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Abstract—The enormous amount of network equipment and
users implies a tremendous growth of Internet traffic for multi-
media services. To mitigate the traffic pressure, architectures with
in-network storage have been proposed to cache popular content
at devices in close proximity to users in order to decrease the
number of backhaul hops. Meanwhile, the reduced transmission
distance also contributes to energy saving. However, due to limited
storage, only a fraction of the content can be cached, while caching
the most popular content is cost-effective. Correspondingly, it
becomes essential to devise an effective popularity prediction
method. In this regard, some existing efforts manifest the effec-
tiveness of dynamic graph neural network (DGNN) models, but
it remains challenging to tackle sparse datasets. Herein, we first
propose a reformative temporal graph network, named STGN,
to address the challenge and improve prediction performance.
Specifically, the STGN model leverages extra semantic messages
to help establish implicit paths within the sparse interaction
graph and enhance the temporal and structural learning of a
DGNN model. Furthermore, we devise a user-specific attention
mechanism to aggregate various semantics in a fine-grained
manner. Finally, extensive simulations verify the superiority of
our STGN models and demonstrate the potential in terms of
energy-saving.

Index Terms—Content caching, popularity prediction, dynamic
graph neural network, semantics, energy saving.

I. INTRODUCTION

With the surging demand for high-definition video streaming

services, in-network caching is becoming a promising tech-

nique to alleviate the burden on the network by deploying

storage capability at devices in close proximity to users to

cache the popular contents [1]–[3]. Meanwhile, the reduction

of backhaul hops also saves energy consumption [3]–[8]. How-

ever, it is infeasible to continually increase the device caching

capability due to the limitation of reality [9]. This predicament

makes the design of effective caching strategies much more

desirable. Traditionally, the widely-mentioned reactive caching

strategies, such as least recently used and least frequently used,

only focus on the patterns of local requests, thus failing to
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handle the unexpected requests [10]. Accordingly, it becomes

inevitable to design proactive caching strategies, wherein the

accurate popularity prediction plays a decisive role. Deep

neural networks (DNNs) have demonstrated their remarkable

potential in popularity prediction. For instance, Ref. [10]

uses the long short-term memory (LSTM) to discover the

patterns within the temporal content requests, so as to facilitate

popularity-assisted proactive content caching. The problem is

that due to the lack of historical data, LSTM fails to predict

accurately for those inertia users. Fortunately, along with the

requests of contents from users, the interactions between users

and contents gradually constitute a dynamic bipartite graph.

With the help of structural learning, popularity prediction with

graph neural networks (GNN) has been proven to be successful

[11]. However, most GNN models assume that the inherent

graphs are static, which is obviously not the case in practice

[12]. Consequently, popularity prediction with dynamic graph

neural network (DGNN) has been attracting significant atten-

tion. Different from the GNN, a DGNN model is able to jointly

learn the structural and temporal patterns of dynamic graphs.

Built upon the graph attention network (GAT) [13] and the

positional encoding in Transformer [14], Ref. [15] proposes a

temporal graph attention mechanism (TGAT) to encode tem-

poral features (i.e., the timestamps of interactions produced by

users requesting contents) within the dynamic graphs. TGN in

[16] further introduces a temporal learning module before the

TGAT for a deeper refinement of the temporal characteristics.

Ref. [17] optimizes the temporal learning module of TGN

with an age of information (AoI) based attention mechanism

to filter and aggregate fresh historical messages, and realizes

satisfactory content caching results.

When facing a sparse dataset, it is in general difficult

to obtain satisfactory caching performance by deploying the

existing models in a straightforward way. In this regard, Ref.

[18] introduces a knowledge graph (KG) to incorporate the

side information of the requested content into a static graph

model, which leverages the implicit associations among the

contents and yields superior performance. Nevertheless, this

work ignores the dynamics of the interactions between users

and contents, while the KG construction also implies a huge
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Fig. 1. An example of the dynamic interaction graph and the implicit semantic
relationship between contents. The requests of two users, u1 and u2, only
intersect at content i3. The sparsity of data makes it intractable for classical
GNN-based methods to accurately predict the preference of u1 for content
i4. On the other hand, the contents’ genre information and their underlying
similarities, which are indicated by the red dotted lines, in the semantic
dimension, reveal a strong correlation between i4 and i3 as well as a weak
correlation between i4 and i1, where i1 and i3 are the targets of u1. Thus,
u1 is likely to request i4.

demand for side information (e.g., the director and release date

of the content), which may not be applicable in many cases.

In this paper, we propose a Semantics-enhanced Tempo-

ral Graph Network (STGN) to strengthen the DGNN model

performance in dealing with sparse datasets. Different from

the KG model in [18], we only adopt the genre information

of the content and encode it with the pre-trained natural

language processing (NLP) results to establish the implicit

relation. In the example shown in Fig. 1, it is intractable for

classical GNN-based methods to predict the user preference

in a sparse graph. But the attachment of semantics constructs

more implicit structural patterns, which facilitates preference

inference and may further improve the prediction performance

of TGN models [17]. Additionally, a content might possess

multiple genres (e.g., a fictional action movie containing both

fiction and action genres) and the preferred genre might vary

across users as well. Therefore, we further design a user-

specific attention mechanism for a finer-grained aggregation of

semantics. Although the above popularity-based caching meth-

ods have achieved promising performance in terms of cache

hit-rate, the energy consumption perspective is overlooked.

Hence, in this paper, we also examine the energy consumption

by caching the popular contents, which are predicted by the

proposed STGN. In summary, the main contributions of this

paper are as follows.

• To overcome the limitation of data sparsity and leverage

the genre information of requested targets, we propose

an STGN to establish the implicit connections between

contents and semantic features.

• With the observation that a content possibly carries a

variety of semantic information, we devise a user-specific

attention mechanism to further exploit the potential se-

mantic relationship and boost the prediction performance.

• Through extensive experiments using a real-world dataset,

we verify the prediction accuracy improvement achieved

by the STGN model over the conventional TGN models

and validate the superiority of the STGN model based

proactive caching strategy in terms of the reduced cumu-

lative energy consumption.
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Fig. 2. Caching and response in a multi-tier caching system.

TABLE I
MAJOR NOTATIONS USED IN THE PAPER.

Notation Definition

uj , ik User j and content k
vuj

, vik , ejk Raw features of uj , ik and the edge

pjk(T̂ ), p̃jk(T̂ ) Real and predicted preferences of uj for ik at the future time T̂

Popik(T̂ ) Popularity of ik at the future time T̂
Msgjk Message that merges all raw features of an interaction

hj(T̂ ) Short-term preference of uj

Memj ,Mem′
j Long-term preference of uj and the updated formation

Mem′′
j

The updated long-term preference of uj concatenated with

the encoded time feature ΦdT
(Δt)

Euj
(T̂ ),Eik(T̂ ) Final embedding representations for uj and ik

Ejk User-specific embedding

skNs The Ns-th semantic information of ik
Sk Aggregated semantic feature for semantic messages of all ik

The remainder of this paper is organized as follows. We in-

troduce system models and formulate the problem in Section II.

We elaborate on the details of our proposed prediction model in

Section III. In Section IV, we present the experimental results

and discussions. Finally, Section V concludes this paper. For

convenience, we also list the mainly used notations of this

paper in Table I.

II. SYSTEM MODELS AND PROBLEM FORMULATION

A. System Models

Network Model: We concentrate on a multi-tier caching

system, where caches are scattered over the devices close to

users. We conceptually simplify the network as a three-tier

topology as below.

• Top Tier – It is composed of core routers, which connect

the host servers of content providers with other network

elements.

• Middle Tier – It encompasses edge routers and switches.

In particular, the switches communicate with the core
routers through the edge routers and are located at a lower

sub-tier than the edge routers.

• Bottom Tier – It consists of access nodes, e.g., the optical

line terminals (OLTs), which are deployed to connect

users with the switches.

In this paper, we primarily consider the in-network caching

capability of the edge routers, switches, and OLTs. Moreover,

as depicted in Fig. 2, once a copy of the target content is cached

at a lower-tier device, the request will be directly responded

and no longer be sent to any higher-tier devices.

Energy Model: The energy consumption of data transmis-

sion mainly stems from the following two factors [19].

• Caching Consumption – Unlike the traditional networks,

the energy consumption of the cache hardware plays a

non-negligible role. Typically, the power consumption of

caching is composed of the baseline Pb for maintaining

the working status and the storage-dependent consumption

Ps [3], both of which are generally assumed to be

proportional to the amount of stored data.
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Fig. 3. The illustration of M1-STGN with the user-specific attention mechanism for semantics aggregation.

• Transport Consumption – The forwarding of data in the

network also leads to certain energy consumption, which

is proportional to the amount of transmitted data and

usually varies from one device to another.

Thus, the overall consumption of transmitting and caching

a content of Cs bits for a duration of tc is expressed by

Eall = Cs[(Pb + Ps)tc +
∑
d∈D

Etr
dI(d)ntr], (1)

where d ∈ D denotes the d-th device in the network, and Etr
d

is the corresponding transport consumption. Besides, ntr is the

number of requests to the content. I(·) is an indicator function

depending on the caching situation, which specifies that if a

copy of the content is cached in device dx, then I(d) = 0 for

any device d in a higher tier than device dx.

Request Model: In this paper, we model the request records,

in the format of user-content pairs, as a graph. We denote the

set of users as U = {u0, u1, ..., uj} and the set of contents

as I = {i0, i1, ..., ik}, where uj and ik denote the user j
and content k, respectively. The raw feature sets of users

and contents are denoted as VU = {vu0
, vu1

, ..., vuj
} and

VI = {vi0 , vi1 , ..., vik}, where vuj and vik are the vertexes

in the dynamic bipartite graph corresponding to uj and ik,

respectively. The interactions can be naturally regarded as

the edges, which can be denoted as E = {e00, e01, ..., ejk}.

Herein, ejk represents the vector of interactions between uj

and ik. In summary, we represent the dynamic graph as a set

of quadruples, G = {(vu0 , vi0 , e00, T0), ..., (vuj , vik , ejk, Tn)},

where Tn denotes the timestamp of the n-th interaction. In

addition, we can integrate each quadruple as a piece of histor-

ical message, denoted as Msgjk = [vuj
||vik ||ejk||Tn], where ||

is the concatenation operator. Moreover, as each content may

contain various semantic genres, we encode all Ns genres of

content ik with some mature NLP methods [20], denoted as

Sk = {sk1, ..., skNs
}, so as to fully utilize the inherent semantic

characteristics.

B. Problem Formulation

In line with the previous analysis, in order to reduce energy

consumption, the more popular contents should be cached

at the devices closer to the users [3]. Therefore, it becomes

essential to know the popularity of each content in advance.

We use Popik(T̂ ) to represent the popularity of ik at the future

time T̂ , which can be calculated as

Popik(T̂ ) =
∑
j

1
(
pjk(T̂ ) > pthre

)
, ∀k ∈ I, (2)

where pjk(T̂ ) indicates the real preference of uj for ik at T̂ ,

pthre is the threshold value for judging the emergence of such

a request, and 1(ζ) is a function that equals 1 if the condition

ζ is satisfied and otherwise, 0.

Though pjk is unknown apriori, we can still calculate a

prediction p̃jk with the embedding representations of uj and

ik at T̂ , namely Euj (T̂ ) and Eik(T̂ ). That is,

p̃jk(T̂ ) = F
(

Euj (T̂ ),Eik(T̂ )
)
, (3)

where a multi-layer perceptron (MLP) can be adopted to realize

the function F (·). In this paper, our target is to generate

feasible representations with the DGNN model from historical

messages, so as to minimize the binary cross entropy loss

between p = {pjk} and p̃ = {p̃jk}, ∀uj ∈ U , ik ∈ I,

L = −
∑
uj ,ik

(pjk log(p̃jk) + (1− pjk) log(1− p̃jk)) . (4)

III. SEMANTICS-ENHANCED TEMPORAL GRAPH NETWORK

In this section, we focus on the design of the STGN, so

as to better exploit the dynamic bipartite graph and obtain the

embedding representations, Euj
(T̂ ) and Eik(T̂ ), ∀uj ∈ U , ik ∈

I, from a sparse dataset.

A. The Conventional TGN

As shown in Fig. 3(a), the conventional TGN model is

stacked by two prime elements, including the temporal learning

module and the structural learning module.

1) Temporal Learning Module
The temporal learning module, which consists of a message

aggregator and a memory updater, is adopted to integrate a

user’s historical messages into a compressed format. Specifi-

cally, the message aggregator aims to leverage uj’s historical

messages before the prediction time T̂ to obtain the short-term

preference hj(T̂ ), which can be formulated as

hj(T̂ ) = Agg
(
Msgj0, ...,Msgjk

)
, (5)

where the filtering and aggregation function Agg(·) can be

implemented diversely. In the remainder of this paper, we take

account of three means including filtering the latest message,

using the mean value of all messages [16], and attention-based
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weighted summation of all messages [17]. We denote them as

TGN-L, TGN-M and TGN-A, respectively.
Subsequently, the extracted short-term preference hj(T̂ ) is

used to update the long-term preference Memj by a memory

updater, which can be realized by a gated recurrent unit (GRU)

with the mathematical formulations as

Mem′
j = Z · H + (1− Z) · Memj ,

Z = σ
(

hj(T̂ )WhZ + MemjWMZ + bZ

)
,

F = σ
(

hj(T̂ )WhF + MemjWMF + bF

)
,

H = tanh
(

hj(T̂)WhH + (F · Memj)WMH + bH

)
,

(6)

where Mem′
j is the updated output. WhZ , WhF , WhH , WMZ ,

WMF and WMH denote the trainable weights, while bZ , bF
and bH are the bias values of the GRU. σ(·) and tanh(·) are

the activation functions.
2) Structural Learning Module
The structural learning module aims to keep the representa-

tions up-to-date for the inactive users by exchanging features

among neighbors in the graph, and map all user’s embeddings

to their future representations for prediction. Obviously, the

timestamp of each interaction also plays a vital role in this

procedure. Therefore, we adopt a TGAT model [15] with

the time encoding function on the basis of a classical GAT

module [13]. In particular, the time encoding function can be

formulated as

ΦdT
(Δt) =

√
1

dT
[cos(ω1Δt), ..., cos(ωdT

Δt)]
T , (7)

where ω1, ω2, ... and ωdT
are the trainable parameters, Δt

denotes the temporal lag between the request-occurring time

and the time to predict T̂ , and dT is the dimension number of

the desired time encoding.
Then, the encoded results are concatenated to the output of

the temporal learning module as the input of the subsequent

module.

Mem′′
j = [Mem′

j ||ΦdT
(0)], (8)

where (8) reformulates the updated long-term preference

Mem′′
j for uj , whose temporal lag is 0. Besides, for uj’s

neighbor k ∈ Nj , its modified preference term Mem′′
k is

formulated as

Mem′′
k = [Mem′

k||ΦdT
(Δtk)], ∀k ∈ Nj , (9)

Notably, Mem′′
j and Mem′′

k are the inputs for the structural

learning module. As depicted in Fig. 3, the GAT architecture

[13] is the fundamental part of a TGAT layer for exploiting

the structural patterns within the dynamic subgraph of uj , and

can be encapsulated as

Euj
(T̂ ) = GAT(Mem′′

j ,Mem′′
Nj

), (10)

Similarly, we generate the embedding Eik(T̂ ) from the sub-

graph of ik as

Mem′′
k = [Mem′

k||ΦdT
(0)],

Mem′′
j = [Mem′

j ||ΦdT
(Δtj )], ∀j ∈ Nk,

Eik(T̂ ) = GAT(Mem′′
k ,Mem′′

Nk
),

(11)

Note that Euj
(T̂ ) and Eik(T̂ ) are exploited as the input of the

prediction module in (3).

B. Semantic Enhancement for TGN

Essentially, the temporal learning module can be deemed as

a process of refining the commonality among the historical

data. However, the randomly initialized raw data makes it

complicated to accurately extract the patterns, especially for

a sparse dataset. Consequently, we resort to incorporating

semantic information into the raw input, so as to establish the

implicit relationship among the historical messages.

We use a pre-trained NLP model, such as Glove [20], to

encode the content genre information as semantic messages,

Sk = {sk1, ..., skNs
}. Meanwhile, in this part, we intuitively

adopt the summation to generate an aggregated feature Sk from

Sk, which is then incorporated into the raw message.

Sk =
∑
n∈Ns

σ(Wsskn + bs), (12)

Msg′jk = σ(Wt
1Msgjk + Wt

2Sk), (13)

where Ws, bs, Wt
1 and Wt

2 are the trainable parameters to

enhance the semantic features, while Msg′
jk is the desired

semantics-enhanced historical message in (5). Hereinafter, we

name the semantics-enhanced TGN in a temporal manner as

M1-STGN.

Although the fresh features for inactive users can be easily

located with the help of the graph structure, the performance

still suffers from the data sparsity. To address this issue, we

further attach the semantic features to the output of the tem-

poral learning module, establishing implicit semantic pathways

between the contents of the dynamic graph. In our experiments,

we also discover that concatenation yields superior accuracy

than the summation for merging semantics in the structural

learning module. Then, (9) is modified as

Mem′′
k = [Mem′

k||Sk||ΦdT
(Δtk)], ∀k ∈ Nj , (14)

where Sk is calculated by (12). Similarly, we use M2-STGN
to represent the TGN model that is further facilitated by the

structural learning with semantics.

C. User-specific Attention Mechanism for Semantic Aggrega-
tion

Although semantic aggregation can be easily achieved with

(12), it lacks the capability to distinguish the impacts of

different semantics from the same content on different users.

Therefore, we aggregate the multiple semantic features with

a user-specific attention mechanism, as shown in Fig. 3(b).

Mathematically, (12) is reformulated as a linear weighted

summation of Ns semantics of content ik,

Sk = σ

( ∑
n∈Ns

αjnsknWV n

)
,

αjn =
exp(EjkWQ · sknWKn)∑Ns

m=1 exp(EjkWQ · skmWKm)
,

(15)
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TABLE II
THE PERFORMANCE OF PREDICTING CONTENT REQUESTS IN BOTH TRANSDUCTIVE AND INDUCTIVE TASKS. TGN-L, TGN-M, AND TGN-A ARE THE

CONVENTIONAL TGN MODEL’S VARIANTS WITH DIFFERENT MESSAGE AGGREGATORS. IN OUR M1-STGN AND M2-STGN, SUM AND ATTENTION BELONG

TO TWO SEMANTIC AGGREGATORS IN (12) AND (17), RESPECTIVELY. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD AND THE SECOND-BEST RESULTS

ARE HIGHLIGHTED IN UNDERLINED.

Metric AUC for Transductive AP for Transductive AUC for Inductive AP for Inductive

Conventional
TGN-L 85.299 83.824 77.285 76.995
TGN-M 86.731 86.022 78.953 79.721
TGN-A 90.507 90.691 83.504 84.999

M1-STGN
with
Sum

M1-STGN-L 86.386 85.892 79.980 80.439
M1-STGN-M 88.312 88.095 82.043 82.765
M1-STGN-A 91.210 91.337 85.247 86.175

M1-STGN
with

Attention

M1-STGN-L 89.014 88.467 83.096 83.483
M1-STGN-M 89.721 89.356 83.585 84.148
M1-STGN-A 91.358 91.572 85.327 86.567

M2-STGN
with
Sum

M2-STGN-L 87.383 86.806 81.131 81.182
M2-STGN-M 88.649 88.558 82.805 83.461
M2-STGN-A 91.773 91.953 85.877 87.019

M2-STGN
with

Attention

M2-STGN-L 89.749 89.279 84.183 84.387
M2-STGN-M 90.107 89.884 84.434 84.868
M2-STGN-A 91.846 92.056 86.264 87.279

TABLE III
THE ENERGY CONSUMPTION OF ALL DEVICES IN OUR NETWORK MODEL.

Device
Energy Consumption

Etr
d (J/bit)

Server 2.81 · 10−7

Core Router 1.7 · 10−8

Edge Router 2.63 · 10−8

Switch 8.21 · 10−9

OLT 1.4 · 10−7

where WKn, WQ and WV n are the learnable parameters, and

αjn is the attention coefficient of the n-th semantic message of

the content. Besides, Ejk is the user-specific embedding, after

which the weight calculation has to account for the embeddings

of both uj and ik. Accordingly, we define it as

Ejk = LeakyReLu(WuE′
uj

+ WiE′
ik
+ bui), (16)

where Wu, Wi and bui are the trainable parameters, while

E′
uj

and E′
ik

1 are the results generated in the last prediction

or the initialization values for the first prediction of uj and ik,

respectively.

To avoid the over-smoothing caused by the stacking of

various DNN layers and augment the effect of semantics, we

further leverage the skip-connection in GAT [13] to improve

the overall performance. Specifically,

Sk ← Ns · Sk + Ejk (17)

which is the final representation that we use in (13), so as to

further optimize M1-STGN or the temporal learning module of

M2-STGN.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Settings

In this paper, the experiments use the public Netflix2 dataset,

which covers a set of user behaviors on Netflix in UK. We filter

those records associated with users who have more than 4 re-

quests and view each requested content for more than 3 minutes

1For simplicity, we omit the time information T̂ ′ in E′
uj

(T̂ ′) and E′
ik
(T̂ ′).

2https://www.kaggle.com/datasets/vodclickstream/netflix-audience-
behaviour-uk-movies

as the valid input data for prediction. The preprocessed dataset

includes 86,889 interactions, which involve 11,254 different

users and 4,057 pieces of content. Obviously, it is even much

sparser than the dataset used in [17]. Afterwards, we perform

a 60%-20%-20% chronological split of the dataset for training,

validation, and testing, respectively. In order to verify the

effectiveness of our proposed models, we conduct experiments

in both transductive task and inductive task. Compared with

the transductive task, the validation set and test set in inductive

task may contain some vertices that have not been inferred by

the models in the training phase. For both tasks, we choose

the average precision (AP) and the area under the ROC curve
(AUC) as evaluation metrics.

As for caching, we randomly select 24 hours of the data

in the test set of inductive task, which includes some unseen

vertices as in practice. We predict the per-hour popularity

and update the caching once an hour, i.e., the tc in (1) is

1 hour. Moreover, we configure a network architecture with

two core routers, one edge router, one switch, and one OLT,

as depicted in Fig. 2. In Table III, we summarize the per-bit

energy consumption Etr
d . Typically, the devices closer to users

in the network usually have a smaller storage capacity [3].

Hence, we assume that the OLT can store 5 contents with each

taking 3 GB storage, while 7 and 8 contents can be cached at

the switch and the edge router, respectively. Furthermore, we

assume that all caches use high-speed solid-state drive (SSD)

technology. And the storage-dependent power of an SSD is

Ps = 6.25·10−12 W/bit, while its baseline power is Pb = 0.025
W/GB [19].

Moreover, we also investigate the impact of the request

number (i.e., ntr in (1)) of a content, while maintaining

the popularity distribution. Specifically, we assume that each

request in the dataset is made by a cluster consisting of multiple

users with the same request pattern. We compare the energy

consumption of different caching strategies.

B. Results
Table II demonstrates the prediction performance of our

proposed models (i.e., M1-STGN, M2-STGN), and their vari-
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Fig. 4. The cumulative consumption within 24 hours.

Fig. 5. The consumption with different cluster sizes.

ants, as well as the original TGNs in [16], [17]. With a

sparse dataset, it is clear that our models can yield better

results in both transductive task and inductive task, even when

we aggregate the semantic information only by summation.

Moreover, the superiority of M1-STGN and M2-STGN with

attention also proves the effectiveness of our proposed semantic

aggregator. In addition, if we further consider the computa-

tional complexity, the satisfactory results of M2-STGN-L and

M2-STGN-M with attention, which have lower computational

complexity [17], also imply the potential in energy-saving.

Figs. 4 and 5 show the energy consumption from different

popularity prediction strategies. Fig. 4 shows the 24-hour

cumulative energy consumption with 3 users in a cluster.

The curves demonstrate that due to the stronger prediction

capability of STGN, a more considerable gain of energy

consumption can be expected along with the increase in the

number of requests compared with TGN-A based caching. In

addition, Fig. 5 shows the impact of the cluster size, which

implies the recurring number of the same content request, on

V. CONCLUSIONS

In this paper, we have proposed an STGN architecture

to improve the performance of popularity prediction for in-

network caching. By attaching semantic information to the

temporal learning and structural learning modules of TGN, the

proposed STGN models have demonstrated superior prediction

accuracy with a sparse dataset. In addition, by considering that

a piece of content may contain multiple semantics, we have

devised a user-specific attention mechanism for a more efficient

energy consumption. It can be observed that the gain in energy

consumption benefits from the superior prediction accuracy of

our methods on the repeated requests of popular contents.

semantic aggregation, which further enhances the prediction

accuracy. The in-network caching based on our STGN models

also consumes less energy compared to the existing baselines.
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