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Abstract—Moisture content is one of the important indexes of
food storage security. The existing detection methods are time-
consuming and high cost such that it is difficult to realize on-
line moisture detection. In this paper, according to the dielectric
properties of wheat, we propose a wheat moisture content
detection system with commercial Wi-Fi devices, termed WiWm-
EP. First, we introduce the relationship between the moisture
content of wheat and its dielectric constant. Then, we establish
an equivalent permittivity (EP) model to characterize wheat
moisture content, where the EP can be calculated from channel
state information (CSI) of the dual antenna model. Besides, we
build the fitting function between the EP and the moisture content
as the wheat moisture detection model. Finally, we evaluate
the performance of the system through different experiments.
The average relative error of the detection results of five wheat
samples with different moisture contents is less than 3%.

Index Terms—Wireless Sensing, Channel State Information
(CSI), Wheat Moisture Detection, Equivalent Permittivity (EP).

I. INTRODUCTION

Recently, the global grain reserves have reached billions
of tons [1]. It is particularly important to ensure the security
of grain reserves. Grain moisture detection is one of the key
technologies in ensuring the security of stored grain [2], [3].
The problems of grain heating, insects, and mildew during
storage all depend on the moisture content. For example,
when the grain is about to go moldy and deteriorate, the
grain moisture will change in advance. If the change of grain
moisture can be detected in time and the measurement can be
taken, the grain moldiness and deterioration can be avoided.
Therefore, an efficient and accurate grain moisture detection
technology is very important for guaranteeing grain security.

The traditional moisture detection technology is mainly
based on the drying method, but this method is very time-
consuming and destroys the grain itself. Recent methods (e.g.,
electrical resistance [4], near-infrared spectroscopy [5], and
hyperspectral spectroscopy [6]) provide effective solutions
for grain moisture detection. Compared with the traditional
drying method, these approaches have the advantages of high
efficiency and no damage to the grain itself. However, these
devices are not widely employed because of their high cost.

Due to the rapid development of wireless sensor technolo-
gies in Internet of Things (IoT), low-cost and high-precision

wireless sensing systems (e.g., Wi-Wheat [1], Wi-Wheat+ [7],
and Deep-WMD [8]) have been explored using commodity
Wi-Fi devices to detect grain moisture. Similarly, the Wi-
Fruit [9] system is also developed for detecting the fruit mois-
ture. However, these systems are based on machine learning
methods, which need to update the training weights in a new
scenario, which leads to an additional workload. By contrast,
in this paper, we exploit the dielectric properties of grains with
the wireless sensor theory to achieve the efficient and low-cost
grain moisture detection through a pure mathematical model.

In particular, we propose a wheat moisture detection system
based on commercial Wi-Fi signals, termed WiWm-EP. First,
we introduce the relationship between the moisture content
of wheat and its dielectric constant. Because the dielectric
constant of wheat will increase with the increase of the mois-
ture content, the moisture content of wheat can be obtained
indirectly through the dielectric constant. Traditionally, vector
network analyzer (VNA) can be used to measure accurate and
stable dielectric constant, but it has a high cost. Therefore, we
establish an equivalent permittivity (EP) model to characterize
wheat moisture content, and calculate the EP based on the
channel state information (CSI) in the dual antenna model
of commercial Wi-Fi devices. Meanwhile, to ensure the effec-
tiveness of the WiWm-EP system, we design the preprocessing
scheme to eliminate the noise in the raw CSI data. Besides, we
establish the fitting function between the EP and the moisture
content as the wheat moisture detection model. Finally, we
evaluate the system through experiments, where five different
wheat moisture contents are used to evaluate the effectiveness
of the WiWm-EP system. The results show that the average
relative error of the detection results of five wheat samples
with different moisture contents is less than 3%. In addition,
we also analyze the impact factor on the system.

The main contributions of this paper are summarized below:
• To the best of our knowledge, this is the first work to use

Wi-Fi devices to establish an EP model for grain moisture
content detection, which provides a theoretical basis for
contactless wheat moisture sensing.

• We propose a wheat moisture content detection system
based on dielectric properties. This system does not
require machine learning methods, thus eliminating the
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dependence on a large amount of data and improving the
detection efficiency. Besides, we design the preprocessing
scheme for the raw CSI data to ensure the effectiveness
of the system.

• We evaluate the performance of the system through
experiments. The results show that the average relative
error of the system is less than 3%.

II. PRELIMINARIES
A. Grain Moisture Detection

Grain moisture detection technology is generally classi-
fied into two categories (i.e., the destructive moisture de-
tection method and the non-destructive moisture detection
method) [1]. First, the destructive moisture detection method
refers to the heating and drying techniques. The principle is
to heat and dry the grain sample at a specific temperature,
completely evaporate the internal moisture of the sample,
and then weigh the mass difference before and after heating
to calculate the moisture content of the grain sample. Sec-
ond, there are many non-destructive moisture detection meth-
ods. They mainly include resistance-based, infrared-based,
acoustic-based, and microwave-based [1]. These methods indi-
rectly calculate the moisture content of grain through different
principles. These methods have the advantages of fast detec-
tion speed and no damage to the grain itself. However, high-
cost and complex instruments limit the popularity of these
methods.

B. Dielectric Constant of Medium
When an electromagnetic wave penetrates through a

medium in the free space propagation, the amplitude atten-
uation coefficient of the electromagnetic wave is e−KId and
the phase change is KRd [10], where d is the propagation
distance. Specifically, KR and KI are defined by,

KR = ω
√
εµ

[
1

2

(√
1 +

σ2

ω2ε2
+ 1

)]1/2
, (1)

KI = ω
√
εµ

[
1

2

(√
1 +

σ2

ω2ε2
− 1

)]1/2
, (2)

where ω is the angular frequency of the wave. ε, µ, and σ
are dielectric constant, permeability, and conductivity of the
medium, respectively. Besides, the dielectric constant can be
expressed by ε = ε′ + jε′′, where the real part ε′ is the
ability of the medium to store electromagnetic energy, and the
imaginary part ε′′ is the ability to lose electromagnetic energy.
Fig. 1 and Fig. 2 show the relationship between the dielectric
constant (i.e., the real part ε′ and the imaginary part ε′′) and
different moisture contents operating in the frequency range
from 5 GHz to 6.5 GHz. We can see that the real part ε′ and
the imaginary part ε′′ increases with the increase of moisture
content. As the increase of the frequency for a fixed moisture
content, the real part ε′ will decrease, while the imaginary
part ε′′ will increase. These results confirm that the dielectric
constant is closely related to the moisture content and wireless
frequency.
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Fig. 1. ε′ of wheat with different
moisture contents.
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Fig. 2. ε′′ of wheat with different
moisture contents.

C. Wi-Fi CSI Sensing

The received Wi-Fi signal after penetrating through the
medium can be modeled by,

Ar · eϕr = A0e
−KId · ej(KRd+θ0), (3)

where A0 and θ0 are amplitude and phase changes caused by
Wi-Fi signal propagation in the air multiplied by the initial
amplitude and phase, respectively. d is the propagation path
distance in the medium. Specifically, the amplitude Ar and
phase ϕr can be extracted from the commercial W-iFi network
interface cards (NICs). The commercial Wi-Fi physical layer
(PHY) adopts an orthogonal frequency-division multiplexing
(OFDM) technology, where the device can report CSI data
in the frequency domain [11]. Wi-Fi CSI over different sub-
carriers can be expressed by H = (H (f1) ,H(f2) . . .H(fk)),
where k is the number of subcarriers. The CSI of the kth
subcarrier is specifically defined by,

Hk = |Hk|ej∠Hk , (4)

where |Hk| is the amplitude and ∠Hk is the phase.
In fact, the dielectric constant is a complex number, which

is difficult to obtain from the Wi-Fi sensing system. Thus, we
leverage the EP related to KR and KI , and calculate KR and
KI based on a dual antenna Wi-Fi signal transmission model.

III. EQUIVALENT PERMITTIVITY MODEL

In this section, we introduce the established EP in detail.

A. Equivalent permittivity model

Since the dielectric constant cannot be directly extracted
from the Wi-Fi sensing system, we propose an EP model for
grain. The model can effectively build the relationship between
grain dielectric constant and moisture content. Details of the
model are as follows.

First, we perform the quotient operation on Eq. 1 and Eq. 2
to eliminate the part parameters, which is expressed by,

(
kR
kI

)2

=

√
1 + σ2

ω2ε2 + 1√
1 + σ2

ω2ε2 − 1
. (5)
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Fig. 3. Electrical conductivity of wheat with different moisture contents.

Next, we transform the values of KR and KI into input
parameters, and then Eq. 5 is transformed into,

σ2

ω2ε2
=


(

kR

kI

)2
+ 1(

kR

kI

)2
− 1


2

− 1. (6)

Specifically, we analyze Eq. 6 and find that a specific value
can be obtained by inputting the values of KR and KI . The
specific value σ2

ω2ε2 includes the dielectric constant ε and the
conductivity σ of the medium and wave angular frequency
ω. And ω = 2πf , where f is the frequency of the wave.
If we keep Wi-Fi working at a fixed frequency, ω can be
regarded as a constant. Meanwhile, the conductivity σ of the
medium varies with the temperature, and the grain is non-
conductive. Thus we approximate the σ to a constant at a room
temperature. We then measure the conductivity of wheat with
different moisture contents at the room temperature of 23◦C.
The results in Fig. 3 illustrate that when the moisture content
of wheat changes by more than 4%, the corresponding conduc-
tivity changes by no more than 2%. In Fig. 1, if the moisture
content of wheat changes by more than 4%, the dielectric
constant changes by about 9%. Therefore, we believe that the
conductivity can be approximated as a constant. Finally, when
Wi-Fi works at a fixed frequency, we approximate σ2

ω2ε2 to 1

ε̃2
,

where ε̃ denotes the EP, that is,

ε̃ ≈
√√√√√√

1((
kR
kI

)2
+1(

kR
kI

)2
−1

)2

− 1

≈ kR
kI

. (7)

It can be seen from Eq. 7 that the EP ε̃ value only depends
on the ratio kR

kI
. In this paper, we leverage ε̃ to characterize

the grain moisture content, and ε̃ is a real value without an
unit.

B. Calculation of KR and KI from Wi-Fi sensing

Based on Eq. 3, we design a dual antenna transmission
model to calculate KR and KI . Specifically, the signal trans-
mitting end is equipped with an antenna, and the signal
receiving end is equipped with two receiving antennas. The
received signals Ar1 · eϕr1 and Ar2 · eϕr2 of two adjacent
antennas on the same network card after penetrating through
the grain can be defined by,

Ar1 · eϕr1 = A0e
−KId1 · ej(KRd1+θ0),

Ar2 · eϕr2 = A0e
−KId2 · ej(KRd2+θ0),

(8)

where d1 and d2 are the path distance of the Wi-Fi signal in the
grain, respectively. As Fig. 4 illustrates, when there is no grain
medium, we consider the diameter propagation distance be-
tween the transmitting antenna and the two receiving antennas
is equal. When the grain exists in line of sight (LOS) between
the transmitting antenna and the receiving antenna, Wi-Fi
through the grain will cause a refraction effect. Due to the
different refraction angles caused by the different directions of
the two antennas, the propagation distance changes differently
(d1 ̸= d2). In fact, when the grain is present, we first eliminate
the parameters A0 and θ0 in an unknown air channel through
the quotient operation of adjacent antennas and obtain the
correlation equations about KR and KI . The process is as
follows,

Ar1 · eϕr1

Ar2 · eϕr2
=

A0e
−KId1 · ej(KRd1+θ0)

A0e−KId2 · ej(KRd2+θ0)
. (9)

According to Eq. 9, we operate the amplitude and phase
respectively. First, the amplitude quotient of adjacent antennas
can be expressed by,

Ar1

Ar2

=
A0e

−KId1

A0e−KId2
= e−KI(d1−d2). (10)

Then the equation about KI is as follows,

KI =
ln

Ar1

Ar2

d2 − d1
. (11)

Next, the phase quotient of adjacent antennas can be ex-
pressed by,

eϕr1

eϕr2

=
ej(KRd1+θ0)

ej(KRd2+θ0)
. (12)

It can be found that Eq. 12 converts the phase quotient of
adjacent antennas into phase difference,

ϕr1 − ϕr2 = ∆ϕr1−r2 = KR(d1 − d2). (13)

Then the equation about KR is obtained by,

KR =
∆ϕr1−r2

d1 − d2
. (14)

It can be seen that the value of KI is obtained by dividing
the amplitude quotient of two adjacent antennas by the dis-
tance difference of two antenna propagation paths, and the
value of KR is obtained by dividing the phase difference
of two adjacent antennas by the distance difference of two
antenna propagation paths. Because the values of d1 and d2
are unknown, Eq. 11 and Eq. 14 cannot directly calculate the
values of KI and KR. However, according to the Eq. 7, we
can eliminate d1 and d2 by the quotient of Eq. 11 and Eq. 14,
that is,

KR

KI
=

∆ϕr1−r2
XXXXd1 − d2

· −(XXXXd1 − d2)

ln
Ar1

Ar2

= −∆ϕr1−r2

ln
Ar1

Ar2

. (15)

In Eq. 15, we eliminate the unknown parameters (d1 and
d2) and also ensure the input of the EP model in Eq. 7. It
is noticed that the calculated EP is independent of the grain
thickness.
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Fig. 4. Dual antenna model for Wi-Fi signal transmission.

IV. THE WIWM-EP SYSTEM DESIGN
In this section, we will introduce the WiWm-EP system

design. As shown in Fig. 5, the system architecture includes
a CSI data collection module, a CSI preprocessing module, a
model establishment module, and a moisture detection module.

Fig. 5. The system architecture of WiWm-EP.

A. CSI Data Collection

For wheat samples with different moisture contents, we
set the same experimental condition for data collection. We
collect raw CSI data from wheat samples with five moisture
contents in the LOS link through commercial Wi-Fi devices,
and then extract CSI amplitude and phase for the moisture
content detection.

B. CSI Data Preprocessing

In the data preprocessing stage, we first implement the phase
calibration and the amplitude denoising. Then, we select the
data with the most stable subcarrier.

CSI Phase Calibration: Due to the asynchronous hardware
between transceivers during Wi-Fi transmissions [12], packet
boundary delay (PBD), sampling frequency offset (SFO), and
carrier frequency offset (CFO) will cause errors in the CSI
phase. To solve these errors, we use a linear transformation
for the phase calibration. Details are as follows.

Let ϕ̂i denote the measurement phase of the subcarrier i,
which can be expressed by,

ϕ̂i = ϕi − 2π
ηi
M

∆t+ β +N, (16)

where ϕi is the true phase, ηi is the subcarrier index of the ith
subcarrier, M is the total number of subcarriers, ∆t is the time
delay, β is the phase offset error, and N is the measurement
random noise. ∆t and β are caused by PBD, SFO and CFO.
Except for N , other measurement errors are linearly correlated.
We can use the linear transformation to eliminate the influence
from ∆t and β [13]. First, we define k and b by,{

k = ϕ̂M−ϕ̂1

ηM−η1

b = 1
M

∑M
i=1 ϕ̂i,

(17)

where k and b represent the slope and the offset of the received
phase, respectively. Then the phase can be calibrated by,

ϕ̃i = ϕ̂i − kηi − b

= ϕ̂i −
ϕ̂M − ϕ̂1

ηM − η1
· ηi −

1

M

M∑
i=1

ϕ̂l.
(18)

We can find ϕ̃i has eliminated the influence of ∆t and β, but
still containing the noise N . We can exploit a sliding window
averaging method to remove the remaining noise. Besides,
the cycle range of the collected CSI signal is [−π, π], and
the phase inversion will occur at the critical points −π and
π. Therefore, we need to unwrap the phase before the linear
transformation. Fig. 6 shows the raw phase and the calibrated
phase of the wheat sample with 10% moisture content. It can
be seen that the phase after the calibration is more smooth and
more stable.
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Fig. 6. CSI phase calibration.

CSI Amplitude Denoising: The collected raw CSI ampli-
tude data usually contains irregular multipath noise. As shown
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Fig. 7. CSI amplitude denoising ((a) raw amplitude, (b) amplitude after noise
removal.)

in Fig. 7a, it is the raw amplitude data of 10% wheat moisture
content. To eliminate these noises, we use the the combination
of Fourier transform and smoothing filtering. Specifically, we
use the CSI amplitude in the frequency domain to obtain
the CIR in the time domain through Inverse Fast Fourier
Transform (IFFT). In the time domain, the CIR in the first
few microseconds is the path signal of the Wi-Fi penetrating
grain, which is retained. After removing the path signals of
other multipath environments, Fast Fourier Transform (FFT) is
performed to obtain the CSI amplitude information of the path
where Wi-Fi penetrates grains. Then, we use a smoothing filter
to remove other random noises. Finally, the denoising result
by using the combination of Fourier transform and smoothing
filtering is shown in Fig. 7b. It can be found that the CSI
amplitude after multipath noise removal significantly inhibits
the multipath.

Subcarrier selection: The impact of indoor multipath envi-
ronments on the subcarriers of Wi-Fi channel is different, and
the smaller variances of subcarriers are usually less affected
by the multipath [14], [15]. Thus, our method is to calculate
the variance of the calibrated phase for each subcarrier and
then select the amplitude and phase data of the subcarrier
corresponding to the smallest variance as the “clean” data.

C. Model establishment and moisture content detection

First, we calculate the EP of grain according to Eq. 15
by using the “clean” amplitude and phase data. Then the ε̃
and moisture content are fitted to obtain the moisture content
estimation model. In the moisture content detection stage, we
collect the new CSI data, which is processed to calculate the ε̃
of grain. Finally, we use the established model to detect grain
moisture content.

V. EXPERIMENTS AND EVALUATION

In this section, we evaluate the detection performance of
WiWm-EP in real environments.

A. Experiment Implementation

Sample Preparation: To ensure the reliability of the
WiWm-EP system, we need accurate wheat samples with
different moisture contents. We select the same batch of
summer wheat in a certain area as the sample material, and
the original moisture content is 10%. Then we prepare four
wheat samples with different moisture contents according to
the same standard (i.e., 100g wheat with 1g water). We use
a professional mixer (as shown in Fig. 8) to make the wheat

TABLE I
THE STATE OF WHEAT SAMPLES.

Samples 1 2 3 4 5
Wheat Moisture 10% 11.5% 12.1% 13% 14.5%

absorb water evenly. Then we seal all wheat samples in bags
and let them stand in a refrigerator with the room temperature
of 5◦C for three months. After three months, we take out
the wheat samples with the stable moisture content. Then, the
moisture of wheat samples is calibrated by an oven drying
method to obtain the accurate and real moisture of wheat,
where we use a halogen moisture meter, as shown in Fig. 8.
Finally, we obtain wheat samples with different moisture
contents in Table I.

Hardware and Software: The hardware of the WiWm-
EP system consists of two Lenovo thinkpadx201 notebook
computers equipped with Intel 5300 NIC. The first computer is
externally connected with one antenna as the signal transmitter,
and the other is externally connected with two antennas as the
signal receiver. A 1 × 2 dual antenna communication scheme
is formed, and the working frequency is fixed at 5.2 GHz
with a bandwidth of 20MHz. In terms of the software, both
laptops run Ubuntu Linux14.04 operating system and use the
Picosense platform [16] to control CSI data collection. The
data processing is carried out on MATLAB 2021b.

Fig. 8. Wheat sample preparation tool and implementation scenario.

Experimental Setup: The experimental setup of WiWm-
EP is shown in Fig. 8. Wheat samples with different moisture
contents in the middle of the LOS link are placed in the device
made of acrylic material, and we then start to collect CSI
data. In the model establishment stage, for wheat samples with
moisture contents, CSI data packets are collected for the first
time. The transmitter is set to transmit 100 data packets every
1s, with a duration of 10s. A total of 1000 data packets are used
for the model establishment. In the stage of moisture content
detection, when CSI data is newly collected, the transmitter is
set to 100 packets per second for a duration of 1s, and a total
of 100 packets are used for moisture content detection.

B. Model Establishment and Overall Performance

Model Establishment: We select the “clean” amplitude
and phase data of the 33rd subcarrier to calculate ε̃. To
improve the stability of the model, we use the mean of the
33rd subcarrier phase and amplitude data in 1000 packets to
calculate ε̃. We calculate the ε̃ of different wheat samples,
which is shown as blue points in Fig. 9. It can be found that
with the increase of wheat moisture content, the corresponding
value of ε̃ increases. This trend is consistent with the dielectric
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constant of the wheat itself, which verifies the effectiveness of
the EP. Then, the ε̃ and moisture content are fitted to obtain
the wheat moisture content detection model. As shown in the
red curve in Fig. 9, we have obtained the moisture content
detection model of wheat, where R2 represents the closeness
between the fitting curve and the data. The closer it is to 1,
the better the fitting effect. The model R2 = 0.9954.

Overall Performance: We collect new CSI data from dif-
ferent wheat samples and detect the moisture content through
the WiWm-EP system. Fig. 10 shows the moisture content
detection results. The red bar graph is the calibrated moisture
content. The blue bar chart is the moisture content detected
by the WiWm-EP system. Specifically, the moisture content of
wheat samples detected by our system is 9.8%, 11.3%, 12.4%,
13.3%, and 14.8%, respectively. In term of the calibrated
moisture contents (i.e., the ground truths), we can obtain
the relative errors with 2%, 1.7%, 2.5%, 2.3%, and 2.1%,
respectively. The average relative error of our system is 2.1%.

Meanwhile, we change the environment for data collection.
We collect CSI data in a clean indoor environment. The results
are shown in Fig. 11. The moisture content detection results of
wheat in the ”clean” environment are 10.1%, 11.6%, 12.4%,
12.9%, and 14.7%, respectively. The relative errors are 1%,
0.8%, 2.5%, 0.8%, and 1.4%, respectively and the average
relative error of the system is 1.3%. The average relative error
of our system in different environments is less than 3%. Thus,
our system can effectively remove the environment noise.

VI. CONCLUSIONS

In this paper, we proposed a wheat moisture detection
system based on commercial Wi-Fi devices, called WiWm-EP.
Specifically, we built the relationship between the moisture

content of wheat and the dielectric constant, and developed
an EP model to detect the moisture content of grains. The
experimental results showed that the average relative error of
our system was less than 3%, which validated the effectiveness
of our proposed system.
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