decoding and rea-
soning; µsL and µsR denote the encoded features of the state
spaces SL and SR, respectively.

B. Reinforcement Learning
Motivated by the partially observable Markov decision

process (POMDP), this problem could be described by
(ε,S,A,T,R), where ε represents the environment in the agent
interacts with; S = (SL,SR) is the joint partially observed
state space that consists of two state spaces with different di-
mensions and meanings: the real-time obstacle map SM cre-
ated by Lidar sensors, and the RFID sensing signal state space
SR; a= (a1,a2, · · · ,at) denotes the set of all available actions;
T (st+1|st ,at) is the state-transition probability from state st to
state st+1 if the agent is in state st and performs action at . The
reward function R(st ,at) provides a present reward given by
rt = R(st ,at).

The purpose of our method is to discover a policy

π(at |Rt) that maximizes the predicted future discounted re-
ward Eπ [∑

T
t=0 γ trt ], where 0 ⩽ γ < 1 is a discount factor. This

reward is formulated as the value-action function: Qπ(Rt ,at ;
θ ,φ). Accordingly, the objective of our method is to iden-
tify a policy π and Qπ that enables the agent to attain reli-
able maximum overall rewards while carrying out a variety of
long-horizon robotic searching and planning tasks in dynamic
environments, which are defined as

argmax
a∼π

Qπ(Rt ,at ;θ ,φ), (2)

where θ and φ serve as the parameter sets of the value func-
tion Qπ and the reasoning module, respectively. Note that Rt

is the output of the reasoning module described above. Rt

extracts the latent relations from multiple state spaces; it also
provides an abstract presentation of observations, which are
sampled from multiple state spaces. Thus, Rt will be de-
ployed to reduce the searching space of the subsequent train-
ing processing and retain the latent information in and among
all state spaces. Developing such an optimal policy becomes
exponentially more difficult as the quantity of training data
derived from past observations increases1. A standard DRL
technique may or may not be capable of achieving rapid con-
vergence in the training stages. Still, it cannot even accom-
plish such long-term tasks without the reasoning ability.

IV. OVERVIEW OF THE PROPOSED SYSTEM

Our proposed model can infer the optimal policy for
long-horizon robotic searching and planning tasks from the

1The complexity of a DRL-based method is determined by the size of its
state space and action space. In our work, the number of fetches will increase
exponentially with the precision, and the number of actions will grow expo-
nentially with the increase in degrees of freedom. Moreover, in long-horizon
tasks, historical information is needed for better motion planning, which also
increases the size of the state space. Finally, the computational complexity
in dynamic environments is hard to quantify but does exist for DRL-based
algorithms. The changing environment makes it impossible for the agent to
use the successful experience of the previous round directly but requires it to
be able to reason and generalize.
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Fig. 3 The architecture of the proposed method

latent interconnections of many distinct dimensional state
spaces. Subsequently, this policy is optimized through in-
teractions with the environment and data from manually pro-
vided demonstration data. As depicted in Fig. 3, the model
consists of three parts: (i) the relational reasoning module,
(ii) the imitation learning (IL) module, and (iii) the DRL
module[27]. Additionally, all the networks are reinforced with
an LSTM layer to retain historical data in a recurrent manner.
In Fig. 3, the IL module and DRL module are marked by the
red and blue dotted boxes, respectively.

The basic IL module utilizes generative adversarial imita-
tion learning (GAIL)[28], so that agents can successfully adapt
their strategies based on demonstrations. The recurrently en-
abled IL module is utilized to address the barrier of complex-
ity by giving a seed policy through the demonstration data to
considerably reduce the searching space for the DRL to learn
an optimal policy. The DRL module is based on proximal pol-
icy optimization (PPO)[29] and is augmented with an LSTM
layer that enables it to deal with both historical and present
data.

A. The Multi-state-space Fusion and Reasoning Module
The reasoning module, discussed in section III.A, including

the construction of multiple state spaces and feature decod-
ing and reasoning, is the key to exploring the environment for
scanning RFID tags. In our case, there are two state spaces:
one reflects the observation of the actual real world, and the
other represents the property of the RF signal space, which
varies in response to the agent’s motion. Their underlying

link is difficult to quantify or establish directly, yet it is cru-
cial for efficiently completing long-horizon robotic searching
and planning tasks. The output of the reasoning module is
not only the extracted features containing historical informa-
tion, but also the reasoning ability generalized from these im-
plicit connections, which can help the agent choose actions
more quickly and rationally, so as to be as close as possible to
the capacity of humans to record expert demonstrations under
fully observed conditions.

B. The Recurrent IL Module

The proposed IL module incorporates the GAIL
framework[28], which employs a network design derived
from the generative adversarial network (GAN)[30]. It comes
with two fundamental components, a discriminator D and a
generator G, which learns a strategy from a set of demonstra-
tion data in an adversarial and cooperative way, respectively.
The discriminator D is capable of identifying G’s data from
demonstration data, while both D and G are concurrently
taught in a competitive and adversarial manner. During the
training stage, discriminator D will become more adept at
identifying created data, while generator G will be much
more proficient at forging data. The IL module eventually
converges when the generated “fake” data from G can mas-
querade as demonstration data and survive D’s verification.
Generator G is shared by the IL and DRL modules in our
network design. It also functions as the DRL module’s policy.
Note that the concept generator G and policy π are thought to
be interchangeable in this work. In other words, the policy π

serves two functions: it not only creates actions based on the
distribution of “expert” data, but also is responsible to react
to the environment with an improved approach. The policy π

will be thoroughly discussed in section IV.C when we present
the DRL network. In this section, we just look at the imitation
network’s discriminator D(at ,Rt ;ω,φ).

As previously stated, we employ an LSTM layer to aug-
ment both discriminator D and generator G in order to sup-
ply recurrent capabilities to the IL module. The recurrence-
enabled discriminator D(at ,Rt ;ω,φ) assesses data based on
real-time and historical data to improve the process of fore-
casting the next action. D : R×a 7→ (0,1) is a function with
weights, where R and a represent the combination of the ex-
tracted correlations of multiple state spaces and action spaces,
accordingly. Fig. 4 illustrates the structure of the discrimi-
nator, which is composed of a fully connected LSTM layer
followed by m hidden layers with same amount of units. Dur-
ing the training stage, the discriminator D can be enhanced
by optimizing the following value function.

V (ω) = Eπ [log(1−D(at ,Rt ;ω,φ))] +

EπE [log(D(at ,Rt ;ω,φ))]−λH(π), (3)
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where τ represents the “expert” policy given by a demon-
stration dataset, which serves as a seed for later training of
the optimized policy. It is not a perfect policy, but based
on a few sample instances in controlled circumstances nav-
igated by manual control and is thus regarded as “expert.”
In (3), πE is gathered by handling multiple sample scenar-
ios with manual settings and basic methods, which can only
allow the agent to execute long-horizon robotic searching and
planning tasks in a sub-optimal approach. H(π) is defined as
H(π) ≡ Eπ [− logπ(at |Rt)] and indicates the causal entropy
of policy and work as policy regulator. It also fosters ex-
ploratory behavior and allows the learned approach to remain
as random as feasible while achieving the goal, rather than
fast mindlessly converging to a local optimal. λ ⩾ 0 denotes
the discount weight of H. V (ω) is increased to improve the
discriminator’s capacity to compare a policy’s resemblance to
the “expert” data. When it generates a lower value for a par-
ticular action at , it suggests that the probability of action at

is greater based on “expert” data, hence exhibiting a greater
capacity for reasoning across various state spaces.

C. The Recurrent DRL Module
In our framework, the IL module could successfully acquire

a seed policy by emulating the behaviors from demonstration
datasets. To allow the agent to interact with a dynamic envi-
ronment, this seed policy must be fine-tuned. To this end, we
set up a DRL module to interact with the dynamic and com-
plicated environment to develop an optimal policy π . This
module is based on a PPO network[29] and is composed of
two different components: actor π and critic as value function
Qπ . The actor π is responsible for generating action at based
on the relational observations Rt . The above-mentioned rela-
tional reasoning module learns this by extracting correlations
of a finite set of multiple state spaces data. The value func-
tion Qπ assesses the current action generated from the actor
by processing the received rewards and evaluating.

Ultimately, the goal of training the DRL network is to max-
imize the value function Qπ defined in (2) for a given policy
π , as

Qπ(Rt ,at ;θ ,φ)=E[ren(Rt ,at)+γEat+1∼π [Qπ(Rt+1,at+1)]],

(4)

where θ and φ are the parameters of the value function Qπ

and the relational reasoning module, respectively, γ repre-
sents the discount factor for future reward, ren denotes an en-
hanced reward that combines the reward from IL module with
the gained extrinsic reward when interacting with the environ-
ment, as

ren(ot ,at) = αrim(Rt ,at)+(1−α)rex(Rt ,at), (5)

where α is a confidence weight parameter of the “expert”
demonstration data, and a larger α means it is closer to the
optimal policy; rim and rex denote the reward comes from the
IL module and external environment, respectively. The rim

evaluates how similar the action at is to the “expert policy”
from demonstrations. The extrinsic rewards rex are provided
as a sparse function to describe the fundamental limitations
and rules that allow the agent to interact with the environment
and steer it to the desired goals. The policy will be updated
during the training process to choose the actions to raise Qπ

by obtaining a larger rim and rex.
As previously stated, the discriminator training in the IL

module aims to maximize the value V (ω) in (3), but the up-
dating policy π , which also serves as the generator of the IL
module, tends to reduce it. This type of adversarial training
results in a policy π that is rooted in the strategies offered in
the demonstration data. Increasing extrinsic rewards rex will
eventually lead to the trained policy π reacting to the envi-
ronment with a better policy. The value functions Qπ of the
proposed DRL network could be trained end-to-end by mini-
mizing the following loss function

L (θ ,φ) = L Actor − c1L
Critic + c2H , (6)

where c1 and c2 are the discount factor for critic loss and en-
tropy bonus, respectively. To better explain the process of
updating policy, we introduce the above loss function more
specifically as the objective function with respect to the ϕ =

(θ ,φ) weighted policy πϕ .

J (ϕ)=− (Et
[
min

(
ft(ϕ)Āt ,Clip( ft(ϕ),1− ε,1+ ε) Āt

)]
+

c1Et

[
(V

πφ

t −Qπ(R,at ;ϕ))2
]
− c2H ), (7)

where ε denotes the amplitude of policy update, which is usu-
ally set to 0.1 or 0.2; V

πφ

t represents the reward returned by
the current policy πφ ; and ft(ϕ) is defined as

ft(ϕ) =
πϕ(R)

πϕold(R)
, (8)

where πϕold and πϕ represent the policy prior to and after the
training update, correspondingly; and Āt is the generalized ad-
vantage, which is an estimation that tells the agent whether the
last decision is worth insisting on, which could be simply ex-
pressed as

Ât = δt + γλ Ât+1, (9)
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δt = rt + γQ(Rt+1)−Q(Rt) , (10)

where γ is the discount factor for future reward; λ is a smooth-
ing parameter used to lower training variance, hence making
it more stable. For (7), the training process seeks to maximize
J (ϕ) by ascending the stochastic gradient with regard to ϕ .
As a result, based on the real-time multiple state spaces rela-
tional reasoning output, policy πφ would tend to offer actions
with the potential to impose greater Q values. The Clip func-
tion in (7) restricts the update range of πφ , so that it would
not update too greedy to fall into the local optimal trap, thus
considerably improving the training stability.

V. EXPERIMENT STUDY

A. Experiment Setup
Using the Unity3D platform, we develop the proposed

SRRL system in a simulated environment to mimic an appli-
cation of deploying a mobile robot for RFID-based inventory
management in an apparel store, which is the same scenario as
in Ref. [1]. Unity3D is a robust game engine capable of ren-
dering large, intricate 3D worlds. It also creates aesthetically
realistic worlds with advanced mechanics and complicated in-
teractions between agents of differing abilities. These features
allow it to be frequently utilized as a simulation tool for the
study of various intelligent agents[31]. As depicted in Fig. 5,
we construct two environments of a four-walled area of dif-
ferent complexity to imitate a 50× 50 m2 apparel store: one
with only racks represented by blue cylinders, and the other
with more fixed-position obstacles (marked by the white lines
and dot). Note that these obstacles do not impede the Lidar
sensor’s scanning but complicate the agent’s action policy and
path planning (i.e., they block the movement of the agent).
Items with RFID tags are attached to the racks. A simulated
robotic agent is sent out to scan all of the RFID tags in the re-
gion. At the start of each episode, the placements of the racks
and the agent are created at random inside the enclosed area.
Moreover, there will be a certain safety distance between the
randomly generated racks and the obstacle in the complex en-
vironment scenario to ensure that the agent can pass smoothly
and the task does not get. Indeed, the distances between racks
also follow this requirement. Based on action at = (vt ,∆t), the
agent simulates an RFID-equipped wheeled robot moving at
a speed of vt ∈ [−vmax,vmax], while vmax represents the max-
imum velocity; ∆t ∈ [−∆max,∆max] is the rotational velocity,
where ∆max denotes the maximum rotational velocity.

The agent’s mission is to scan all the RFID tags in the ap-
parel store using the shortest possible path. Each scanning
session terminates when all RFID tags are read or when the
maximum number of steps is achieved. As one of the crite-
ria for determining the quality of training results, the number
of collisions and the step count for completing the given task

(a) (b)

Fig. 5 Basic experimental setup for agent performing long-horizon RFID
inventory tasks. The agent is represented as a blue cube, and the tags are or-
ange strings attached to the blue cylinder-shaped racks: (a) Simple inventory
environment; (b) Complex inventory environment

are also assessed. To collect observations, the robotic agent
carries two sensors: a ray-cast sensor and a simulated RFID
reader. Ray-casting is an optional sensor that Unity3D pro-
vides to simulate a common Lidar sensor. It detects the sur-
rounding environment by projecting rays and returns a vector
containing the observed items and their distances. We develop
a virtual RFID reader for the agent to imitate the properties of
real-world RFID applications. It can only scan tags within a
detectable range and the probability of reading a tag reduces
as the distance between the reader and the tag grows.

Pytorch is used to build the SRRL network on a computer
with an Intel 9900K CPU and two Nvidia 2080 GPUs. Two
CNNs with three convolutional layers and a stride of one make
up the feature encoder. The discriminator D is implemented
with one LSTM layer and two fully connected hidden layers,
each with 128 units. Both the value function Qπ and policy π

in the DRL module have an LSTM layer with 128 units and
three hidden layers, each with 256 units. The basic training
configuration has been summarized in Tab. 1. For the remain-
ing experiments, we set the proportion parameter µ in (5) to
0.1. This robotic agent will be put in the simulated apparel
store during the experiments, with its starting location being
randomly generated at each episode.

B. Results and Analysis

1) Training Results: In the training process, we train the
agent in the simple environment with two racks, as shown in
Fig. 5(a), to quickly converge with the ability of reasoning
the latent relationship among multiple state spaces. We will
then test this well-trained model in the complex environment
presented in Fig. 5(b) during the testing stage, which includes
additional randomly created racks and certain obstacles that
hinder Lidar scanning. The number of steps in each train-
ing episode is capped at 2× 104 to avoid unnecessarily long
training time. In addition, once the number of collisions of
the agent in an episode reaches 20, this episode will be in-
stantly terminated and marked as a failure, and the amount
of steps cost will be recorded as the maximum number of
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Tab. 1 Basic training configuration

RL Parameter Value

Learning rate 0.000 2

Gamma (discount factor) 0.99

Hidden layer units 256

Sequence length 64

Batch size 1024

Memory size 256

Max steps 5 000 000

CNN Parameter Value

Convolutional layer num 3

Stride 1

Kernel size [4×4];[3×3];[3×3]

FC layer num 2

Hidden units 128

2× 104. Each training episode also ends immediately if the
agent scans all the RFID tags on the racks, and the agent will
earn the “find” reward. Otherwise, it performs tasks until the
maximum number of allowed steps is achieved. Our method is
compared with the three state-of-the-art models: (i) the GAIL
model proposed in Ref. [28], (ii) the PPO network proposed
in Ref. [29], and (iii) the recurrent imitation and reinforce-
ment learning (RIRL) model proposed in our recent work[32],
which is an RL and IL combined method but without a re-
lational reasoning module. GAIL and PPO, two approaches
without memory mechanisms, are used in our comparison
study to show the influence of the recurrent network in solving
long-horizon robotic tasks. To provide a fair comparison, we
employ the same basic reward levels and training parameters
(i.e., learning rate, number of targets achieved, the maximum
number of steps, etc.) in the same environment for all four
approaches.

Cumulative rewards for each training episode are depicted
in Fig. 6 as the agent interacts with the environment. We basi-
cally specified a few simple and sparse reward configurations:
reading a new RFID tag earns +0.01 points, colliding is pun-
ished by −0.1 points, moving costs −0.0001 points for each
step, and completing the task gets +1 point. The SRRL, repre-
sented by the red solid line in Fig. 6, achieves the best reward
results after about 60 training episodes, which is both greater
and more consistent than the other three methods. Although
the RIRL approach also generates significantly superior re-
sults than GAIL and PPO, its convergence speed and stabil-
ity are inferior to our proposed method. After the SRRL and
RIRL model converges, there is still a certain degree of small-
scale fluctuation since the environment generated each time is
unique. These results validate that our proposed method and
RIRL model with LSTM embedding can achieve higher cu-
mulative reward faster and more consistently than GAIL and
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Fig. 6 Accumulated training reward values for SRRL, RIRL, PPO, and
GAIL methods
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Fig. 7 Steps for finishing the tag scanning task within one episode during
the training phase

PPO, two networks without using the recurrent network.
Additionally, as described in Fig. 7, our method SRRL per-

forms better than RIRL because it takes fewer steps to com-
plete a task in one episode. As mentioned before, each train-
ing episode will be terminated if all the targets are reached
prior to the maximum number of steps. We can tell that
our proposed method’s results stabilize much faster than that
of the RIRL model, which almost takes about 160 training
episodes to converge. The agent implemented with SRRL
could stably and consistently handle the given tasks within
1 500 steps. This result indicates that the reasoning mecha-
nism in our proposed approach, which has the abstraction abil-
ity within long-term memory, is well suited to help the robot
understand the nature of the task in advance and perform the
task consistently and efficiently. The other two methods with-
out LSTM embedding cannot even complete the assigned task
and usually takes the maximum number of steps. To further
compare the models’ performance during the training process,
we plot the training loss values for each method in Fig. 8. Ob-
viously, the loss values of SRRL and RIRL are convergent,
whereas the loss curves for PPO and GAIL do not. This is
because PPO and GAIL are incapable of finding a reliable
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Fig. 8 Training loss of SRRL, RIRL, GAIL, and PPO

strategy to accomplish the long-horizon robotic searching and
planning tasks reliably and efficiently.

Training these methods usually takes days. And even if our
method SRRL leverages imitation learning to reduce some of
the search time, it often takes more than 12 h to make the agent
to understand and complete the task perfectly. In the testing
stage, we usually do not change the configuration except for
the environment, keeping it consistent with that in training.
Typically, if the state space and action space are not too big, it
takes an agent with our method about 1ms to choose an action.
This is also true for the other methods. But if the size of the
map and the number of degrees of freedom of the action is
very large, it will take about 10 ms longer to make an action
with our method, and about 1.5 s for the other methods to
choose the next action.

2) RFID Tag Scanning Results: The cumulative distribu-
tion function (CDF) of the percentage of unscanned tags in
the testing stage is shown in Fig. 9. We test all four trained
models in 100 episodes within the required 20 000 steps. The
figure shows that the proposed SRRL model scans all tags in
approximately 95% of episodes, while the RIRL without rea-
soning scheme scans all tags in about 84% of episodes. On
the contrary, the GAIL and PPO models cannot consistently
scan all the tags in an episode. In addition, SRRL achieves a
maximum unscanned tag percentage of 20%, which is signifi-
cantly lower than the 38% of RIRL, as well as the almost 90%
attained by the other two approaches. Apparently, our pro-
posed method is significantly more effective and robust for
long-term search tasks in dynamic environments.

To further illustrate the superiority of our method, we eval-
uate the well-trained model of the four approaches mentioned
above in both simple and complex environments using two
indicators: (i) the average number of collisions in an episode,
(ii) the average number of steps required to complete the given
task in an episode. Moreover, in order to demonstrate the ver-
satility and robustness of our model, we first train it in a simple
environment as the one shown in Fig. 5(a), and then deploy the
well-trained model to both simple and complex environments
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Fig. 9 CDF of the percentage of unscanned tags in total in the testing stage
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Fig. 10 Average number steps to complete the task in 100 episodes in the
testing stage in the simple environment

shown in Fig. 5 with a varied number of racks in one hundred
testing episodes.

Fig. 10 presents the average number of steps for complet-
ing the given tasks in a simple environment within 100 test-
ing episodes. We can see that the SRRL method could cost-
efficiently accomplish the tasks, as it only needs about 5 500
steps for the four-rack scenario, whereas the other three ap-
proaches struggle to do so. Note that the average step cost
for PPO and GAIL almost nearly surpasses 2× 104, which
indicates they failed to complete the tasks after reaching the
maximum number of steps in almost all episodes. Second,
avoiding collisions is crucial when deploying a robot for var-
ious purposes. Hence, the frequency of collisions for the
agent is an essential metric for evaluating the quality of our
work. According to Fig. 11, when there are more racks in
the simple environment, the average collision times rise as
the number of racks is increasing. It is obvious that GAIL
and PPO perform poorly regardless of the number of racks
while avoiding accidents. Although RIRL is relatively better
at avoiding obstacles than GAIL and PPO, its average number
of collisions increases by around eight times as the number
of racks grows from two to four. While our method exhibits
robust performance across all four cases, with a variance of

Authorized licensed use limited to: Auburn University. Downloaded on October 15,2022 at 15:14:00 UTC from IEEE Xplore.  Restrictions apply. 



Multi-State-Space Reasoning Reinforcement Learning for Long-Horizon RFID-Based Robotic Searching and Planning Tasks 249

1 2 3 4
Number of Racks

0

5

10

15

20

25

A
ve

ra
ge

 c
ol

lis
io

n 
tim

es
 p

er
 e

pi
so

de SRRL
RIRL
PPO
GAIL

Fig. 11 Average number of collisions of the agent per episode in the simple
environment
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Fig. 12 Average number of the task completion steps in 100 episodes of the
testing stage in the complex environment

the four average collision times less than 0.5. We also provide
the error bars in the figures to show the robustness of each
method during testing. A smaller error bar generally means
that the method is more stable, while the opposite means that
the method does not generalize well to dynamically changing
unknown environments. For example, our proposed method
in Fig. 10 and Fig. 11 is significantly better and more stable
than the other methods in terms of the average step collision
number. RIRL maintains high stability for a small number of
racks but is not robust for scenarios with more than two racks
that are not covered in training. Certainly, we can also observe
that the results obtained by the two methods, PPO and GAIL,
are less volatile because they have been completing their tasks
very consistently poorly.

Similarly, the completion number of steps and collision
times per testing episode for the complex environment are pre-
sented in Fig. 12 and Fig. 13, respectively. Although the quan-
tity of these two measures for our method increases when con-
fronted with a more complex environment, they remain within
a respectable range and demonstrate that our SRRL model has
high transferability and robustness to dynamic, unknown en-
vironments. Note that in these two figures, the error bars of
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Fig. 13 Average collision times that happened in agent per episode in the
complex environment

PPO and GAIL are zero in complex environments with multi-
rack scenarios, which means that all the attempts of these two
methods end in failure, i.e., the number of steps and collisions
have all reached the error tolerance limit (thus no variance).
From these two figures, we can draw the same conclusion for
scenarios of both the simple environment and the complex en-
vironment that our method could tackle long-horizon robotic
planning tasks much more effectively and efficiently with the
incorporation of the relational reasoning module.

VI. CONCLUSIONS

In this paper, we proposed SRRL, a deep recurrent imita-
tion and reinforcement learning-based system augmented with
a relational reasoning module that allows the agent to accom-
plish long-horizon robotic searching and planning tasks in dy-
namic, and complex situations. To the best of our knowledge,
this is the first work in the field of DRL that teaches agents
how to reason from various state spaces to learn the optimal
policy. Furthermore, using historical observations to create
state spaces can improve the model and alleviate the long-
range dependency problem. We experimentally validated the
feasibility of incorporating a relational reasoning module in
traditional DRL methods by performing in a visual game-
based simulation environment. The excellent results demon-
strated the effectiveness of encouraging agents to learn strate-
gies from extracted latent correlations across multiple state
spaces to complete such long-horizon tasks.
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